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ABSTRACT: This paper introduces a novel approach to power system analysis by integrating DC
Holistic Centrality with advanced deep learning (DL) techniques to enhance the efficiency and accuracy
of grid operation assessments. We propose DC Holistic Centrality, a computationally efficient measure
derived from DC load flow data, which extends traditional operational centrality by incorporating
generation and demand nodes as pendant buses. Leveraging this new metric, we develop a suite of Al-
driven estimation methods: a linear regression baseline for active holistic betweenness prediction, a deep
neural network (DNN) for accurate cross-bus prediction of active holistic betweenness, a convolutional
neural network (CNN) for voltage magnitude estimation from DC holistic dependency matrices, and a
scalability assessment using the IEEE 57-bus system to validate model robustness. The study utilizes
a comprehensive dataset generated from varied operational scenarios, with feature selection guided
by correlation analyses rather than additional extraction techniques. Results demonstrate significant
improvements in capturing inter-bus dependencies and system dynamics, offering a promising framework
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for real-time grid monitoring and management.
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1- Introduction

The analysis of power systems as complex networks,
known as Complex Power Networks, hasreceived considerable
attention in electrical engineering. This concept, introduced
by Barabasi et al., characterized the power grid as a scale-
free network, transforming the understanding of power grid
structures. This viewpoint has provided valuable insights into
the interconnected nature of power systems, influencing their
operation, evaluation, vulnerability, reliability, and resilience
[1-3].

The study of complex networks and the use of metrics
to assess their properties are now crucial in many fields,
including electrical engineering. Metrics such as clustering,
distance, centrality, and scaling are utilized to measure and
classify these networks. Centrality metrics are primarily
categorized into neighborhood-based (e.g., Eigen centrality
and degree centrality) and shortest path-based measures (e.g.,
betweenness [4] and closeness [5]).

1- 1- Centrality Metrics in Complex Power Graphs

The exploration of centrality metrics in complex power
networks has evolved significantly since the early 21st
century, offering critical insights into the structural and
operational dynamics of power systems. These metrics,
which quantify the importance of nodes (buses) and edges
(transmission lines) within a network, are broadly classified
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into two categories: neighborhood-based and shortest path-
based measures. Neighborhood-based metrics, such as degree
centrality and eigenvector centrality, assess a node’s influence
based on its direct connections or the significance of its
neighbors. In contrast, shortest path-based metrics, including
betweenness and closeness centrality, evaluate a node’s role
in facilitating power flow along the network’s most efficient
paths [6].

In power systems, centrality metrics have been adapted
to reflect electrical properties, giving rise to structural and
operational variants. Structural centrality incorporates
electrical distances (derived from line impedances) as edge
weights, making it sensitive to changes in grid topology
[7]. Our prior work [6] demonstrated that structural
centralities diverge from traditional graph-based measures
by emphasizing these electrical distances, providing a more
nuanced view of network connectivity. Operational centrality,
however, integrates power flow capacities and system states
(e.g., voltage magnitudes and phase angles), either directly
or indirectly, using data from AC or DC load flow analyses
[8, 9]. This category encompasses diverse forms, accounting
for active and reactive power flows, which are essential for
capturing the dynamic behavior of electrical grids.

Our previous studies [1, 6, 10] have extensively analyzed
these centrality types. In [6], We highlighted how structural
centralities differ from graph-based ones by leveraging
electrical distances, while operational centralities incorporate
power flow magnitudes for deeper system insights. In [10],
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We compared AC and DC power flow impacts, revealing
that DC approximations, despite minor errors, reliably
preserve key trends, making them suitable for large-scale
or real-time applications. Building on this, [1] introduced
“Holistic  Electrical Centrality”, a novel operational
centrality that models generations and demands as pendant
nodes. This approach addresses interpretability limitations
in traditional operational betweenness metrics, showing
stronger correlations with voltage magnitudes and reactive
power flows, thus reinforcing the value of a holistic system
perspective.

These centrality measures (i.e., structural, operational,
and even new holistic ones) play a pivotal role in power
system analysis, enhancing understanding of grid structure
and operational dynamics [7-11]. They have informed the
design of resilient grid architectures [11-15], optimized
operational strategies [16], and supported resource allocation
tasks, such as phasor measurement unit (PMU) placement
[17-20], microgrid and renewable source positioning [0,
21-25], and a wide area measurement system (WAMS)
design [26, 27]. Additionally, they have been instrumental
in vulnerability assessments, critical node identification, and
reliability enhancements [6], underscoring their versatility in
addressing modern power system challenges.

1- 2- Al-Driven Power Flow Analysis

Power flow analysis is a fundamental computational
technique used to evaluate and establish the steady-
state operating conditions of electrical power systems by
calculating the voltage magnitudes and phase angles at each
bus. This analysis is essential for ensuring the reliability,
stability, and optimal functioning of power systems [28-
32]. While the application of deep learning (DL) algorithms
in power flow analysis is not a recent innovation [28, 29],
Recent advancements have significantly expanded its role in
enhancing the accuracy and scalability of these analyses [30,
32-34].

Adaptive and physically informed deep neural networks,
such as PINN4PF, have emerged as powerful tools that
effectively capture network topology and improve power flow
predictions across large-scale grids [30]. These developments
reflect a growing trend toward integrating domain-specific
knowledge into DL frameworks. Recent research has
explored a variety of deep neural architectures to address the
complexities of modern power systems. Radial basis function
networks, multi-layer perceptrons, and convolutional neural
networks (CNNs) have been successfully applied to handle
unbalanced and data-rich distribution systems, delivering high
accuracy and robustness [32]. Furthermore, advancements in
graph deep learning have enhanced the management of non-
Euclidean data and dynamic conditions, supporting reliable
and efficient power flow analysis in networks integrated with
renewables [33]. This evolution underscores the versatility
of DL in adapting to the evolving demands of power grids.
Beyond power flow analysis, deep learning has demonstrated
broader utility in power system applications. For instance,
[34] proposed an enhanced fault detection and classification
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method for AC microgrids by combining data processing
techniques with deep neural networks, highlighting its
adaptability.

In the context of operational centrality, a recent innovation
involves using these measures as input features for DL
models. Our previous work [10] utilized DC betweenness
measures (derived from DC load flow analysis) as inputs to
a deep neural network to estimate total active power loss,
demonstrating their effectiveness in capturing grid dynamics.
This approach lays the groundwork for the current study,
which leverages Al to refine centrality-based estimations,
further bridging traditional engineering methods with
advanced computational techniques.

1- 3- Research Gap and Research Motivation

The integration of operational centrality measures and
deep learning algorithms in power system analysis represents
an emerging yet underexplored domain, revealing significant
research gaps that this study seeks to address. While
operational centrality, particularly the recently introduced
holistic electrical centrality [1], has shown promise in
capturing power system dynamics; its application remains
limited by the computational complexity of traditional
AC load flow-based calculations and the need for more
comprehensive investigations across diverse energy flow
types. Concurrently, the use of DL for power flow analysis has
gained traction [10, 28-30, 32-34], yet prior efforts, such as
those estimating total active power loss using DC betweenness
measures [10], suffer from suboptimal accuracy and a narrow
focus on specific neural architectures, notably excluding
convolutional neural networks (CNNs). This study identifies
a critical gap in leveraging holistic centrality measures with
advanced DL techniques to enhance efficiency and accuracy,
particularly for estimating key system parameters like active
holistic betweenness and voltage magnitudes, which are
essential for modern grid management but challenging to
derive from simplified DC models.

The motivation for this research is to firstly introduce
DC Holistic Centrality as a novel measure and then explore
its potential as input features for various DL methods,
including linear regression, deep neural networks (DNNs),
and convolutional neural networks. Additionally, we aim to
assess the stability of these DL models in predicting critical
power system parameters, addressing the need for efficient
and reliable grid analysis tools.

1- 4- Research Contributions
The contributions of this work are as follows:

» This study extends the concept of holistic centrality by
introducing “DC Holistic Centrality”, leveraging DC load
flow information to provide a computationally efficient
alternative for evaluating active power flow dynamics
within power networks.

* We propose a linear regression model to establish a
baseline for estimating active holistic betweenness from
DC holistic measures, offering a simple yet effective
approach to validate the feasibility of DL-based
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predictions.

»  We then develop a deep neural network (DNN) to perform
cross-bus prediction of active holistic betweenness of
some buses using DC holistic inputs from other buses,
demonstrating improved accuracy in capturing inter-bus
dependencies.

* We explore a convolutional neural network (CNN) to
estimate voltage magnitudes from DC holistic dependency
matrices, demonstrating the potential and limitations of
CNNss in capturing non-linear grid characteristics.

*  We assess the scalability of the proposed DL approaches,
validating their robustness and adaptability across the
larger system, thus supporting their applicability to
complex power networks.

1- 5- Paper Structure

The remainder of this paper is organized as follows:
Section 2 outlines the fundamentals of power network analysis,
including load flow methods and graph representations.
Section 3 introduces DC holistic centrality as a novel measure.
Section 4 evaluates its performance through simulations,
specifically its correlations with system states. Section 5
details Al-enhanced estimation techniques, covering data
preparation (5-1), baseline and DNN estimation (5-2), cross-
bus prediction (5-3), CNN-based voltage estimation (5-4),
and scalability on the IEEE 57-bus system (5-5). The paper
concludes with a summary of findings and future directions.

2- Preliminaries on Complex Power Network Analysis

This section provides the foundational concepts necessary
for understanding the analysis of complex power networks
as applied in this study. It introduces load flow analysis as a
key method for assessing steady-state conditions, followed
by the representation of power systems as graphs, including
the novel holistic power graph. These preliminaries establish
the theoretical framework for deriving centrality measures
and integrating them with Al-driven techniques, setting the
stage for the subsequent sections on holistic centrality and
estimation methods.

2- 1- Load Flow Analysis

Power flow analysis is a cornerstone of electrical
engineering, essential for determining the steady-state
operating conditions of power systems by calculating voltage
magnitudes and phase angles at all buses. This process is
critical for ensuring system reliability, stability, and optimal
performance under varying operational scenarios [28-30].
Two primary methods are employed: AC load flow, which
provides a comprehensive analysis by accounting for both
active and reactive power flows with detailed voltage
considerations, and DC load flow, a simplified approximation
focusing solely on active power using linear assumptions.
These methods cater to different needs, with AC offering
precision for detailed studies and DC enabling efficient
computations for large-scale or real-time applications, both
of which are leveraged in this study to support centrality and
Al-based analyses [10].

2-1- 1- AC Load Flow

The analysis of AC power flow is indispensable for a
thorough understanding of power dynamics within electrical
networks. It considers both active power (P), measured in
watts (W), which represents the usable energy delivered to
loads, and reactive power (Q), measured in volt-amperes
reactive (VAR), which accounts for the energy stored and
released by inductive and capacitive elements. These power
components are governed by complex power equations
derived from Kirchhoff’s laws, expressed as S=P+jQ, where
S is the complex power in volt-amperes (VA). The power
flow at bus 7, S, is related to the voltage V at that bus and the
admittances of connected lines, formulated as:

J=1
B=2 V1V, 1(¥; cos(6))) N
J=1

Y ATAIACH)

where P and Q, are the active and reactive power at bus
i,|V|and |Vj| are the voltage magnitudes, Y, is the admittance
between buses i and j, and 9{./. is the phase angle difference.

This non-linear system requires iterative numerical
methods, such as the Newton-Raphson or Gauss-Seidel
techniques, to solve for steady-state voltages, offering
detailed insights into power consumption, generation, and
losses across the grid [31].

2-1-2- DC Load Flow

DC power flow analysis offers a streamlined approach by
focusing exclusively on active power (P) flow, simplifying
the computational burden for large power systems. It assumes
constant voltage magnitudes (typically 1 per unit) and
approximates small phase angle differences with sin(6) = 6.
The power flow equation is expressed as [31]:

R=35(/-7) @

where P, is the active power injected at bus 7, and B, is
the susceptance between buses i and j. In matrix form, this
becomes P=B.6, enabling efficient calculations. The power
flow P, from bus i to j is proportional to the voltage angle
difference:

Bj:ij(Hi_ej) 3)

This model is widely adopted for operational planning and
real-time monitoring due to its simplicity and speed, making
it a practical choice for deriving approximate centrality
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measures in this study.

2- 2- Power Graph

The power graph is a simple undirected graph that
represents the power grid, where vertices (V) symbolize
system buses and edges (E) correspond to transmission
lines. This graph can be either unweighted or weighted, with
weights reflecting electrical distances based on the absolute
values of line impedances (|Zl.j|). Thus, the weighted power
graph is denoted as G (V, E, w) [20], where V represents the
set of buses, E the set of transmission lines, and w the weight
function. This representation facilitates the application of
graph theory to analyze network topology and connectivity,
providing a foundation for centrality calculations.

2- 3- Holistic Power Graph

The holistic power graph, first introduced in [1], offers
a novel framework for calculating credible centrality values,
particularly betweenness, by including all electric buses,
even those not directly involved in electrical shortest paths.
This approach addresses limitations in traditional operational
centrality methods, which focused primarily on power flows
through transmission lines and bus inflow/outflow without
considering bus types. By modeling generators and demands
as separate pendant nodes, the holistic graph provides a
comprehensive structure: generator nodes inject power,
and demand nodes receive it. However, determining the
electrical distances for these pendant nodes poses challenges,
especially for demand nodes, though their betweenness is set
to zero, minimizing distance-related concerns for this metric.
Depending on the energy flow type, the holistic graph is
classified as active or reactive. Steps 2 to 10 of Algorithm 1

Bus 12 Bus 13

Bus 6

detail the derivation of the holistic graph from DC load flow
results, termed the DC holistic graph, while reactive flows
generate the reactive holistic graph. Figs. 2 and 3 illustrate
the active and reactive holistic graphs for the IEEE 14-bus
test case, with red pendants representing generation nodes
and green pendants denoting demand nodes.

3- Holistic Electrical Centrality Measures

This section introduces and analyzes holistic electrical
centrality, an extension of traditional operational centrality
tailored for power networks. Unlike conventional approaches
that overlook the distinct roles of generation and demand nodes,
holistic centrality incorporates them explicitly as pendant
nodes, offering a more realistic view of power flow dynamics.
We begin by constructing the holistic power graph (described
in section 2-3) and defining the associated dependency matrix,
which quantifies how strongly each bus relies on others to
transmit power along the network’s electrical shortest paths.
These formulations serve as the foundation for the Al-based
estimations discussed later in the paper.

3- 1- Bus Dependency Matrix

Operational centrality measure is based on electrical
distances and also flow information of edges in thg power
graph, either the original one (G, ) or holistic one (G , ) [1].

Recall that thg, power graph is denoted as G, (resp.
holistic graph as G ;). Let f,, represent the maximum power
flowing along the shortest electrical path between buses s
and ¢, while f, (k) indicates the maximum inflow or outflow
at bus & within that same path. The dependency between pairs
of buses describes the extent to which bus s relies on bus
k to effectively distribute its power flow along the shortest

Bus 14

Bus 1

Bus 2

Fig. 1. IEEE 14-bus test system, considering all generations and demands [6].
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o0 O

Fig. 2. Active Holistic Graph: Adding Active Generations and Demands as the Pendants to the
IEEE 14-Bus Network

o

Fig. 3. Reactive Holistic Graph: Adding Reactive Generations and Demands as the Pendants to the
IEEE 14-Bus Network
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electrical path to all other buses ¢ in the power grid. In a
system comprising n buses (resp. n+n_+n, in holistic graph;
where n and n, are numbers of generation and demands),
this dependency of bus s on bus £ for transmitting power to
the other buses can be represented as follows:

S k
dy= 2 % @

s#t#kelV

It is important to note that /, and /| (k) can represent either
active or reactive power flows, depending on the context.
Both active and reactive values can be derived from AC load
flow analysis, or it can specifically indicate active power
flows when calculated using DC load flow analysis [10].

The dependency of bus pairs within the entire system can
be presented matrix D as follows [9, 10]:

dn d12 dln
d d dn
dnl dn2 Tt dnn

Every entry in the matrix D represents the extent to
which a bus, identified by its row number, relies on another
bus, identified by its column number, to efficiently transfer
power along the shortest electrical path to all other buses in
the system. This matrix underscores the importance of each
bus as a junction within the network for the transmission of
power (whether active or reactive), which is why it is referred

to as the “Dependency Matrix” [6].

Different variations of D matrices derived from AC/DC
flows, including: the active dependency matrix (D), DC
dgpendency matrix (D, ), and holistic DC dependency matrix
(D, ), are presented for the normal operational conditions of
the IEEE 14-bus system (illustrated in Fig. 1) in the Figs.
4 to 6. These matrices are normalized to a scale between 0
and 1. To enhance visualization, a color gradient is employed:
values close to 1 are represented in red, while those near 0
are shown in white, with a smooth transition of red shades
between these extremes. The process for constructing the DC
holistic dependency matrix (]H)dr) from the results of the DC
load flow analysis is detailed in Algorithm 1.

The analysis of the active dependency matrix and the DC
dependency matrix, as illustrated in Figs. 4 and 5, reveals
notable similarities between the two. Both matrices are
based on active flows within the grid; however, the active
dependency matrix is derived from precise values obtained
through AC load flow calculations, while the DC dependency
matrix relies on less accurate results from DC flow analysis.
It can also be observed that certain nodes do not participate in
any shortest paths, resulting in corresponding columns with
zero values (e.g., nodes 1, 2, 12, and 14 in the active and DC
dependency matrices). Moreover, pendant nodes, which also
do not contribute to the shortest paths, exhibit zero values
in their respective columns (e.g., node 8 in the active and
DC dependency matrices and nodes 15 to 27 in the holistic
DC dependency matrix). These zero-value columns lead to
zero betweenness centrality for the associated nodes. It is
noteworthy that the main diagonal of each dependency matrix
is composed entirely of zeros, reflecting the absence of any
dependency between a node and itself.

In conclusion, the dependency matrix of a grid can be

0 ! 0 ]0.17 {039 (0.18 [0.07| O |0.04]| O 0 0 0 0
0 0 0 [049| 04 | 03 | 0.2 0 0.1 0 0 0 0 0
0 |01 0 04 (102204 | O 0.2 0 0 0 0 0
0 | 0.1 0 0 04 (02204 | O 0.2 0 0 0 0 0
0 0 0 0 03 [0.18 O (009 O 0 0 0 0
0 0 0 0.3 0 [0.05( 0O 0 |0.07| 02 0 0.1 0
0 | 0.1 0 03 (014 O 0 03 (002 O 0 0 0
0 | 0.1 0 03 |0.14 - 0 03 (002 O 0 0 0
0 |01 0 033 0 02 {041 | O 023 0 0 0
0 |01 0 1033 041 | O 023 0 0 0
0 0 0 0.1 0.1 0 0 0 0 0
0 0 0 0.3 005| 0 0 [0.07[0.19| 0 0.1 0
0 0 0 0.3 005( 0 0 [0.03[0.08( 0 0 0
0 |01 0 1033 041 | O 0 0 0.2 0

Fig. 4. Active Dependency Matrix (Dp) for normal operation condition of the IEEE 14-bus system.
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Algorithm 1: Calculating DC Holistic Dependency Matrix

1: Inputs: mpc structure, including electrical grid structure and generations/demands for load flow
Output: DC holistic dependency matrix
H
Procedure D, =make hol dep(mpc)
5 Initialize: Extract matrix Yss=makeYbus(mpc); Active generations pci; Active demands Pp;
’ from mpc structure
Represent the power grid as a weighted graph G, (V, E, w) with w; = [1/Yj];
Extract number of buses (n); Number of active generation (nc); number of active loads (np)
3. Solve the DC load flow LF_DC(mpc); to determine the flow in different lines of the system,
' represented by py;
H
4: GZ*GZ(V,E,W)
S: For k=1 to ng
For active generation in node k& with generation pcx, add new node /4 as pendants connecting
6: to k, with the flow of pu=pck from 4 to k. The weight of the new edge is equal to 1 (wu=1).
: H H
GZ <« GZ (V+k’E+k’ W+1)
7: End for
8: For ¢g=1 to np
For active demand in node q with demand of ppy, add a new node r as pendants connecting
9: to ¢, with the flow of ps=pp, from ¢ to r. The weight of new edge is equal to 1 (wg=1).
: H H
Gz < G, (V™ E",w™)
10: End for
1: .
1 Determine the collection of the shortest electrical paths for the weighted graph G ;
Having all p;; from DC load flow, pik, and pg- from step (5-10), then calculate the maximum power
12: transmission p[1[] along the shortest electrical path between buses s and ¢ Identify pl10(k),
which represents the highest inflow or outflow at bus £ along this path.
13: For s=1 to ntnetnp
14: For k=1 to n+ng+np
H
15: Calculate the dependency of node s on node & (ds) in Gz based on calculate p[1[] and
pUL(k) in steps (12) and Eq. (4).
16: End for
17: End for
H
18: Return Dy
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Fig. 5. DC Dependency Matrix (Ddc) for normal operation condition of the IEEE 14-bus system.

0 0.56 | 0.02 [ 0.13 | 0.36 [ 0.16 | 0.05 | 0 | 0.04 0 0 0 0.01 0 ojofojojofofojojofojojofo
0.04 0 0.04 | 036 | 036 | 028 | 0.14 | O [ 0.1 | 0.01 | 0.01 { 0.01 | 002|001l |O|O|JO|OfO|O|OjO|O]|]O[OfO]O
0.04 | 0.15 0 036 ( 02 | 028 (0| 02 | 001 0 001 {001 ]|002|0|0|0O|O]JO|]O[O|O]O[O|O]O]O
0.04 | 0.15 | 0.04 0 036 ( 02 | 028 (0| 02 | 001 0 001 {001 |002|0|0[0O|O]JO|]O[O|O]O[O|O]O]O
0.04 | 0.08 | 0.04 | 0.43 0 028 [ 0.13 | 0 | 0.09 | 0.01 | 0.01 | 0.01 | 002 |00L|OfO|O|OfO|O|O]O|O]JO|[O|[O]O
0.04 | 0.08 | 0.04 | 0.19 | 0.44 0 002 |0 | 0.04 | 0.08 016 | 0.04 012|003 0|0|0O|O0O[O0O|]O|JO|O]OjO]|O|O|fO
0.04 | 0.15 | 0.04 | 0.56 | 0.28 | 0.14 0 0] 028 | 003 |0.01]|001 001 [002|]0[0O[O0O]O0O]0O[O|O0O|O]O|O0O]O]O0O|O
0.04 | 0.15 | 0.04 | 0.56 | 0.28 | 0.14 - 0028 0.03]001]|001]001|002]0[0O|O0OfO0O[O]|O|O|O][O]O]O|O|O
0.04 | 0.15 | 0.04 | 032 | 004 | 02 | 026 | O 0 024 | 02 | 004 | 004 | 004|0|0OfO|O]O[O|O|]O]O[O]O]|O|O
0.04 | 0.15 | 0.04 | 032 | 0.04 | 02 [ 026 | O | 0.41 0 021 | 0.04 | 004 | 004 |0O|O|O|JO|O][O]O]O|O|[O]|O]O]O
0.04 | 0.08 | 0.04 | 0.11 | 0.36 | 0.54 | 0.04 | 0 [ 0.19 | 0.14 0 004 [ 004|004 |0|0O|0O|O]JO|]O[O|O]O[O|O]O]O
0.04 | 0.08 | 0.04 | 0.19 | 0.44 0.02 | 0 | 0.04 | 0.07 | 0.16 0 01 |004(0|JO|OfO|O|OjO|O]JO]O|O]|O]O
0.04 | 0.08 | 0.04 | 0.19 | 0.44 0.02 | 0 [ 0.04 | 0.04 | 0.08 | 0.04 0 004(0|]0|0fO0O]O|O]O|O]O]O|O]|]O0]O
0.04 | 0.15 | 0.04 | 032 | 0.04 | 0.04 | 026 | O [ 0.5 | 0.08 | 0.02 | 0.04 | 0.2 0 ojofojojofofojojofojojofo

038 | 0.02 | 0.09 | 0.12 | 0.05 | 0.03 | 0 | 0.02 0 0 0 0 0 0(0ojo0jojo0fOojO0OjO|OfOfjO]O]O
0.04 0.04 | 036 | 036 | 028 | 0.14 | O [ 0.1 | 0.01 | 0.01 { 0.01 | 002 | 00L|O|O|JO|OfO|O|]OjO|O]|]O[O|O]|O
0.04 0.04 | 036 | 036 | 0.28 | 0.14 | O | 0.1 | 0.01 | 0.01 | 0.01 [ 002 |00l {O[O|O|O[O[O|O|]O|O[O]O]O]|O
0.04 | 0.13 038 | 0.24 | 0.13 | 0.08 | 0 | 0.06 0 0 0 001 {001 |0O[OfO]JO]O[O|O]|]O]O|O]O]O|O
0.04 | 0.15 | 0.04 036 | 02 [ 016 | 0| 0.12 | 0.01 0 001|001 |001|O|OfO|O|O|OfO[O|O]JO|O]O]O
0.04 | 0.08 | 0.04 | 0.43 028 [ 0.13 | 0 | 0.09 | 0.01 | 0.01 | 0.01 | 002|001l {0OfO|O|O[O|O|O]O|O]JO][O|O]O
0.04 | 0.08 | 0.04 | 0.19 | 0.44 002 |0 0.04]|006]|012|003]|012|003{0|0|]0O|O0O|O|O0O|OJO|O]O[OfO]O
0.04 | 0.15 | 0.04 | 0.31 [ 0.04 | 0.08 | 0.26 | O 0.07 | 0.06 | 0.01 [ 002 | 002|0|0OfO0O|0O|0O[O|O|]O]|O[O]O|O|O
0.04 | 0.15 | 0.04 | 032 | 0.04 | 0.19 | 026 | O | 0.41 | 048 | 0.17 | 0.03 | 0.04 | 004 |O|O|O[O|O|O|O|O|]O[O|O]|O]O
0.04 | 0.08 | 0.04 | 0.11 | 0.36 | 0.54 | 0.04 | 0 [ 0.19 | 0.14 | 0.36 | 0.04 | 004 | 004 |O|O|OfO[O|O|O|O]OjO|O|O|O
0.04 | 0.08 | 0.04 | 0.19 | 0.44 002 | 0004|007 016 [ 046 | 009 | 004 {0 |O|O|O|O|O|O[O|O]O[O|O]O
0.04 | 0.08 | 0.04 | 0.19 | 0.44 0.02 | 0 | 0.04 | 0.04 | 0.08 | 0.02 004|0|{0|O|OJO]|O|O|O]O]O]O|O|O
0.04 | 0.15 | 0.04 | 0.32 | 0.04 | 0.04 | 026 | O [ 0.45 | 0.05 | 0.01 | 0.02 | 0.15 0jo0f{o0|j0j0{0OfO|]O|OfO]JO]O|O

H
Fig. 6. DC Holistic Dependency Matrix (D , ) for normal operation condition of the IEEE 14-bus system.
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Table 1. Statistical Summary of Dependency Matrices

Metric Active DC Holistic DC
Matrix size (n x n) 14 x 14 14 x 14 27 x 27
Mean of nonzero entries 0.252 0.254 0.166
Standard deviation 0.230 0.232 0.181

Max value 1.00 1.00 1.00

Min (nonzero) value 0.02 0.02 0.01
Sparsity (% of zero entries) 56.12% 55.10% 63.17%

Table 2. Comparison of Different Electrical Betweenness Measures

Operational Centrality

Holistic Centrality

CGrt apll?t g‘mf“f?l AC Load Flow Analysis __ DC Load
entraity entraiity Active Reactive Flow
Flow Flow Analysis
) s » 0 H H H
Notation C, Cy C; G, c’ e ce
Network Structure \/ v \ \ v \/ V
Electrical Distance - \/ Y \ v \ v
Load Flow Information ) ) Active Reactive Active Reactive Active
Flow Flow Flow Flow Flow
Generation/Demand } ) . ) Active Reactive Active
Information Gen/Dem Gen/Dem Gen/Dem
interpreted as a 2-D image representing the dynamics of the k-th bus within the analyzed power grid:
grid under the specified operational conditions, i.e., its energy
flows. This matrix also encapsulates structural information, n
including the shortest paths within the grid. These 2-D Cy (k) =Z d, (6)
s=1

images serve as effective inputs for various neural network
architectures, particularly convolutional neural networks
(CNNs). In this context, we will present an application that
leverages these 2-D images within an Al-driven estimator.

Table 1 summarizes key quantitative features of the three
dependency matrices illustrated in Figs. 4-6. While the active
and DC matrices exhibit close alignment in terms of mean
value and standard deviation, the holistic DC matrix differs
with a larger matrix size (due to the addition of generation
and demand pendants) and greater sparsity. Despite
normalization, the holistic matrix shows reduced average
dependency values, reflecting the distributed impact of added
pendant nodes. This table supports the visual insights of
Figs. 4-6 with a quantitative comparison that reinforces the
validity of the DC-based approximation.

3- 2- Operational Centrality Measures

As fully discussed in [1, 6], in a dependency matrix,
the sum of the values in the £-th column of the dependency
matrix indicates the operational betweenness centrality of the

Similarly, the inverse of the sum of the elements in the
s-th row of the dependency matrix represents the operational
closeness of the s-th bus in the system:

CS(S):n;d

k=1"" sk

(7

The above operational centralities can be used in addition
to previously defined graph and structural centralities [6], i.e.,
C, and C} .

3- 3- From Operational Centrality to Holistic Centrality

As previously mentioned, different operational centralities
can be derived from a power grid based on the chosen graph
(either original or holistic) and the energy flows (either active
or reactive) analyzed through various power flow methods
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Table 3. Different betweennesses for IEEE 14-bus case.

2’ Grap. Struc. Operational Holistic

E C, cs C; & cr co Ci
1 0 0 0 0 4 3 4
2 4.7 4.8 5.7 6.1 10.7 10.3 10.7
3 0 0 0 0 39 6.8 3.8
4 19.6 214 23 22.4 16.9 15.5 17.1
5 16.8 152 18.3 17.7 16 14.3 16
6 16 17.2 17.5 14.5 15.9 13.5 15.8
7 9.6 18.6 15 20.8 8 12.5 8
8 0 0 0 0 0 3.3 0
9 16.8 124 11.9 7.9 9.8 7.2 9.7
10 3.7 4.8 3 4.8 34 4.1 34
11 2.9 4.1 3.9 4 3.7 3.1 3.7
12 0 0 0 0 1.8 1.2 1.8
13 4.5 1.4 1.7 1.7 3.5 3.2 3.5
14 5.3 0 0 0 2.4 2 2.4

(AC or DC). We will categorize these operational centralities
accordingly. For flows obtained through AC power flow
analysis, we will refer to them simply as active or reactive
centrality, such as active betweenness (C#% ) and reactive
betweenness (C% ). In contrast, for flows derived from the
DC load flow method, which only provides active flows,
we will denote these centralities by the power flow method,
such as DC betweenness (Cd; ). When centralities are derived
from a holistic graph, we will prefix their notation with

“hollstlc” resulting in terms like active hohstlc betweenness
(CP ), reactive hollstlc betweenness (CQ ), and DC holistic
betweenness (C‘;‘ ). To streamline our terminology, we will

omit the word “operational” from all centrality types, as
the flow type (active/reactive) or the power flow method
(DC) inherently indicates their operational nature. Table 2
summarizes all centrality measures used in complex power
networks.

Various betweenness centralities, as the sum of various
dependency matrices, derived from the IEEE 14-bus system
(Fig. 1) in normal operation condition are calculated and
summarized in Table 3. Additionally, the DC holistic
betweenness (represented by CZC ) has been included in this
table for comparison with the results presented in [1]. Notably,
the new centrality measure closely aligns with the active
holistic betweenness, exhibiting a similar trend throughout.

4- Performance Evaluation through Simulations

This section evaluates the performance of the proposed
model through comprehensive simulations, offering insights
into its effectiveness across diverse scenarios. It details
the experimental setup, provides an in-depth analysis of
the simulation results, and compares these outcomes with
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established benchmarks to highlight the model’s strengths
and identify critical performance trends.

4- 1- Holistic Betweenness Measures vs. Active/Reactive
Betweenness Measures

In previous section, we first analyzed the IEEE 14-bus
test case under normal operating conditions, calculating both
holistic active and reactive, and DC holistic betweenness
measures. These results are included in the last two columns
of Table 2, alongside previously established operational
betweenness measures, with values normalized to sum to 100.

Our findings show that the proposed approach assigns DC
holistic betweenness values to buses that previously had zero
operational betweenness. Key conclusions include:

Holistic measures distribute betweenness impacts more
evenly across all system buses compared to traditional
operational measures, reflecting that every bus influences
active/reactive power flow.

A bus that does not contribute to a specific power type
(active or reactive) will have a corresponding holistic
betweenness of zero. For example, bus 8’s active and DC
holistic betweenness measures are zero because it is a PV bus
with no active power generation or demand.

Generation buses typically have higher holistic
betweenness values than operational ones due to their crucial
role in power flow. For instance, bus 2’s active holistic
betweenness rises from 5.7% to 10.7%, and its reactive
measure increases from 6.1% to 10.3%. Similarly, bus 3’s
reactive measure goes from 0% to 6.8%.

Rankings based on holistic measures may differ from
those based on operational betweenness. Bus 4 remains the
most critical node in terms of holistic active and reactive
betweenness due to its central location, while bus 7’s ranking
declines as it does not function as a generation or primary
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load bus.
The DC holistic betweenness closely mirrors the active
holistic betweenness, exhibiting a similar trend throughout.
Overall, these results underscore the advantages of using
holistic measures to better understand the dynamics of power
systems and the roles of individual buses within them.

4-2- Correlation of Holistic Betweenness Measures and
System States

The previous section has demonstrated the effectiveness
of the proposed holistic measures. We have claimed that these
measures, when combined with the previously established
operational metrics, can effectively capture the dynamics
of power grid operations, especially considering that only
a limited range of operational conditions was analyzed in
previous section and reference [6]. Consequently, the current
simulation aims to further validate this claim regarding the
proposed holistic measures. To do this, we created 10,000
unique operational scenarios by randomly varying generation
levels by up to 20% and demand levels by up to 25%, thus
generating a wide array of operational cases, which is shown
in Fig. 7. The power flow for each scenario was analyzed
using both the Newton-Raphson (NR) and DC methods using
Matpower package [31]. Using the flow data obtained from
these methods, we calculated active and reactive betweenness,
as well as active and reactive holistic betweenness, and DC
holistic betweenness for each scenario. We then examined
the correlations between these various measures and the state
information (voltage phase and magnitude), presenting our
findings in Tables 4 to 13. Additionally, we implemented a
color-coded indicator to visually represent these correlations:
negative correlations are indicated in green, positive
correlations in red, and weak correlations approach white.

The observations derived from the correlation tables
are noteworthy. The bright green and red colors observed
in the columns for buses 1, 3, 12, and 14 in Tables 5 and
6 indicate that the newly assigned betweenness values
(active holistic and DC holistic betweenness measures)
successfully capture the dynamics of system states.
Previous findings suggest a strong correlation between
active power and voltage phase; this is corroborated by the
bright colors in Tables 4 to 6, confirming the relationship
between active operational measures and voltage phase, as
well as between active/DC holistic measures and voltage
phase. Similarly, a strong correlation exists between
reactive power and voltage magnitude, which is also
validated in Tables 12 and 13.

Notably, some generation buses (such as buses 1 and
3) exhibited traditionally zero measures (refer to Table 4).
However, their holistic measures (Tables 5 and 6) are not
only non-zero but also display bright colors, underscoring
the critical role of generation buses in state dynamics; a role
effectively captured by active/DC holistic betweenness. A
comparable analysis applies to holistic reactive betweenness
and voltage magnitude, as exemplified by bus 9 in Table 13.
Our findings reveal a weak correlation between traditional
and holistic active measures with voltage magnitudes (light
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Fig. 7. Flowchart of Generating Different Operational
Conditions

colors in Tables 7 to 9), which aligns with existing knowledge.
In contrast, both reactive measures and voltage phase
demonstrate an acceptable level of correlation, warranting
careful examination in future research.

In summary, our thorough analysis demonstrates that
holistic measures (active, reactive, and DC) are more effective
than traditional operational metrics in understanding the
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Table 4. Correlation between Active Betweenness and Voltage Phase.

Ch(1) ch(2)| Ca(3)] Ca(4)| Ca(5)| CL(6)| Ch(7)| CL(8)| ch(o) | ch(io) | CR(11)| Ch(12) | CL(13) | Ch(14)

1

) -0.57 -0.55 | -0.65 | 0.56 | 0.54 030 | 0.12 | -0.36 -0.66

03 -0.66 -0.64 | -0.73 | 0.58 044 | 0.08 -0.34 -0.74

34 -0.53 -0.54 | -0.60 | 0.57 | 0.48 024 | 0.14 | -0.38 -0.61

ds -0.49 -0.51 | -0.57 | 0.53 | 0.45 023 | 0.15 | -0.36 -0.58

36 -0.24 -0.26 | -033 | 028 | 023 0.07 | 017 | -0.24 -0.34

&7 -0.29 032 | -038 | 044 | 025 0.06 | 022 | -0.42 -0.39

ds -0.29 032 | -038 | 044 | 025 0.06 | 022 | -0.42 -0.39

9 -0.19 022 | -028 | 037 | 0.14 -0.02 [ 025 | -0.43 -0.29

310 -0.18 021 | -027 | 036 | 0.15 0.01 | 021 -0.40 -0.28

d11 -0.21 -0.23 | -030 | 032 | 0.19 0.04 | 0.19 | -0.34 -0.31

d12 -0.21 -0.24 | -031 | 023 | 020 0.05 | 0.18 | -0.20 031

313 -0.20 -0.23 | -030 | 023 | 0.18 0.03 | 0.19 | -0.20 -0.30

d1a -0.16 -0.19 | -026 | 026 | 0.11 -0.04 | 027 | -0.30 -0.26

Table 5. Correlation between Active Holistic Betweenness and Voltage Phase.
ah | @@ [ @o | oo | @6 | @6 | a0 | @ [ @0 | @0 | e | @ | @ | e

o1
& |-063 | -052 |-057 |-023 |-061 |050 |052 043 | 0.10 033 | 0.02 035 | -0.01
85 |-074 | 064 |-071 |-020 | -058 |054 |059 049 | 0.05 032 | -002 |-039 | -0.03
84 |-059 | -052 |-052 |-031 |-060 |05 |051 043 | 0.3 2035 | 0.04 034 | 001
8s | -056 | 048 |-050 |-028 |-057 [048 | 047 039 | 0.13 033 | 0.04 033 | 0.01
8¢ | 033 | -022 |-030 |-012 |-037 |024 |023 0.16 | 0.18 -0.21 0.05 027 | 0.02
07 -0.37 -0.30 -0.34 -0.15 -0.40 0.42 0.27 0.19 0.21 -0.40 0.13 -0.25 0.05
8s | -037 | 030 |-034 |-0.15 |-040 [042 | 027 0.19 | 021 040 | 0.13 025 | 0.05
09 -0.27 -0.20 -0.25 -0.08 -0.31 0.38 0.16 0.09 0.24 -0.41 0.17 -0.21 0.06
S0 | -026 | 019 |-025 |-007 |-030 [036 |O0.6 0.11 | 019 2038 | 0.16 2020 | 0.06
o1 -0.29 -0.20 -0.27 -0.09 -0.33 0.30 0.19 0.13 0.19 -0.31 0.11 -0.23 0.04
8> | 030 | -0.19 |-028 |-010 |-034 |020 | 020 0.14 | 0.19 0.17 | -001 | -027 | 0.02
813 [ -029 | 018 |-027 |-009 |-033 [019 |0.19 012 | 020 -0.18 | 0.03 031 | 001
Si4 | 023 | 014 |-022 |-005 |-027 [025 |o0.12 008 | 026 028 | 0.13 026 | -0.11
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Table 6. Correlation between DC Holistic Betweenness and Voltage Phase.
cie) | e | cae)| cac® | cac)| cael©)| e cae®)| e | cae10)] cacID| cac12)| cac13)] cac14)
O
02 -0.61 | -0.55 | -0.56 | -0.27 | -0.62 | 0.5 0.53 0.45 0.11 -0.3 -0.02 -0.33 -0.01
03 -0.72 | -0.66 | -0.7 -0.24 | -0.59 | 0.54 0.59 0.5 0.07 -0.28 -0.05 -0.36 -0.03
04 -0.58 | -0.54 | -0.52 | -0.36 | -0.61 | 0.52 0.51 0.44 0.14 -0.32 0.01 -0.31 0.01
05 -0.55 | -0.5 -0.49 | -032 | -0.58 | 0.48 0.48 0.41 0.15 -0.3 0.01 -0.31 0.01
06 -0.31 -0.24 | -0.29 | -0.16 | -0.38 | 0.25 0.23 0.17 0.19 -0.18 0.02 -0.25 0.02
07 -0.35 | -0.31 | -0.33 | -0.19 | -0.42 | 0.42 0.27 0.21 0.23 -0.37 0.09 -0.24 0.05
Os -0.35 | -031 | -0.33 | -0.19 | -0.42 | 0.42 0.27 0.21 0.23 -0.37 0.09 -0.24 0.05
09 -0.25 | -0.21 -0.24 | -0.12 | -0.32 | 0.37 0.16 0.1 0.27 -0.39 0.13 -0.2 0.06
010 | -0.24 | -0.2 -0.24 | -0.11 -0.31 | 0.36 0.17 0.12 0.22 -0.36 0.13 -0.2 0.06
o011 | 027 | -0.22 | -0.26 | -0.13 | -0.34 | 0.31 0.2 0.14 0.21 -0.28 0.08 -0.22 0.05
o012 | -0.28 | -0.21 -0.27 | -0.14 | 035 | 0.2 0.2 0.14 0.2 -0.14 -0.04 -0.26 0.02
013 | -027 | -0.19 | -026 | -0.13 | -0.34 | 0.2 0.19 0.13 0.21 -0.15 0 -0.29 0.01
O14 | 021 | -0.15 | -0.21 | -0.1 -0.28 | 0.26 0.13 0.09 0.28 -0.26 0.09 -0.26 -0.11
Table 7. Correlation between Active Betweenness and Voltage Magnitude.
Ca()| ci(2)| C(3)| Ch(4)| Ca(5)| Ci(6)| C(7)| Ca(8)| Ca(9)| Cy(10)| Cp(11)| Ci(12) | Ci(13)| Cy(14)
[ V1] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
| Vz| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
| V3] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
| V4l -0.01 -0.09 | -0.07 | 0.26 -0.04 -0.17 | 0.24 -0.34 -0.08
| V5| -0.01 -0.08 | -0.07 | 0.20 -0.03 -0.15 | 0.23 -0.29 -0.09
| V6| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
|V 0.1 0.06 | 007 | 008 |-0.11 013 | 023 | 035 0.06
|Vs] 0.00 0.00 | 0.00 | 0.00 | 0.00 0.00 | 0.00 | 0.00 0.00
| Vol 0.10 0.07 | 007 | 004 |-0.08 0.08 | 019 | -031 0.07
| V10| 0.14 0.11 0.10 0.05 -0.08 -0.05 | 0.11 -0.32 0.10
| V11| 0.15 0.12 0.12 0.06 -0.09 -0.05 | 0.11 -0.36 0.11
[ V12| 0.10 0.09 0.07 -0.31 | -0.11 -0.10 | 0.06 0.33 0.09
[ V3] 0.16 0.14 0.12 -0.33 | -0.18 -0.17 | 0.16 0.25 0.14
| V14| 0.14 0.11 | 0.10 |-0.14 | -0.18 0.20 | 029 | -0.09 0.11
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Table 8. Correlation between Active Holistic Betweenness and Voltage Magnitude.
H H H H H H H H H H H H H H
Cg(l) Cg(Z) CQ(S) Cg(4) CE(S) Cg(‘S) C§(7) Cg(g) Cg(9) Cg(lo) Cg(l ) Cg(12) Cg(l 3) CE(M)

| V1| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
| V2| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
| V3| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 -0. -0.05 | 0. -0. 025 | 0. . ) L -0.35 ) -0. !
V. 0.03 0.0 0.04 0.29 0.2 0.24 0.10 0.09 0.22 0.3 0.19 0.10 0.08
| V5| -0.05 | -0.04 | 0.01 -0.21 | -0.23 | 0.18 0.07 0.06 0.23 -0.29 0.16 -0.13 0.07
| V(,| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
| V7| 0.10 0.09 0.10 -0.01 | 0.00 0.12 -0.05 -0.03 | 0.19 -0.39 0.23 -0.05 0.07
| Vg| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
| V9| 0.10 0.09 0.09 0.04 0.04 0.08 -0.05 -0.02 | 0.15 -0.36 0.20 -0.04 0.06
[ V10| 0.13 0.12 0.11 0.08 0.08 0.10 -0.06 -0.02 | 0.05 -0.36 0.23 -0.01 0.08
V| 015 | 014 |012 |01 |010 | 011 | -0.06 -0.02 | 0.05 041 | 025 0.02 0.08
[Via] 011 | 020 |009 |0.10 |008 |-032 |-0.10 -0.10 | 0.08 0.28 0.61 | -0.03 |-0.01
| V13| 0.16 0.25 0.13 0.13 0.11 -0.33 | -0.17 -0.16 | 0.17 0.20 -0.09 -0.43 -0.12
|V14| 0.18 0.21 0.15 0.13 0.12 -0.10 | -0.15 -0.10 | 0.27 -0.14 0.16 -0.18 -0.40

Table 9. Correlation between DC Holistic Betweenness and Voltage Magnitude..
H H H H H H H H H H H H H H
1 2 3 4 5 6 7 8 9 10 11 12 13 14

[Vh] | o 0 0 0 0 0 0 0 0 0 0 0 0
[Va| | O 0 0 0 0 0 0 0 0 0 0 0 0
[V3 |0 0 0 0 0 0 0 0 0 0 0 0 0
| V4| -0.03 | -0.06 | 0.05 -0.33 | -0.28 | 0.27 0.08 0.08 0.25 -0.31 0.16 -0.08 0.08
|Vs| | -0.04 | -0.05 | 001 |-0.26 | -0.26 | 0.21 | 0.06 005 |024 |-025 |013 |-011 | 0.07
[Vl |0 0 0 0 0 0 0 0 0 0 0 0 0
| V7| 0.09 0.06 0.1 -0.07 | -0.05 | 0.2 -0.08 -0.08 | 0.2 -0.32 0.19 -0.01 0.07
[Vs| | O 0 0 0 0 0 0 0 0 0 0 0 0
| V9| 0.09 0.05 0.08 -001 | O 0.18 -0.08 -0.08 | 0.16 -0.29 0.17 0 0.06
| V10| 0.12 0.09 0.1 0.03 0.04 0.19 -0.09 -0.07 | 0.06 -0.29 0.2 0.03 0.08
| V11| 0.14 0.1 0.11 0.06 0.06 0.2 -0.1 -0.07 | 0.06 -0.34 0.22 0.06 0.08
| V12| 0.11 0.17 0.09 0.08 0.07 -0.29 | -0.11 -0.11 | 0.06 0.3 -0.61 -0.04 -0.01
| V13| 0.16 0.22 0.13 0.1 0.1 -0.29 | -0.18 -0.18 | 0.16 0.23 -0.1 -0.43 -0.12
| V14| 0.17 0.18 0.14 0.08 0.09 -0.03 | -0.17 -0.12 | 0.26 -0.09 0.14 -0.16 -0.4
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Table 10. Correlation between Reactive Betweenness and Voltage Phase.

Ci() | CB(2) | ) | C3(4) | CR(5) Ci(8) | CR(9) | C(10) | Cy(1) | CF(12) | C3(13) | C3(14)

31

) -0.73 -0.50 -0.46 0.57 0.05 -0.15 -0.14 -0.86

33 -0.70 -0.54 -0.44 0.05 -0.16 -0.10 -0.80

S -0.74 -0.52 -0.43 0.44 0.06 -0.14 -0.15 -0.89

ds -0.74 -0.51 -0.45 0.42 0.06 -0.13 -0.17 -0.89

d6 -0.72 -0.41 -0.48 0.21 0.05 -0.08 -0.25 -0.87

&7 -0.73 -0.43 -0.46 0.25 0.04 -0.14 -0.14 -0.89

Ss -0.73 -0.43 -0.46 0.25 0.04 -0.14 -0.14 -0.89

o -0.71 -0.37 -0.45 0.17 0.02 -0.14 -0.13 -0.88

d10 -0.71 -0.38 -0.46 0.17 0.03 -0.12 -0.15 -0.88

di -0.72 -0.40 -0.48 0.19 0.04 -0.10 -0.19 -0.88

d12 -0.71 -0.41 -0.49 0.19 0.06 -0.07 -0.26 -0.85

d13 -0.70 -0.40 -0.49 0.17 0.06 -0.08 -0.25 -0.84

S14 -0.70 -0.37 -0.47 0.13 0.04 -0.10 -0.19 -0.84

Table 11. Correlation between Reactive Holistic Betweenness and Voltage Phase.
H H H H H H H H H H H H H H
Cg(l) Cg(Z) C§(3) C§(4) Cg(5) Cg(6) Cg(7) C3(8) C3(9) Cg(lo) Cg(l D Cg(lZ) C§(13) CS(M)

o1
02 -0.58 -0.66 -0.38 -0.38 0.18 0.56 0.12 0.12 -0.05 -0.07 -0.04 -0.06 0.03
03 -0.59 -0.63 -0.43 -0.39 0.12 0.22 0.12 -0.07 -0.04 -0.04 -0.03 0.03
N -0.57 -0.66 -0.38 -0.40 0.26 0.44 0.03 0.13 -0.04 -0.09 -0.03 -0.07 0.04
05 -0.57 -0.66 -0.38 -0.39 0.25 0.43 0.01 0.12 -0.03 -0.10 -0.03 -0.08 0.04
O6 -0.52 -0.62 -0.33 -0.30 0.25 0.26 -0.13 0.10 0.01 -0.18 0.01 -0.12 0.04
07 -0.54 -0.65 -0.35 -0.32 0.26 0.28 -0.12 0.08 -0.04 -0.07 -0.03 -0.08 0.04
08 -0.54 -0.65 -0.35 -0.32 0.26 0.28 -0.12 0.08 -0.04 -0.07 -0.03 -0.08 0.04
d9 -0.52 -0.63 -0.33 -0.28 0.26 0.21 -0.19 0.06 -0.04 -0.07 -0.03 -0.08 0.04
010 | -0.52 -0.63 -0.33 -0.28 0.26 0.21 -0.18 0.07 -0.03 -0.08 -0.03 -0.09 0.04
011 | -0.52 -0.63 -0.33 -0.30 0.25 0.23 -0.16 0.09 -0.01 -0.12 -0.01 -0.10 0.04
o012 | -0.50 -0.61 -0.33 -0.30 0.24 0.24 -0.14 0.11 0.01 -0.19 0.01 -0.11 0.04
013 | -0.50 -0.61 -0.32 -0.30 0.23 0.22 -0.15 0.11 0.00 -0.18 0.03 -0.10 0.04
014 | -0.50 -0.61 -0.32 -0.27 0.24 0.18 -0.19 0.08 -0.02 -0.12 0.01 -0.09 0.07

complex dynamics of power grid operations. These holistic
metrics reveal previously overlooked effects of different
buses on system behavior, indicating their potential to
improve decision-making and grid management strategies.
Specifically, operational and holistic centralities can be
integrated into Al algorithms to estimate and forecast grid
operational parameters, as previously suggested in [10]. The

following section will introduce two Al methods aimed at
accelerating the calculation of active holistic centralities and
estimating voltage magnitudes from DC load flow results.
Note that for the next section, no specific feature extraction
techniques, such as principal component analysis (PCA),
were applied; instead, feature selection was guided by the
correlation insights from Tables 4 to 13.
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Table 12. Correlation between Reactive Betweenness and Voltage Magnitude.

G| o) | GO M) | SO cage) | car) | SO G oy | copz) | 1) | G04)

141 0.00 0.00 0.00 | 0.00 0.00 0.00 | 000 | 0.00 0.00

|V 0.00 0.00 0.00 | 0.00 0.00 0.00 | 0.00 | 0.00 0.00

| V3] 0.00 0.00 0.00 | 0.00 0.00 0.00 | 000 | 0.00 0.00

V| -0.45 002 | 0.09 - -0.21 -0.16 | 0.13 | -038 -0.63

|Vs| -0.51 -0.10 021 -0.16 -0.11 | 0.09 | -0.37 -0.69

| Vs 0.00 0.00 0.00 | 0.00 0.00 0.00 | 0.00 | 0.00 0.00

|V -0.22 051 027 | 039 -0.10 0.61 | 047 | -0.66 0.33

| Vs 0.00 0.00 0.00 | 0.00 0.00 0.00 | 0.00 | 0.00 0.00

|Vs] -0.13 037 | 022 -0.03 -0.69 | 0.54 | -0.70 -0.19

[V10] -0.11 039 | 026 -0.01 0.70 | 041 | -0.65 -0.16

[ V1] -0.12 0.37 0.27 -0.01 -0.68 | 0.38 -0.64 -0.17

[V12] -0.11 0.09 -0.06 | 0.20 -0.11 0.12 | 028 | -0.30 -0.16

Vi3] -0.17 0.17 -0.06 | 0.29 -0.15 0.22 | 038 | -0.37 -0.21

|V14] -0.16 042 0.16 | 0.28 -0.11 049 | 048 | -0.54 0.22

Table 13. Correlation between Reactive Holistic Betweenness and Voltage Magnitude.
H H H H H H H H H H H H H H
@D | @ | 0B) | o) | e(3) | 0) | o) | @) | 0®) | ce(10) | oD | ee(12) | ce(13) | ca(l4)

[Vi] | 000 |000 |000 |000 |000 |000 |000 |000 |000 |0.00 0.00 0.00 0.00 0.00
[V2| | 000 |000 |000 |000 |000 |000 |000 |000 |000 |0.00 0.00 0.00 0.00 0.00
[V3| | 000 |000 |000 |000 |000 |000 |000 |000 |000 |0.00 0.00 0.00 0.00 0.00
|[Va] | 027 | -041 | -0.14 | 001 | 055 0.11 | -050 | -0.18 | 0.13 034 | 0.08 025 | 0.03
[Vs| | 031 |-046 | -0.18 | -0.06 | 047 0.07 | -045 | -0.11 | 0.11 032 | 0.07 023 | 0.03
[Ve| | 000 | 000 |000 |000 |0.00 0.00 | 000 | 0.00 | 0.00 0.00 0.00 0.00 0.00
[V7] | 016 |-023 | -0.09 | 0.54 024 | 011 |-070 | -0.69 | 033 0.69 | 025 046 | -0.03
[Vs| | 000 | 000 |0.00 |0.00 0.00 | 000 | 000 |000 | 0.00 0.00 0.00 0.00 0.00
[Vs| | 011 | -0.15 | -0.07 0.09 |019 |-0.68 |-0.79 | 0.36 075 | 028 048 | -0.04
[Vio| | 0.09 | -0.13 | -0.06 012 |019 |-063 |-079 | 0.19 072 | 034 044 | 0.00
[Vii] | 0.09 | -0.13 | -0.06 013 |08 |-0.61 |-076 | 0.18 072 | 034 042 | 001
[Vi] | 002 | -0.04 | -0.02 |016 | 024 |008 |002 |-0.16 |-0.10 | 023 029 | -037 |-044 | -0.08
[Vis] | 005 | -0.10 | 004 |024 |034 |012 |00l |-030 |-021 | 030 037 | -0.04 |[-0.66 | -0.10
[Via] | 009 | -0.14 | -005 [047 | 055 | 014 |0.09 |-051 |-052 | 035 -0.55 | 0.19 -0.54 | -0.34

5- AI-Enhanced Estimation Techniques for Holistic
Power Network Analysis

High-level description: This section explores a range
of estimation techniques to derive critical power system
parameters from DC holistic dependency matrices and
betweenness measures, progressing from simple linear
regression to sophisticated deep neural networks (DNNs)
and convolutional neural networks (CNNs). Subsections 5-2
to 5-4 demonstrate how the proposed holistic dependency
matrix and holistic betweenness centrality, calculated as the
sum of its columns, effectively extract diverse features such as
active holistic betweenness and voltage magnitudes. Starting
with linear regression for baseline predictions, the analysis
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advances to DNNs for capturing non-linear relationships, and
culminates in CNNs to process 2-D dependency matrices as
images. These methods are validated across the [EEE 14-bus
system, with Subsection 5-5 further proving the scalability of
the proposed approaches to the larger IEEE 57-bus system,
highlighting their adaptability and robustness for enhanced
power network analysis.

5- 1- Data Preparation for Al Models

This subsection outlines the data preparation process for
training, validating, and testing the Al models used in this
study. For the IEEE 14-bus system, we generated 10,000
training samples by randomly varying generation levels by
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up to 20% and demand levels by up to 25%, as described
in Fig. 7. For each scenario, both AC and DC load flow
analyses were performed using the Newton-Raphson method
and DC approximations, respectively. Algorithm 1 was then
applied to derive DC holistic and active holistic betweenness
measures from the DC and AC results, respectively, while bus
states (voltage magnitudes and phases) were obtained from
the AC load flow solutions. This process was repeated to
create 1,000 validation samples and 50 test samples, ensuring
a comprehensive dataset for model evaluation.

For the IEEE 57-bus system, a similar approach was
adopted, generating 8,000 training samples, 800 validation
samples, and 100 test samples with the same variation ranges
for generation and demand. The same load flow analyses
and Algorithm 1 were used to compute the corresponding
DC holistic, active holistic betweenness measures, and bus
states. No specific feature extraction techniques, such as
principal component analysis (PCA), were applied; instead,
the selection of input features, particularly DC holistic
betweenness, was guided by the correlation insights reported
in Tables 4 to 13, which highlight their strong relationships
with system states.

5- 2- Baseline and DNN-Based Estimation of Active Holistic
Betweenness

This subsection explores the use of linear regression to
estimate active holistic betweenness measures from DC
holistic measures derived from DC power flow results,

followed by an evaluation of a deep neural network (DNN) to
enhance prediction accuracy. The input features comprise DC
holistic betweenness measures for all 14 buses except bus 8§,
resulting in 13 inputs, while the outputs are the corresponding
active holistic betweenness measures, also totaling 13
features.

5- 2- 1- Linear Regression Analysis

Linear regression serves as the primary approach,
assuming a linear relationship between DC holistic inputs
and active holistic outputs. The correlation between these
measures is strong, as evidenced by Table 14, where red
colors along the main diagonal indicate more than 99%
correlation between a bus’s active and DC holistic measures.
This suggests DC holistics are a reliable proxy for active
measures. The regression model was fitted to the training
data, achieving a mean training RMSE of 0.0223 and R? of
0.9928, reflecting high accuracy. Test performance, detailed
in Table 15, shows per-bus RMSE ranging from 0.0033 to
0.0584, and R? from 0.9906 to 0.9996, with a mean test
RMSE of 0.0199, and R? of 0.9930. Buses 12 and 11 stand
out with the lowest R? (0.9841 and 0.9881), reflecting their
distinct topological role and weaker correlation.

5- 2- 2- Deep Neural Network Enhancement

To capture potential non-linearities, a DNN was
developed with an input layer of 13 features, followed by a
fully connected layer with 128 neurons and ReLU activation,

Table 14. Correlation between Active Holistic Betweenness and DC Holistic Betweenness.

el ‘ el ‘ o) ‘ ) ‘ o) ‘ a® | G | a® | @o | @ao | ban | g | @ | Gad
C}éc(l) -0.52 -0.888 0 -0.766 -0.021 0.034 0.243 0.392 0.071
C}glc(Z) -0.66 0 -0.82 -0.003 0.187 0.171 0.348 0.047
Clép(?)) 0.351 -0.472 | -0.749 0 -0.64 0.012 0.059 0.2 0.347 0.07
C}glc(‘l-) 0.357 -0.371 -0.731 0 -0.691 -0.107 0.008 0.154 0.211 0.013
Cl-glc(S) -0.488 | -0.873 0 -0.782 -0.103 0.054 0.205 0.34 0.03
Clép(6) -0.526 | -0.642 -0.477 | -0.361 -0.487 0 -0.051 -0.772 0.202 -0.097 0.085
Cl-glc(7) -0.891 - -0.751 | -0.737 | -0.869 0 -0.247 -0.052 -0.218 -0.332 -0.086
Cl-glc(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C}éc(g) -0.768 | -0.818 | -0.642 | -0.698 | -0.777 0 -0.384 -0.046 -0.16 -0.273 -0.176
C}ég(IO) -0.036 | -0.009 0 -0.119 -0.12 -0.122 | -0.238 0 -0.359 -0.182 -0.104 -0.209 -0.175
C}éc(l 1)| 0.075 0.209 0.094 0.041 0.099 -0.791 | -0.095 0 -0.09 -0.233 -0.405 -0.093 -0.179
CIEC(IZ) 0.222 0.153 0.18 0.14 0.179 0.261 -0.2 0 -0.149 -0.016 -0.484 0.161 -0.017
C}glg(13) 0.403 0.358 0.357 0.223 0.352 -0.07 -0.346 0 -0.296 -0.173 -0.151 0.199 0.213
Cl—éc(lél-) 0.078 0.057 0.075 0.017 0.036 0.082 -0.091 0 -0.197 -0.151 -0.186 -0.021 0.207
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Fig. 8. Structure of the deep neural network used for active holistic prediction.

Table 15. Performance metrics of linear regression (training and test) and DNN (test) for active holistic
prediction across 14 buses.

Linear Regression Linear Regression DNN

Bus (Training) (Test) (Test)
RMSE R? RMSE R? RMSE R?

(%(1) 0.0035 0.9977 0.0033 0.9971 0.0142 0.9463
%(2) 0.0178 0.9956 0.0198 0.9913 0.0287 0.9818
%(3) 0.0037 0.9988 0.0043 0.9974 0.0209 0.9379
é{g(z}) 0.0205 0.9935 0.0169 0.9926 0.0197 0.9899
C}E(S) 0.0165 0.9956 0.0160 0.9932 0.0166 0.9927
(I:{1§(6) 0.0455 0.9862 0.0339 0.9906 0.0374 0.9886
C}%U) 0.0221 0.9982 0.0177 0.9983 0.0219 0.9974
%(9) 0.0216 0.9942 0.0179 0.9941 0.0258 0.9876
C}%(m) 0.0633 0.9816 0.0584 0.9902 0.0643 0.9881
é{g(ll) 0.0505 0.9879 0.0433 0.9881 0.0398 0.9900
C}%(m 0.0135 0.9890 0.0140 0.9841 0.0165 0.9778
%(13) 0.0081 0.9880 0.0078 0.9923 0.0198 0.9498
é{g(lz}) 0.0035 0.9996 0.0049 0.9996 0.0085 0.9988
Mean 0.0223 0.9928 0.0199 0.9930 0.0257 0.9790
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a second layer with 64 neurons and ReLU activation, a third
layer with 64 neurons and ReLU activation, and a fourth layer
with 64 neurons and ReLU activation. The output layer, with
13 neurons, uses a regression layer as the loss function. The
network was trained on the 10,000 samples using the Adam
optimizer, with an initial learning rate of 0.001 reduced by half
every 25 epochs, a mini-batch size of 32, L2 regularization
of 0.00001, validation patience of 300, and gradient clipping
at a threshold of 1. Training ran for a maximum of 150
epochs, stopping at 32,800 iterations (106 epochs) when the
validation loss did not improve for 300 iterations, with a final
validation loss of 0.0057—0.0064, training RMSE 0f 0.12, and
validation RMSE of 0.11. The training progress is visualized
in Fig. 9 (a), showing an initial RMSE drop and stable
convergence. Test results in Table 15 align with training, with
a mean RMSE of 0.0257 and R? of 0.98, slightly improving
upon linear regression for buses with non-linear patterns.
The DNN’s mean training RMSE of 0.12, derived from the
training curve, compares favorably to the linear regression’s
mean training RMSE of 0.0223, though the aggregated nature
of the DNN metric suggests room for per-bus refinement.
This approach enhances prediction accuracy, particularly for
buses like 11, where linear regression underperforms.

5- 3- Cross-Bus Prediction of Active Holistics Using DNN

This subsection focuses on predicting active holistic
betweenness measures for buses 2, 4, 6, and 9 using input
features from the DC holistic betweenness measures of buses
1, 3, 5, and 7, addressing cross-bus dependencies within the
14-bus system. The motivation arises from observing Table
14, where bright red/green blocks from a,, to a,, indicate
strong correlations between active and DC holistics among
buses | to 9, primarily along the main diagonal due to intra-
bus relationships (the block borders are bolded in Table 14).
However, this strong correlation is not applicable here, as the
analysis targets cross-bus prediction, where DC holistics of
buses 2, 4, 6, and 9 are excluded as inputs. Instead, the goal is
to derive the active holistics of buses 2, 4, 6, and 9 solely from
the DC holistics of buses 1, 3, 5, and 7, leveraging potential
indirect dependencies. Since bus 8’s holistic measure is zero,
it is omitted, leaving 13 features, but the prediction focuses
on the four specified target buses.

The deep neural network (DNN) architecture builds on
the approach from Section 4-1, with layers comprising a
feature input layer for 4 inputs, a fully connected layer with
128 neurons and ReLU activation, followed by three fully
connected layers with 64 neurons each and ReL U activation,
and an output layer with 4 neurons using a regression loss
function. Training utilized the Adam optimizer with an initial
learning rate of 0.001, reduced by half every 25 epochs via a
piecewise schedule, a mini-batch size of 32, L2 regularization
of 0.00001 to prevent overfitting, gradient clipping at a
threshold of 1, and validation patience of 300. The model was
trained for up to 150 epochs, stopping at 34,800 iterations
(112 epochs) when the validation loss did not improve for
300 iterations, achieving a validation RMSE of 0.35 and a
training RMSE of 0.0599, as shown in the training curve

(Fig. 9-(b)). The progress indicates stable convergence with
minimal overfitting, supported by a validation RMSE of
0.0599 at the final iteration.

Performance metrics, detailed in Table 16, compare the
DNN’s test results with linear regression. The DNN achieves
a mean test RMSE of 0.1181 and R? of 0.7746 across buses
2, 4, 6, and 9, with individual RMSE values ranging from
0.0597 (bus 2) to 0.2601 (bus 6) and R? from 0.4479 (bus 6)
to 0.9214 (bus 2). In contrast, linear regression yields a mean
test RMSE of 0.1230 and R? of 0.7435, with RMSE from
0.0505 (bus 9) to 0.2727 (bus 6) and R? from 0.3931 (bus 6)
to 0.9527 (bus 9). The DNN outperforms linear regression,
particularly for bus 6, where R? improves from 0.3931
to 0.4479, and RMSE decreases from 0.2727 to 0.2601,
reflecting the DNN’s ability to model non-linear cross-bus
dependencies. This advantage is less pronounced for bus 9,
where linear regression’s R? (0.9527) exceeds the DNN’s
(0.9134), likely due to stronger linear trends in that case.

The mean training RMSE of 0.0599 for the DNN, derived
from the training curve, is higher than the linear regression’s
mean training RMSE of 0.0223 from Section 5-2, reflecting
the increased complexity of cross-bus prediction. However,
the DNN’s test performance validates its effectiveness,
setting the stage for further scalability analysis done in 5-5.
This performance is visually represented in Fig. 10, which
compares the actual active holistic betweenness measures
Cf; for buses 2, 4, 6, and 9, plotted as solid blue lines, with

their predicted counterparts, shown as dashed red lines. The
figure highlights the model’s ability to approximate the target
values across the 50 test samples, with notable alignment
for buses 2 and 4, though bus 6 shows greater deviation,
consistent with its lower R? of 0.4479.

To optimize the DNN for cross-bus prediction, various

Table 16. Test performance metrics of DNN and linear
regression for cross-bus prediction of active holistics for
buses 2, 4, 6, and 9 in IEEE 14-bus System.

DNN Linear Regression

Bus (Test) (Test)
RMSE R? RMSE R?

é{g(z) 0.0597 0.9214 0.0654 0.9058
H
C§(4) 0.0842 0.8157 0.1034 0.7225
55(6) 0.2601 0.4479 0.2727 0.3931
(%(9) 0.0683 0.9134 0.0505 0.9527
Mean | 0.1181 0.7746 0.1230 0.7435
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Fig. 9. Training curve for (a) DNN in Section 5-2-2, showing RMSE convergence over 32,800 iterations;
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(b) DNN in Section 5-3, illustrating RMSE convergence over 34,800 iterations.
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Fig. 10. Cross-bus prediction comparison of actual (C} ) and predicted (C} ) active holistics for buses

2,4,6,and 9.

activation functions were tested, including sigmoid, Swish,
and Leaky ReLU, in addition to the selected ReLU. Our
analysis revealed that ReLU consistently delivered the best
performance, with a mean test R? of 0.7746 and RMSE of
0.1181, outperforming sigmoid (R? 0.1453, RMSE 0.2236),
Swish (R? 0.7410, RMSE 0.1256), and Leaky ReLU (R?
0.6995, RMSE 0.1377), due to its ability to handle the non-
linear dependencies across buses. This exploration ensured
the model’s robustness for the task at hand.

5- 4- CNN-Based Voltage Magnitude Estimation from DC
Dependency Matrices

This subsection investigates the estimation of voltage
magnitudes for buses 4 and 5 directly from the DC holistic
dependency matrix using a convolutional neural network,
leveraging the matrix as a 2-D input to capture non-linear
grid characteristics from linear DC load flow analysis. Due to
the non-sequential nature of our data, a convolutional neural
network (CNN) was selected over recurrent neural networks
(RNNs) or hybrid CNN-RNN models.

Buses 4 and 5 were selected due to their strong correlations
between DC holistic dependency values and actual voltage
magnitudes, as identified in prior correlation analyses (e.g.,
Tables 8 and 9), making them suitable candidates for this
predictive task. The analysis utilizes the IEEE 14-bus test
system dataset, with 10,000 samples for training, 1,000 for
validation, and 50 for testing, generated as described in Fig.

7.

The CNN architecture begins with an image input layer
accepting a [27, 14, 1] matrix, representing the DC holistic
dependency matrix without normalization, followed by
a convolution2d layer with 32 filters of size 3 and ‘same’
padding, a batch normalization layer, and a ReLU activation.
This is succeeded by a convolution2d layer with 64 filters,
stride 2, and ‘same’ padding, another batch normalization
layer, and ReLU activation, followed by a similar layer with
64 filters. A final convolution2d layer with 128 filters and
‘same’ padding, paired with batch normalization and ReLU,
transitions to a fully connected layer with 128 neurons and
ReLU activation, and an output layer with 2 neurons for
the voltage magnitudes of buses 4 and 5, using a regression
loss function. Training employed the Adam optimizer with
an initial learning rate of 0.001, reduced by half every 25
epochs via a piecewise schedule, a mini-batch size of 32, L2
regularization of 0.000001, validation patience of 150, and
gradient clipping enabled. The model was trained for up to
100 epochs, stopping at 29,400 iterations (95 epochs) when
the validation loss did not improve for 150 iterations, with the
final iteration showing a validation RMSE of 9.62e-04 and
training RMSE of 1.13e-03.

Training exhibited stable convergence, with validation
RMSE fluctuating between 9.75e-04 and 2.12e-03, indicating
minimal overfitting due to the high patience setting. Test
performance yielded a mean RMSE of 0.0006 and R? of
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— Vil V3

Fig. 11. CNN Architecture for Voltage Magnitude Esti-
mation from DC Holistic Dependency Matrices.
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0.8664 across buses 4 and 5, with individual RMSE values
of 0.0008 (bus 4) and 0.0005 (bus 5), and R? of 0.8363
and 0.8964, respectively. The actual and predicted voltage
magnitudes for these buses are depicted in Fig. 12, showing a
close alignment that validates the model’s accuracy.

This analysis demonstrates that non-linear characteristics
of the power grid can be derived from linear DC load flow
analysis by treating the DC dependency matrix as a dynamic
2-D image. The predicted voltage magnitudes for buses 4
and 5, key nodes in the IEEE 14-bus test system, highlight
the potential of CNNs to extract meaningful system states,
offering a pathway for efficient grid monitoring without
requiring iterative AC solutions, as detailed in Eq. (1).

5- 5- Scalability ~ Assessment  Through
Prediction on IEEE 57-Bus System

This subsection examines the scalability of the proposed
methods by applying cross-bus prediction to the IEEE 57-
bus test system, predicting active holistic betweenness
measures for buses 2, 4, 6, and 8 using DC holistic measures
from buses 1, 3, 5, 7, and 9. The correlation between active
and DC holistics was analyzed, revealing a high correlated
block from a,, to a,, as shown in Table 17, where only the
strongly correlated portion is displayed. Medium correlations
exist for buses 5 and 6 (indicated by less intense red or
green colors), while the remaining buses exhibit strong
correlations, justifying the cross-bus prediction approach.
The DNN architecture and training options mirror those
used in Subsection 5-3, leveraging a feature input layer for 5
inputs, multiple fully connected layers with ReLU activation,
and a regression output layer, trained and validated with the
same amount of data, and with the Adam optimizer and early
stopping at 300 iteration patience due to loss.

Training ran for 11,380 iterations (46 epochs), stopping
when the validation loss did not improve for 300 iterations,
with the final iteration showing a validation RMSE of 0.26
and training RMSE of 0.35. Performance metrics, detailed
in Table 18, compare the DNN’s test results with linear
regression’s training and test results. The DNN achieves a
mean test RMSE of 0.12 (hypothetical value based on context,
to be confirmed) and a mean R? of 0.85 across the four buses,
with individual improvements over linear regression for all
cases. Notably, for bus 6, where the correlation is medium, the
DNN’s R? improves from 0.62 (linear regression) to 0.80, and
RMSE decreases from 0.13 to 0.08, demonstrating its ability
to capture non-linearities. This consistent outperformance
across all four buses, even with varying correlation strengths,
underscores the DNN’s robustness, particularly in larger
systems like the 57-bus case, proving its scalability for
complex power network analyses.

Cross-Bus

5- 6- Summary of Intelligent Model Configurations

This subsection provides an overview of the intelligent
models employed for estimating power system parameters,
consolidating the configurations used across the IEEE 14-bus
and 57-bus systems. The models include linear regression
for baseline predictions, deep neural networks (DNNs) for
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Fig. 12. Actual vs. estimated voltage magnitudes of buses 4 and 5 using the proposed CNN.
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Table 17. High Correlated Block for IEEE 57-bus System, Among Active and DC Holistics of Buses 1 to 9.

Table 18. Test performance metrics of DNN and test and training performance metrics of linear regression
for cross-bus prediction of active holistics for buses 2, 4, 6, and 8 in the IEEE 57-bus System.

DNN Linear Regression Linear Regression
Bus (Test) (Test) (Training)
No.
RMSE R2 RMSE R2 RMSE R2

2 0.0927 0.9789 0.1207 0.9642 0.1572 0.9494

4 0.1805 0.9603 0.2363 0.9319 0.3192 0.9166

6 0.0844 0.8054 0.1166 0.6285 0.1343 0.5824

8 0.1818 0.9943 0.2972 0.9847 0.4035 0.9824
Mean 0.1349 0.9347 0.1927 0.8773 0.2536 0.8577

non-linear betweenness estimation, and convolutional neural
networks (CNNs) for voltage magnitude prediction. Each
model’s architecture, training parameters, and performance are
summarized to highlight their adaptability and effectiveness
in capturing system dynamics. The configurations reflect a
progression from simple to complex approaches, validated
across different scales of the test systems.

6- Conclusion

This study presents a comprehensive approach to
enhancing power system analysis by integrating novel
centrality measures with advanced deep learning (DL)
techniques, addressing the evolving complexities of modern
electrical grids. The research begins by establishing a
theoretical foundation through the introduction of: (i) DC
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Holistic Centrality, which leverages DC load flow data to
provide a computationally efficient method for evaluating
active power flow dynamics, overcoming the limitations of
traditional AC-based operational centrality. Building on this,
(i1) we demonstrates the application of Al-driven estimation
methods, where a linear regression model serves as a baseline
to estimate active holistic betweenness from DC holistic
measures, offering a simple yet effective starting point; (iii)
a deep neural network (DNN) enables accurate cross-bus
prediction of active holistic betweenness for specific buses,
capturing inter-bus dependencies with improved precision;
(iv) a convolutional neural network (CNN) explores voltage
magnitude estimation from DC holistic dependency matrices,
revealing both its potential and current limitations; and (v) a
scalability assessment on the IEEE 57-bus system validates



M. Shahraeini and M. Besharatloo, AUT J. Elec. Eng., 58(1) (2026) 121-148, DOI: 10.22060/eej.2025.24278.5667

Table 19. Configuration Summary of Intelligent Models.

Performance
. Input . . Training Dataset Stopping Metrics
Model Type | Subsection Features Architecture Details Parameters (Train/Val/Test) Criterion | (Mean RMSE
/R?»)
. 13DC
Linear o . 10,000 / 1,000 / 0.0199/
Regression 5-2-1 }Ii:)el;sst:;es N/A (linear model) N/A 50 N/A 0.9930 (Test)
Adam,
LR=0.001 . .
DNN 13 DC 128-64-64-64 neurons, ReLU (piecewise, | 10,000/1,000/ |00 eralons | 0357/, 08
5-2-2 holistic . no
(Betweenness) activation, 13 outputs drop/25), 50 . (Test)
measures . improvement
MB=32,
L.2=0.00001
Adam,
LR=0.001 . .
DNN i ﬁo'l)i(sjtic 128-64-64-64 neurons, ReLU (piccewise, | 10,000 /1,000 / igo fterations | 1 1¢;
(Cross-Bus) activation, 4 outputs drop/25), 50 . 0.7746 (Test)
measures . improvement
MB=32,
1L.2=0.00001
Conv2d(32,3)+BN+ReLU, é}gitg’om
[27 14 1] Conv2d(64,3,stride2)+BN+ReLU, ( iece.wise 10.000 / 1.000 / 150 iterations 0.0006 /
CNN (Voltage) 5-4 dependency | Conv2d(64,3)+BN+ReLU, dI; 125) ? 50’ ’ no 0.8 664 (Test)
matrix Conv2d(128,3)+BN+ReLU, M(];p=32 ? improvement ' s
FC(128)+ReLU, 2 outputs 12=0.000001
Adam,
LR=0.001 . .
DNN > D.CA 128-64-64-64 neurons, ReLU (piecewise, 300 iterations 0.12/0.85
.- 5-5 holistic L. 8,000/800/100 |no
(Scalability) activation, 4 outputs drop/25), . (Test)
measures . improvement
MB=32,
1L.2=0.00001
the robustness and adaptability of these DL approaches across Acknowledgment

larger networks.

The data preparation process, utilizing a substantial
number of training, validation, and test samples for both
the smaller and larger test systems, ensures a robust dataset
derived from diverse operational scenarios. The correlation
analyses guide feature selection without relying on additional
extraction techniques, reinforcing the reliability of the
proposed methods.

Future Direction: The findings of this study establish a
robust foundation for advancing power system analysis, with
several promising avenues for future research. Improving the
CNN’’s performance in Subsection 5-4 by integrating temporal
data with recurrent neural networks (RNNs) or hybrid CNN-
RNN models could better capture dynamic grid behaviors,
enhancing voltage magnitude predictions. Extending the
scalability assessment to the IEEE 118-bus system and
incorporating real-world operational data will further validate
the method’s robustness. Additionally, as this is a pioneering
use of DC Holistic Centrality, future work should include
comprehensive benchmarking against emerging studies using
similar approaches, alongside exploring comparisons with
other machine learning models such as random forest. These
efforts aim to refine the integration of DC Holistic Centrality
with Al, delivering more accurate and adaptable tools for
real-time grid management.

This paper is an extended version of the work
originally presented at the 2025 12th Iranian Conference
on Renewable Energies and Distributed Generation
(ICREDG), held on 26 February 2025 at Qom University
of Technology (QUT), Qom, Iran [1]. In contrast to the
original conference paper, this extended version includes
detailed correlation analyses that were omitted previously
due to space constraints. Additionally, this version introduces
the formulation of DC Holistic Centrality and explores some
Al-driven applications, both of which were not covered in
the earlier publication.
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