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ABSTRACT: This paper introduces a novel approach to power system analysis by integrating DC 
Holistic Centrality with advanced deep learning (DL) techniques to enhance the efficiency and accuracy 
of grid operation assessments. We propose DC Holistic Centrality, a computationally efficient measure 
derived from DC load flow data, which extends traditional operational centrality by incorporating 
generation and demand nodes as pendant buses. Leveraging this new metric, we develop a suite of AI-
driven estimation methods: a linear regression baseline for active holistic betweenness prediction, a deep 
neural network (DNN) for accurate cross-bus prediction of active holistic betweenness, a convolutional 
neural network (CNN) for voltage magnitude estimation from DC holistic dependency matrices, and a 
scalability assessment using the IEEE 57-bus system to validate model robustness. The study utilizes 
a comprehensive dataset generated from varied operational scenarios, with feature selection guided 
by correlation analyses rather than additional extraction techniques. Results demonstrate significant 
improvements in capturing inter-bus dependencies and system dynamics, offering a promising framework 
for real-time grid monitoring and management.
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1- Introduction
The analysis of power systems as complex networks, 

known as Complex Power Networks, has received considerable 
attention in electrical engineering. This concept, introduced 
by Barabási et al., characterized the power grid as a scale-
free network, transforming the understanding of power grid 
structures. This viewpoint has provided valuable insights into 
the interconnected nature of power systems, influencing their 
operation, evaluation, vulnerability, reliability, and resilience 
[1-3].

The study of complex networks and the use of metrics 
to assess their properties are now crucial in many fields, 
including electrical engineering. Metrics such as clustering, 
distance, centrality, and scaling are utilized to measure and 
classify these networks. Centrality metrics are primarily 
categorized into neighborhood-based (e.g., Eigen centrality 
and degree centrality) and shortest path-based measures (e.g., 
betweenness [4] and closeness [5]). 

1- 1- Centrality Metrics in Complex Power Graphs
The exploration of centrality metrics in complex power 

networks has evolved significantly since the early 21st 
century, offering critical insights into the structural and 
operational dynamics of power systems. These metrics, 
which quantify the importance of nodes (buses) and edges 
(transmission lines) within a network, are broadly classified 

into two categories: neighborhood-based and shortest path-
based measures. Neighborhood-based metrics, such as degree 
centrality and eigenvector centrality, assess a node’s influence 
based on its direct connections or the significance of its 
neighbors. In contrast, shortest path-based metrics, including 
betweenness and closeness centrality, evaluate a node’s role 
in facilitating power flow along the network’s most efficient 
paths [6].

In power systems, centrality metrics have been adapted 
to reflect electrical properties, giving rise to structural and 
operational variants. Structural centrality incorporates 
electrical distances (derived from line impedances) as edge 
weights, making it sensitive to changes in grid topology 
[7]. Our prior work [6] demonstrated that structural 
centralities diverge from traditional graph-based measures 
by emphasizing these electrical distances, providing a more 
nuanced view of network connectivity. Operational centrality, 
however, integrates power flow capacities and system states 
(e.g., voltage magnitudes and phase angles), either directly 
or indirectly, using data from AC or DC load flow analyses 
[8, 9]. This category encompasses diverse forms, accounting 
for active and reactive power flows, which are essential for 
capturing the dynamic behavior of electrical grids.

Our previous studies [1, 6, 10] have extensively analyzed 
these centrality types. In [6], We highlighted how structural 
centralities differ from graph-based ones by leveraging 
electrical distances, while operational centralities incorporate 
power flow magnitudes for deeper system insights. In [10], *Corresponding author’s email: m.shahr@gu.ac.ir
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We compared AC and DC power flow impacts, revealing 
that DC approximations, despite minor errors, reliably 
preserve key trends, making them suitable for large-scale 
or real-time applications. Building on this, [1] introduced 
“Holistic Electrical Centrality”, a novel operational 
centrality that models generations and demands as pendant 
nodes. This approach addresses interpretability limitations 
in traditional operational betweenness metrics, showing 
stronger correlations with voltage magnitudes and reactive 
power flows, thus reinforcing the value of a holistic system 
perspective.

These centrality measures (i.e., structural, operational, 
and even new holistic ones) play a pivotal role in power 
system analysis, enhancing understanding of grid structure 
and operational dynamics [7-11]. They have informed the 
design of resilient grid architectures [11-15], optimized 
operational strategies [16], and supported resource allocation 
tasks, such as phasor measurement unit (PMU) placement 
[17-20], microgrid and renewable source positioning [6, 
21-25], and a wide area measurement system (WAMS) 
design [26, 27]. Additionally, they have been instrumental 
in vulnerability assessments, critical node identification, and 
reliability enhancements [6], underscoring their versatility in 
addressing modern power system challenges.

1- 2- AI-Driven Power Flow Analysis
Power flow analysis is a fundamental computational 

technique used to evaluate and establish the steady-
state operating conditions of electrical power systems by 
calculating the voltage magnitudes and phase angles at each 
bus. This analysis is essential for ensuring the reliability, 
stability, and optimal functioning of power systems [28-
32]. While the application of deep learning (DL) algorithms 
in power flow analysis is not a recent innovation [28, 29], 
Recent advancements have significantly expanded its role in 
enhancing the accuracy and scalability of these analyses [30, 
32-34].

Adaptive and physically informed deep neural networks, 
such as PINN4PF, have emerged as powerful tools that 
effectively capture network topology and improve power flow 
predictions across large-scale grids [30]. These developments 
reflect a growing trend toward integrating domain-specific 
knowledge into DL frameworks. Recent research has 
explored a variety of deep neural architectures to address the 
complexities of modern power systems. Radial basis function 
networks, multi-layer perceptrons, and convolutional neural 
networks (CNNs) have been successfully applied to handle 
unbalanced and data-rich distribution systems, delivering high 
accuracy and robustness [32]. Furthermore, advancements in 
graph deep learning have enhanced the management of non-
Euclidean data and dynamic conditions, supporting reliable 
and efficient power flow analysis in networks integrated with 
renewables [33]. This evolution underscores the versatility 
of DL in adapting to the evolving demands of power grids. 
Beyond power flow analysis, deep learning has demonstrated 
broader utility in power system applications. For instance, 
[34] proposed an enhanced fault detection and classification 

method for AC microgrids by combining data processing 
techniques with deep neural networks, highlighting its 
adaptability.

In the context of operational centrality, a recent innovation 
involves using these measures as input features for DL 
models. Our previous work [10] utilized DC betweenness 
measures (derived from DC load flow analysis) as inputs to 
a deep neural network to estimate total active power loss, 
demonstrating their effectiveness in capturing grid dynamics. 
This approach lays the groundwork for the current study, 
which leverages AI to refine centrality-based estimations, 
further bridging traditional engineering methods with 
advanced computational techniques.

1- 3- Research Gap and Research Motivation
The integration of operational centrality measures and 

deep learning algorithms in power system analysis represents 
an emerging yet underexplored domain, revealing significant 
research gaps that this study seeks to address. While 
operational centrality, particularly the recently introduced 
holistic electrical centrality [1], has shown promise in 
capturing power system dynamics; its application remains 
limited by the computational complexity of traditional 
AC load flow-based calculations and the need for more 
comprehensive investigations across diverse energy flow 
types. Concurrently, the use of DL for power flow analysis has 
gained traction [10, 28-30, 32-34], yet prior efforts, such as 
those estimating total active power loss using DC betweenness 
measures [10], suffer from suboptimal accuracy and a narrow 
focus on specific neural architectures, notably excluding 
convolutional neural networks (CNNs). This study identifies 
a critical gap in leveraging holistic centrality measures with 
advanced DL techniques to enhance efficiency and accuracy, 
particularly for estimating key system parameters like active 
holistic betweenness and voltage magnitudes, which are 
essential for modern grid management but challenging to 
derive from simplified DC models.

The motivation for this research is to firstly introduce 
DC Holistic Centrality as a novel measure and then explore 
its potential as input features for various DL methods, 
including linear regression, deep neural networks (DNNs), 
and convolutional neural networks. Additionally, we aim to 
assess the stability of these DL models in predicting critical 
power system parameters, addressing the need for efficient 
and reliable grid analysis tools.

1- 4- Research Contributions
The contributions of this work are as follows:

•	 This study extends the concept of holistic centrality by 
introducing “DC Holistic Centrality”, leveraging DC load 
flow information to provide a computationally efficient 
alternative for evaluating active power flow dynamics 
within power networks.

•	 We propose a linear regression model to establish a 
baseline for estimating active holistic betweenness from 
DC holistic measures, offering a simple yet effective 
approach to validate the feasibility of DL-based 
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predictions.
•	 We then develop a deep neural network (DNN) to perform 

cross-bus prediction of active holistic betweenness of 
some buses using DC holistic inputs from other buses, 
demonstrating improved accuracy in capturing inter-bus 
dependencies.

•	 We explore a convolutional neural network (CNN) to 
estimate voltage magnitudes from DC holistic dependency 
matrices, demonstrating the potential and limitations of 
CNNs in capturing non-linear grid characteristics.

•	 We assess the scalability of the proposed DL approaches, 
validating their robustness and adaptability across the 
larger system, thus supporting their applicability to 
complex power networks.

1- 5- Paper Structure
The remainder of this paper is organized as follows: 

Section 2 outlines the fundamentals of power network analysis, 
including load flow methods and graph representations. 
Section 3 introduces DC holistic centrality as a novel measure. 
Section 4 evaluates its performance through simulations, 
specifically its correlations with system states. Section 5 
details AI-enhanced estimation techniques, covering data 
preparation (5-1), baseline and DNN estimation (5-2), cross-
bus prediction (5-3), CNN-based voltage estimation (5-4), 
and scalability on the IEEE 57-bus system (5-5). The paper 
concludes with a summary of findings and future directions.

2- Preliminaries on Complex Power Network Analysis
This section provides the foundational concepts necessary 

for understanding the analysis of complex power networks 
as applied in this study. It introduces load flow analysis as a 
key method for assessing steady-state conditions, followed 
by the representation of power systems as graphs, including 
the novel holistic power graph. These preliminaries establish 
the theoretical framework for deriving centrality measures 
and integrating them with AI-driven techniques, setting the 
stage for the subsequent sections on holistic centrality and 
estimation methods.

2- 1- Load Flow Analysis
Power flow analysis is a cornerstone of electrical 

engineering, essential for determining the steady-state 
operating conditions of power systems by calculating voltage 
magnitudes and phase angles at all buses. This process is 
critical for ensuring system reliability, stability, and optimal 
performance under varying operational scenarios [28-30]. 
Two primary methods are employed: AC load flow, which 
provides a comprehensive analysis by accounting for both 
active and reactive power flows with detailed voltage 
considerations, and DC load flow, a simplified approximation 
focusing solely on active power using linear assumptions. 
These methods cater to different needs, with AC offering 
precision for detailed studies and DC enabling efficient 
computations for large-scale or real-time applications, both 
of which are leveraged in this study to support centrality and 
AI-based analyses [10].

2- 1- 1- AC Load Flow
The analysis of AC power flow is indispensable for a 

thorough understanding of power dynamics within electrical 
networks. It considers both active power (P), measured in 
watts (W), which represents the usable energy delivered to 
loads, and reactive power (Q), measured in volt-amperes 
reactive (VAR), which accounts for the energy stored and 
released by inductive and capacitive elements. These power 
components are governed by complex power equations 
derived from Kirchhoff’s laws, expressed as S=P+jQ, where 
S is the complex power in volt-amperes (VA). The power 
flow at bus i, Si ​, is related to the voltage Vi at that bus and the 
admittances of connected lines, formulated as:
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where Pi and Qi are the active and reactive power at bus 

i, |Vi| and |Vj| are the voltage magnitudes, Yij is the admittance 
between buses i and j, and θij is the phase angle difference.

This non-linear system requires iterative numerical 
methods, such as the Newton-Raphson or Gauss-Seidel 
techniques, to solve for steady-state voltages, offering 
detailed insights into power consumption, generation, and 
losses across the grid [31].

2- 1- 2- DC Load Flow
DC power flow analysis offers a streamlined approach by 

focusing exclusively on active power (P) flow, simplifying 
the computational burden for large power systems. It assumes 
constant voltage magnitudes (typically 1 per unit) and 
approximates small phase angle differences with sin(θ) ≈ θ. 
The power flow equation is expressed as [31]:
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where Pi is the active power injected at bus i, and Bij is 

the susceptance between buses i and j. In matrix form, this 
becomes P=B.θ, enabling efficient calculations. The power 
flow Pij from bus i to j is proportional to the voltage angle 
difference:
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This model is widely adopted for operational planning and 
real-time monitoring due to its simplicity and speed, making 
it a practical choice for deriving approximate centrality 
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measures in this study.

2- 2- Power Graph
The power graph is a simple undirected graph that 

represents the power grid, where vertices (V) symbolize 
system buses and edges (E) correspond to transmission 
lines. This graph can be either unweighted or weighted, with 
weights reflecting electrical distances based on the absolute 
values of line impedances (|Zij|). Thus, the weighted power 
graph is denoted as GZ(V, E, w) [20], where V represents the 
set of buses, E the set of transmission lines, and w the weight 
function. This representation facilitates the application of 
graph theory to analyze network topology and connectivity, 
providing a foundation for centrality calculations.

2- 3- Holistic Power Graph
The holistic power graph, first introduced in [1], offers 

a novel framework for calculating credible centrality values, 
particularly betweenness, by including all electric buses, 
even those not directly involved in electrical shortest paths. 
This approach addresses limitations in traditional operational 
centrality methods, which focused primarily on power flows 
through transmission lines and bus inflow/outflow without 
considering bus types. By modeling generators and demands 
as separate pendant nodes, the holistic graph provides a 
comprehensive structure: generator nodes inject power, 
and demand nodes receive it. However, determining the 
electrical distances for these pendant nodes poses challenges, 
especially for demand nodes, though their betweenness is set 
to zero, minimizing distance-related concerns for this metric. 
Depending on the energy flow type, the holistic graph is 
classified as active or reactive. Steps 2 to 10 of Algorithm 1 

detail the derivation of the holistic graph from DC load flow 
results, termed the DC holistic graph, while reactive flows 
generate the reactive holistic graph. Figs. 2 and 3 illustrate 
the active and reactive holistic graphs for the IEEE 14-bus 
test case, with red pendants representing generation nodes 
and green pendants denoting demand nodes.

3- Holistic Electrical Centrality Measures
This section introduces and analyzes holistic electrical 

centrality, an extension of traditional operational centrality 
tailored for power networks. Unlike conventional approaches 
that overlook the distinct roles of generation and demand nodes, 
holistic centrality incorporates them explicitly as pendant 
nodes, offering a more realistic view of power flow dynamics. 
We begin by constructing the holistic power graph (described 
in section 2-3) and defining the associated dependency matrix, 
which quantifies how strongly each bus relies on others to 
transmit power along the network’s electrical shortest paths. 
These formulations serve as the foundation for the AI-based 
estimations discussed later in the paper.

3- 1- Bus Dependency Matrix
Operational centrality measure is based on electrical 

distances and also flow information of edges in the power 
graph, either the original one ( ZG ) or holistic one ( H

ZG ) [1].
Recall that the power graph is denoted as ZG  (resp. 

holistic graph as  
H

ZG ). Let fst represent the maximum power 
flowing along the shortest electrical path between buses s 
and t, while fst(k) indicates the maximum inflow or outflow 
at bus k within that same path. The dependency between pairs 
of buses describes the extent to which bus s relies on bus 
k to effectively distribute its power flow along the shortest 

 

Fig. 1. IEEE 14-bus test system, considering all generations and demands [6]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. IEEE 14-bus test system, considering all generations and demands [6].
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Fig. 2. Active Holistic Graph: Adding Active Generations and Demands as the Pendants to the IEEE 14-Bus Network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Active Holistic Graph: Adding Active Generations and Demands as the Pendants to the 
IEEE 14-Bus Network

 

Fig. 3. Reactive Holistic Graph: Adding Reactive Generations and Demands as the Pendants to the IEEE 14-Bus Network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Reactive Holistic Graph: Adding Reactive Generations and Demands as the Pendants to the 
IEEE 14-Bus Network
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electrical path to all other buses t in the power grid. In a 
system comprising n buses (resp. n+nG+nD in holistic graph; 
where nG and nD are numbers of generation and demands), 
this dependency of bus s on bus k for transmitting power to 
the other buses can be represented as follows:
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It is important to note that fst and fst(k) can represent either 

active or reactive power flows, depending on the context. 
Both active and reactive values can be derived from AC load 
flow analysis, or it can specifically indicate active power 
flows when calculated using DC load flow analysis [10].

The dependency of bus pairs within the entire system can 
be presented matrix D  as follows [9, 10]:
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Every entry in the matrix D represents the extent to 
which a bus, identified by its row number, relies on another 
bus, identified by its column number, to efficiently transfer 
power along the shortest electrical path to all other buses in 
the system. This matrix underscores the importance of each 
bus as a junction within the network for the transmission of 
power (whether active or reactive), which is why it is referred 

to as the “Dependency Matrix” [6]. 
Different variations of D matrices derived from AC/DC 

flows, including: the active dependency matrix (Dp), DC 
dependency matrix (Ddc), and holistic DC dependency matrix 
(

H

dcD ), are presented for the normal operational conditions of 
the IEEE 14-bus system (illustrated in Fig. 1) in the Figs. 
4 to 6. These matrices are normalized to a scale between 0 
and 1. To enhance visualization, a color gradient is employed: 
values close to 1 are represented in red, while those near 0 
are shown in white, with a smooth transition of red shades 
between these extremes. The process for constructing the DC 
holistic dependency matrix ( H

dcD ) from the results of the DC 
load flow analysis is detailed in Algorithm 1.

The analysis of the active dependency matrix and the DC 
dependency matrix, as illustrated in Figs. 4 and 5, reveals 
notable similarities between the two. Both matrices are 
based on active flows within the grid; however, the active 
dependency matrix is derived from precise values obtained 
through AC load flow calculations, while the DC dependency 
matrix relies on less accurate results from DC flow analysis. 
It can also be observed that certain nodes do not participate in 
any shortest paths, resulting in corresponding columns with 
zero values (e.g., nodes 1, 2, 12, and 14 in the active and DC 
dependency matrices). Moreover, pendant nodes, which also 
do not contribute to the shortest paths, exhibit zero values 
in their respective columns (e.g., node 8 in the active and 
DC dependency matrices and nodes 15 to 27 in the holistic 
DC dependency matrix). These zero-value columns lead to 
zero betweenness centrality for the associated nodes. It is 
noteworthy that the main diagonal of each dependency matrix 
is composed entirely of zeros, reflecting the absence of any 
dependency between a node and itself.

In conclusion, the dependency matrix of a grid can be 
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0 0 0 0.1 0.4 0.6 0.1 0 0.3 0.19 0 0 0 0 
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Fig. 4. Active Dependency Matrix (Dp) for normal operation condition of the IEEE 14-bus system. 
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Algorithm 1: Calculating DC Holistic Dependency Matrix 

1: Inputs: mpc structure, including electrical grid structure and generations/demands for load flow 

 Output: DC holistic dependency matrix 

 Procedure D
H

dc = make_hol_dep(mpc) 

2: Initialize: Extract matrix Ybus=makeYbus(mpc); Active generations pGi; Active demands PDj 

from mpc structure 

 Represent the power grid as a weighted graph ( , , )ZG V E w  with wᵢⱼ = |1/Yᵢⱼ|;   

 Extract number of buses (n); Number of active generation (nG); number of active loads (nD) 

3: Solve the DC load flow LF_DC(mpc); to determine the flow in different lines of the system, 
represented by pᵢⱼ; 

4: 
H

ZG ← ( , , )ZG V E w  

5: For k=1 to nG 

6: 
For active generation in node k with generation pGk, add new node h as pendants connecting 
to k, with the flow of phk=pGk from h to k. The weight of the new edge is equal to 1 (whk=1). 

     1( , , )
H H

k k
Z ZG G V E w     

7: End for 

8: For q=1 to nD 

9: 
For active demand in node q with demand of pDq, add a new node r as pendants connecting 
to q, with the flow of pqr=pDq from q to r. The weight of new edge is equal to 1 (wqr=1).  

1( , , )
H H

q q
Z ZG G V E w     

10: End for 

11: Determine the collection of the shortest electrical paths for the weighted graph 
H

ZG ; 

12: 
Having all pij from DC load flow, phk, and pqr from step (5-10), then calculate the maximum power 
transmission pₛₛ along the shortest electrical path between buses s and t. Identify pₛₛ(k), 
which represents the highest inflow or outflow at bus k along this path.  

13: For s=1 to n+nG+nD 

14:      For k=1 to n+nG+nD 

15: Calculate the dependency of node s on node k (dsk) in 
H

ZG  based on calculate pₛₛ and 
pₛₛ(k) in steps (12) and Eq. (4). 

16:      End for 

17: End for 

18: Return D
H

dc  
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0 0 0 0.1 0.4 0.6 0.1 0 0.3 0.2 0 0 0 0 
0 0 0 0.3 0.6 0.84 0.05 0 0 0.08 0.18 0 0.1 0 
0 0 0 0.3 0.6 0.84 0.05 0 0 0.03 0.08 0 0 0 
0 0.1 0 0.34 0 0 0.42 0 0.72 0.06 0 0 0.2 0 

 

Fig. 5. DC Dependency Matrix (Ddc) for normal operation condition of the IEEE 14-bus system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. DC Dependency Matrix (Ddc) for normal operation condition of the IEEE 14-bus system.
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Fig. 6. DC Holistic Dependency Matrix (
H

dcD ) for normal operation condition of the IEEE 14-bus system. 
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interpreted as a 2-D image representing the dynamics of the 
grid under the specified operational conditions, i.e., its energy 
flows. This matrix also encapsulates structural information, 
including the shortest paths within the grid. These 2-D 
images serve as effective inputs for various neural network 
architectures, particularly convolutional neural networks 
(CNNs). In this context, we will present an application that 
leverages these 2-D images within an AI-driven estimator.

Table 1 summarizes key quantitative features of the three 
dependency matrices illustrated in Figs. 4–6. While the active 
and DC matrices exhibit close alignment in terms of mean 
value and standard deviation, the holistic DC matrix differs 
with a larger matrix size (due to the addition of generation 
and demand pendants) and greater sparsity. Despite 
normalization, the holistic matrix shows reduced average 
dependency values, reflecting the distributed impact of added 
pendant nodes. This table supports the visual insights of 
Figs. 4–6 with a quantitative comparison that reinforces the 
validity of the DC-based approximation.

3- 2- Operational Centrality Measures
As fully discussed in [1, 6], in a dependency matrix, 

the sum of the values in the k-th column of the dependency 
matrix indicates the operational betweenness centrality of the 

k-th bus within the analyzed power grid:
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Similarly, the inverse of the sum of the elements in the 

s-th row of the dependency matrix represents the operational 
closeness of the s-th bus in the system:
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The above operational centralities can be used in addition 
to previously defined graph and structural centralities [6], i.e., 
CB  and CS

B .

3- 3- From Operational Centrality to Holistic Centrality
As previously mentioned, different operational centralities 

can be derived from a power grid based on the chosen graph 
(either original or holistic) and the energy flows (either active 
or reactive) analyzed through various power flow methods 

Table 1. Statistical Summary of Dependency MatricesTable 1. Statistical Summary of Dependency Matrices 

Metric Active DC Holistic DC 
Matrix size (n × n) 14 × 14 14 × 14 27 × 27 
Mean of nonzero entries 0.252 0.254 0.166 
Standard deviation 0.230 0.232 0.181 
Max value 1.00 1.00 1.00 
Min (nonzero) value 0.02 0.02 0.01 
Sparsity (% of zero entries) 56.12% 55.10% 63.17% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Comparison of Different Electrical Betweenness Measures 

 Graph 
Centrality 

Structural 
Centrality 

Operational Centrality Holistic Centrality 

  
AC Load Flow Analysis DC Load 

Flow 
Analysis 

Active 
Flow 

Reactive 
Flow 

Notation CB  CS
B  Cp

B  CQ
B  

H

CP
B  

H

CQ
B  

H

Cdc
B  

Network Structure √ √ √ √ √ √ √ 

Electrical Distance - √ √ √ √ √ √ 

Load Flow Information - - Active 
Flow 

Reactive 
Flow 

Active 
Flow 

Reactive 
Flow 

Active 
Flow 

Generation/Demand 
Information - - - - Active 

Gen/Dem 
Reactive 
Gen/Dem 

Active 
Gen/Dem 
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(AC or DC). We will categorize these operational centralities 
accordingly. For flows obtained through AC power flow 
analysis, we will refer to them simply as active or reactive 
centrality, such as active betweenness ( Cp

B ) and reactive 
betweenness ( CQ

B ). In contrast, for flows derived from the 
DC load flow method, which only provides active flows, 
we will denote these centralities by the power flow method, 
such as DC betweenness ( Cdc

B ). When centralities are derived 
from a holistic graph, we will prefix their notation with 
“holistic”, resulting in terms like active holistic betweenness 
(

H

CP
B ), reactive holistic betweenness (

H

CQ
B ), and DC holistic 

betweenness (
H

Cdc
B ). To streamline our terminology, we will 

omit the word “operational” from all centrality types, as 
the flow type (active/reactive) or the power flow method 
(DC) inherently indicates their operational nature. Table 2 
summarizes all centrality measures used in complex power 
networks. 

Various betweenness centralities, as the sum of various 
dependency matrices, derived from the IEEE 14-bus system 
(Fig. 1) in normal operation condition are calculated and 
summarized in Table 3. Additionally, the DC holistic 
betweenness (represented by 

H

Cdc
B

) has been included in this 
table for comparison with the results presented in [1]. Notably, 
the new centrality measure closely aligns with the active 
holistic betweenness, exhibiting a similar trend throughout.

4- Performance Evaluation through Simulations
This section evaluates the performance of the proposed 

model through comprehensive simulations, offering insights 
into its effectiveness across diverse scenarios. It details 
the experimental setup, provides an in-depth analysis of 
the simulation results, and compares these outcomes with 

established benchmarks to highlight the model’s strengths 
and identify critical performance trends.

4- 1- Holistic Betweenness Measures vs. Active/Reactive 
Betweenness Measures

In previous section, we first analyzed the IEEE 14-bus 
test case under normal operating conditions, calculating both 
holistic active and reactive, and DC holistic betweenness 
measures. These results are included in the last two columns 
of Table 2, alongside previously established operational 
betweenness measures, with values normalized to sum to 100.

Our findings show that the proposed approach assigns DC 
holistic betweenness values to buses that previously had zero 
operational betweenness. Key conclusions include:

Holistic measures distribute betweenness impacts more 
evenly across all system buses compared to traditional 
operational measures, reflecting that every bus influences 
active/reactive power flow.

A bus that does not contribute to a specific power type 
(active or reactive) will have a corresponding holistic 
betweenness of zero. For example, bus 8’s active and DC 
holistic betweenness measures are zero because it is a PV bus 
with no active power generation or demand.

Generation buses typically have higher holistic 
betweenness values than operational ones due to their crucial 
role in power flow. For instance, bus 2’s active holistic 
betweenness rises from 5.7% to 10.7%, and its reactive 
measure increases from 6.1% to 10.3%. Similarly, bus 3’s 
reactive measure goes from 0% to 6.8%.

Rankings based on holistic measures may differ from 
those based on operational betweenness. Bus 4 remains the 
most critical node in terms of holistic active and reactive 
betweenness due to its central location, while bus 7’s ranking 
declines as it does not function as a generation or primary 

Table 3. Different betweennesses for IEEE 14-bus case.Table 3. Different betweennesses for IEEE 14-bus case 

B
us

 N
o.

 

Grap. Struc. Operational Holistic 

CB  CS
B  Cp

B  CQ
B  

H

CP
B  

H

CQ
B  

H

Cdc
B  

1 0 0 0 0 4 3 4 
2 4.7 4.8 5.7 6.1 10.7 10.3 10.7 
3 0 0 0 0 3.9 6.8 3.8 
4 19.6 21.4 23 22.4 16.9 15.5 17.1 
5 16.8 15.2 18.3 17.7 16 14.3 16 
6 16 17.2 17.5 14.5 15.9 13.5 15.8 
7 9.6 18.6 15 20.8 8 12.5 8 
8 0 0 0 0 0 3.3 0 
9 16.8 12.4 11.9 7.9 9.8 7.2 9.7 

10 3.7 4.8 3 4.8 3.4 4.1 3.4 
11 2.9 4.1 3.9 4 3.7 3.1 3.7 
12 0 0 0 0 1.8 1.2 1.8 
13 4.5 1.4 1.7 1.7 3.5 3.2 3.5 
14 5.3 0 0 0 2.4 2 2.4 
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load bus.
The DC holistic betweenness closely mirrors the active 

holistic betweenness, exhibiting a similar trend throughout.
Overall, these results underscore the advantages of using 

holistic measures to better understand the dynamics of power 
systems and the roles of individual buses within them.

4- 2- Correlation of Holistic Betweenness Measures and 
System States

The previous section has demonstrated the effectiveness 
of the proposed holistic measures. We have claimed that these 
measures, when combined with the previously established 
operational metrics, can effectively capture the dynamics 
of power grid operations, especially considering that only 
a limited range of operational conditions was analyzed in 
previous section and reference [6]. Consequently, the current 
simulation aims to further validate this claim regarding the 
proposed holistic measures. To do this, we created 10,000 
unique operational scenarios by randomly varying generation 
levels by up to 20% and demand levels by up to 25%, thus 
generating a wide array of operational cases, which is shown 
in Fig. 7. The power flow for each scenario was analyzed 
using both the Newton-Raphson (NR) and DC methods using 
Matpower package [31]. Using the flow data obtained from 
these methods, we calculated active and reactive betweenness, 
as well as active and reactive holistic betweenness, and DC 
holistic betweenness for each scenario. We then examined 
the correlations between these various measures and the state 
information (voltage phase and magnitude), presenting our 
findings in Tables 4 to 13. Additionally, we implemented a 
color-coded indicator to visually represent these correlations: 
negative correlations are indicated in green, positive 
correlations in red, and weak correlations approach white.

The observations derived from the correlation tables 
are noteworthy. The bright green and red colors observed 
in the columns for buses 1, 3, 12, and 14 in Tables 5 and 
6 indicate that the newly assigned betweenness values 
(active holistic and DC holistic betweenness measures) 
successfully capture the dynamics of system states. 
Previous findings suggest a strong correlation between 
active power and voltage phase; this is corroborated by the 
bright colors in Tables 4 to 6, confirming the relationship 
between active operational measures and voltage phase, as 
well as between active/DC holistic measures and voltage 
phase. Similarly, a strong correlation exists between 
reactive power and voltage magnitude, which is also 
validated in Tables 12 and 13.

Notably, some generation buses (such as buses 1 and 
3) exhibited traditionally zero measures (refer to Table 4). 
However, their holistic measures (Tables 5 and 6) are not 
only non-zero but also display bright colors, underscoring 
the critical role of generation buses in state dynamics; a role 
effectively captured by active/DC holistic betweenness. A 
comparable analysis applies to holistic reactive betweenness 
and voltage magnitude, as exemplified by bus 9 in Table 13. 
Our findings reveal a weak correlation between traditional 
and holistic active measures with voltage magnitudes (light 

 

Fig. 7. Flowchart of Generating Different Operational Conditions 

 

 

 

 

Fig. 7. Flowchart of Generating Different Operational 
Conditions

colors in Tables 7 to 9), which aligns with existing knowledge. 
In contrast, both reactive measures and voltage phase 
demonstrate an acceptable level of correlation, warranting 
careful examination in future research.

In summary, our thorough analysis demonstrates that 
holistic measures (active, reactive, and DC) are more effective 
than traditional operational metrics in understanding the 
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Table 4. Correlation between Active Betweenness and Voltage Phase.Table 4. Correlation between Active Betweenness and Voltage Phase 
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 P
BC 3
 

 P
BC 4
 

 P
BC 5
 

 P
BC 6
 

 P
BC 7
 

 P
BC 8
 

 P
BC 9
 

 P
BC 10

 
 P

BC 11
 

 P
BC 12

 
 P

BC 13
 

 P
BC 14

 

δ1               

δ2  -0.57  -0.55 -0.65 0.56 0.54  0.30 0.12 -0.36  -0.66  

δ3  -0.66  -0.64 -0.73 0.58 0.65  0.44 0.08 -0.34  -0.74  

δ4  -0.53  -0.54 -0.60 0.57 0.48  0.24 0.14 -0.38  -0.61  

δ5  -0.49  -0.51 -0.57 0.53 0.45  0.23 0.15 -0.36  -0.58  

δ6  -0.24  -0.26 -0.33 0.28 0.23  0.07 0.17 -0.24  -0.34  

δ7  -0.29  -0.32 -0.38 0.44 0.25  0.06 0.22 -0.42  -0.39  

δ8  -0.29  -0.32 -0.38 0.44 0.25  0.06 0.22 -0.42  -0.39  

δ9  -0.19  -0.22 -0.28 0.37 0.14  -0.02 0.25 -0.43  -0.29  

δ10  -0.18  -0.21 -0.27 0.36 0.15  0.01 0.21 -0.40  -0.28  

δ11  -0.21  -0.23 -0.30 0.32 0.19  0.04 0.19 -0.34  -0.31  

δ12  -0.21  -0.24 -0.31 0.23 0.20  0.05 0.18 -0.20  -0.31  

δ13  -0.20  -0.23 -0.30 0.23 0.18  0.03 0.19 -0.20  -0.30  

δ14  -0.16  -0.19 -0.26 0.26 0.11  -0.04 0.27 -0.30  -0.26  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Correlation between Active Holistic Betweenness and Voltage Phase.Table 5. Correlation between Active Holistic Betweenness and Voltage Phase 

 H
CB

P (1) H
CB

P (2) H
CB

P (3) H
CB

P (4) H
CB

P (5) H
CB

P (6) H
CB

P (7) H
CB

P (8) H
CB

P (9) H
CB

P (10) H
CB

P (11) H
CB

P (12) H
CB

P (13) H
CB

P (14) 

δ1               

δ2 -0.63 -0.52 -0.57 -0.23 -0.61 0.50 0.52  0.43 0.10 -0.33 0.02 -0.35 -0.01 

δ3 -0.74 -0.64 -0.71 -0.20 -0.58 0.54 0.59  0.49 0.05 -0.32 -0.02 -0.39 -0.03 

δ4 -0.59 -0.52 -0.52 -0.31 -0.60 0.51 0.51  0.43 0.13 -0.35 0.04 -0.34 0.01 

δ5 -0.56 -0.48 -0.50 -0.28 -0.57 0.48 0.47  0.39 0.13 -0.33 0.04 -0.33 0.01 

δ6 -0.33 -0.22 -0.30 -0.12 -0.37 0.24 0.23  0.16 0.18 -0.21 0.05 -0.27 0.02 

δ7 -0.37 -0.30 -0.34 -0.15 -0.40 0.42 0.27  0.19 0.21 -0.40 0.13 -0.25 0.05 

δ8 -0.37 -0.30 -0.34 -0.15 -0.40 0.42 0.27  0.19 0.21 -0.40 0.13 -0.25 0.05 

δ9 -0.27 -0.20 -0.25 -0.08 -0.31 0.38 0.16  0.09 0.24 -0.41 0.17 -0.21 0.06 

δ10 -0.26 -0.19 -0.25 -0.07 -0.30 0.36 0.16  0.11 0.19 -0.38 0.16 -0.20 0.06 

δ11 -0.29 -0.20 -0.27 -0.09 -0.33 0.30 0.19  0.13 0.19 -0.31 0.11 -0.23 0.04 

δ12 -0.30 -0.19 -0.28 -0.10 -0.34 0.20 0.20  0.14 0.19 -0.17 -0.01 -0.27 0.02 

δ13 -0.29 -0.18 -0.27 -0.09 -0.33 0.19 0.19  0.12 0.20 -0.18 0.03 -0.31 0.01 

δ14 -0.23 -0.14 -0.22 -0.05 -0.27 0.25 0.12  0.08 0.26 -0.28 0.13 -0.26 -0.11 
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Table 6. Correlation between DC Holistic Betweenness and Voltage Phase.Table 6. Correlation between DC Holistic Betweenness and Voltage Phase 

 H
CB
𝑑𝑑𝑑𝑑(1) H

CB
𝑑𝑑𝑑𝑑(2) H

CB
𝑑𝑑𝑑𝑑(3) H

CB
𝑑𝑑𝑑𝑑(4) H

CB
𝑑𝑑𝑑𝑑(5) H

CB
𝑑𝑑𝑑𝑑(6) H

CB
𝑑𝑑𝑑𝑑(7) H

CB
𝑑𝑑𝑑𝑑(8) H

CB
𝑑𝑑𝑑𝑑(9) H

CB
𝑑𝑑𝑑𝑑(10) H

CB
𝑑𝑑𝑑𝑑(11) H

CB
𝑑𝑑𝑑𝑑(12) H

CB
𝑑𝑑𝑑𝑑(13) H

CB
𝑑𝑑𝑑𝑑(14) 

δ1               

δ2 -0.61 -0.55 -0.56 -0.27 -0.62 0.5 0.53  0.45 0.11 -0.3 -0.02 -0.33 -0.01 

δ3 -0.72 -0.66 -0.7 -0.24 -0.59 0.54 0.59  0.5 0.07 -0.28 -0.05 -0.36 -0.03 

δ4 -0.58 -0.54 -0.52 -0.36 -0.61 0.52 0.51  0.44 0.14 -0.32 0.01 -0.31 0.01 

δ5 -0.55 -0.5 -0.49 -0.32 -0.58 0.48 0.48  0.41 0.15 -0.3 0.01 -0.31 0.01 

δ6 -0.31 -0.24 -0.29 -0.16 -0.38 0.25 0.23  0.17 0.19 -0.18 0.02 -0.25 0.02 

δ7 -0.35 -0.31 -0.33 -0.19 -0.42 0.42 0.27  0.21 0.23 -0.37 0.09 -0.24 0.05 

δ8 -0.35 -0.31 -0.33 -0.19 -0.42 0.42 0.27  0.21 0.23 -0.37 0.09 -0.24 0.05 

δ9 -0.25 -0.21 -0.24 -0.12 -0.32 0.37 0.16  0.1 0.27 -0.39 0.13 -0.2 0.06 

δ10 -0.24 -0.2 -0.24 -0.11 -0.31 0.36 0.17  0.12 0.22 -0.36 0.13 -0.2 0.06 

δ11 -0.27 -0.22 -0.26 -0.13 -0.34 0.31 0.2  0.14 0.21 -0.28 0.08 -0.22 0.05 

δ12 -0.28 -0.21 -0.27 -0.14 -0.35 0.2 0.2  0.14 0.2 -0.14 -0.04 -0.26 0.02 

δ13 -0.27 -0.19 -0.26 -0.13 -0.34 0.2 0.19  0.13 0.21 -0.15 0 -0.29 0.01 

δ14 -0.21 -0.15 -0.21 -0.1 -0.28 0.26 0.13  0.09 0.28 -0.26 0.09 -0.26 -0.11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Correlation between Active Betweenness and Voltage Magnitude.Table 7. Correlation between Active Betweenness and Voltage Magnitude 

  P
BC 1

 
 P

BC 2
 

 P
BC 3

 
 P

BC 4
 

 P
BC 5

 
 P

BC 6
 

 P
BC 7

 
 P

BC 8
 

 P
BC 9

 
 P

BC 10
 

 P
BC 11

 
 P

BC 12
 

 P
BC 13

 
 P

BC 14
 

|V1|  0.00  0.00 0.00 0.00 0.00  0.00 0.00 0.00  0.00  

|V2|  0.00  0.00 0.00 0.00 0.00  0.00 0.00 0.00  0.00  

|V3|  0.00  0.00 0.00 0.00 0.00  0.00 0.00 0.00  0.00  

|V4|  -0.01  -0.09 -0.07 0.26 -0.04  -0.17 0.24 -0.34  -0.08  

|V5|  -0.01  -0.08 -0.07 0.20 -0.03  -0.15 0.23 -0.29  -0.09  

|V6|  0.00  0.00 0.00 0.00 0.00  0.00 0.00 0.00  0.00  

|V7|  0.11  0.06 0.07 0.08 -0.11  -0.13 0.23 -0.35  0.06  

|V8|  0.00  0.00 0.00 0.00 0.00  0.00 0.00 0.00  0.00  

|V9|  0.10  0.07 0.07 0.04 -0.08  -0.08 0.19 -0.31  0.07  

|V10|  0.14  0.11 0.10 0.05 -0.08  -0.05 0.11 -0.32  0.10  

|V11|  0.15  0.12 0.12 0.06 -0.09  -0.05 0.11 -0.36  0.11  

|V12|  0.10  0.09 0.07 -0.31 -0.11  -0.10 0.06 0.33  0.09  

|V13|  0.16  0.14 0.12 -0.33 -0.18  -0.17 0.16 0.25  0.14  

|V14|  0.14  0.11 0.10 -0.14 -0.18  -0.20 0.29 -0.09  0.11  
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Table 8. Correlation between Active Holistic Betweenness and Voltage Magnitude.Table 8. Correlation between Active Holistic Betweenness and Voltage Magnitude 

 H
CB

P (1) H
CB

P (2) H
CB

P (3) H
CB

P (4) H
CB

P (5) H
CB

P (6) H
CB

P (7) H
CB

P (8) H
CB

P (9) H
CB

P (10) H
CB

P (11) H
CB

P (12) H
CB

P (13) H
CB

P (14) 

|V1| 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 

|V2| 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 

|V3| 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 

|V4| -0.03 -0.05 0.04 -0.29 -0.25 0.24 0.10  0.09 0.22 -0.35 0.19 -0.10 0.08 

|V5| -0.05 -0.04 0.01 -0.21 -0.23 0.18 0.07  0.06 0.23 -0.29 0.16 -0.13 0.07 

|V6| 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 

|V7| 0.10 0.09 0.10 -0.01 0.00 0.12 -0.05  -0.03 0.19 -0.39 0.23 -0.05 0.07 

|V8| 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 

|V9| 0.10 0.09 0.09 0.04 0.04 0.08 -0.05  -0.02 0.15 -0.36 0.20 -0.04 0.06 

|V10| 0.13 0.12 0.11 0.08 0.08 0.10 -0.06  -0.02 0.05 -0.36 0.23 -0.01 0.08 

|V11| 0.15 0.14 0.12 0.11 0.10 0.11 -0.06  -0.02 0.05 -0.41 0.25 0.02 0.08 

|V12| 0.11 0.20 0.09 0.10 0.08 -0.32 -0.10  -0.10 0.08 0.28 -0.61 -0.03 -0.01 

|V13| 0.16 0.25 0.13 0.13 0.11 -0.33 -0.17  -0.16 0.17 0.20 -0.09 -0.43 -0.12 

|V14| 0.18 0.21 0.15 0.13 0.12 -0.10 -0.15  -0.10 0.27 -0.14 0.16 -0.18 -0.40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9. Correlation between DC Holistic Betweenness and Voltage Magnitude..Table 9. Correlation between DC Holistic Betweenness and Voltage Magnitude 

 H
CB
𝑑𝑑𝑑𝑑(1) H

CB
𝑑𝑑𝑑𝑑(2) H

CB
𝑑𝑑𝑑𝑑(3) H

CB
𝑑𝑑𝑑𝑑(4) H

CB
𝑑𝑑𝑑𝑑(5) H

CB
𝑑𝑑𝑑𝑑(6) H

CB
𝑑𝑑𝑑𝑑(7) H

CB
𝑑𝑑𝑑𝑑(8) H

CB
𝑑𝑑𝑑𝑑(9) H

CB
𝑑𝑑𝑑𝑑(10) H

CB
𝑑𝑑𝑑𝑑(11) H

CB
𝑑𝑑𝑑𝑑(12) H

CB
𝑑𝑑𝑑𝑑(13) H

CB
𝑑𝑑𝑑𝑑(14) 

|V1| 0 0 0 0 0 0 0  0 0 0 0 0 0 

|V2| 0 0 0 0 0 0 0  0 0 0 0 0 0 

|V3| 0 0 0 0 0 0 0  0 0 0 0 0 0 

|V4| -0.03 -0.06 0.05 -0.33 -0.28 0.27 0.08  0.08 0.25 -0.31 0.16 -0.08 0.08 

|V5| -0.04 -0.05 0.01 -0.26 -0.26 0.21 0.06  0.05 0.24 -0.25 0.13 -0.11 0.07 

|V6| 0 0 0 0 0 0 0  0 0 0 0 0 0 

|V7| 0.09 0.06 0.1 -0.07 -0.05 0.2 -0.08  -0.08 0.2 -0.32 0.19 -0.01 0.07 

|V8| 0 0 0 0 0 0 0  0 0 0 0 0 0 

|V9| 0.09 0.05 0.08 -0.01 0 0.18 -0.08  -0.08 0.16 -0.29 0.17 0 0.06 

|V10| 0.12 0.09 0.1 0.03 0.04 0.19 -0.09  -0.07 0.06 -0.29 0.2 0.03 0.08 

|V11| 0.14 0.1 0.11 0.06 0.06 0.2 -0.1  -0.07 0.06 -0.34 0.22 0.06 0.08 

|V12| 0.11 0.17 0.09 0.08 0.07 -0.29 -0.11  -0.11 0.06 0.3 -0.61 -0.04 -0.01 

|V13| 0.16 0.22 0.13 0.1 0.1 -0.29 -0.18  -0.18 0.16 0.23 -0.1 -0.43 -0.12 

|V14| 0.17 0.18 0.14 0.08 0.09 -0.03 -0.17  -0.12 0.26 -0.09 0.14 -0.16 -0.4 
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complex dynamics of power grid operations. These holistic 
metrics reveal previously overlooked effects of different 
buses on system behavior, indicating their potential to 
improve decision-making and grid management strategies. 
Specifically, operational and holistic centralities can be 
integrated into AI algorithms to estimate and forecast grid 
operational parameters, as previously suggested in [10]. The 

following section will introduce two AI methods aimed at 
accelerating the calculation of active holistic centralities and 
estimating voltage magnitudes from DC load flow results. 
Note that for the next section, no specific feature extraction 
techniques, such as principal component analysis (PCA), 
were applied; instead, feature selection was guided by the 
correlation insights from Tables 4 to 13.

Table 10. Correlation between Reactive Betweenness and Voltage Phase.Table 10. Correlation between Reactive Betweenness and Voltage Phase 

  Q
BC 1   Q

BC 2   Q
BC 3   Q

BC 4   Q
BC 5     Q

BC 8   Q
BC 9   Q

BC 10   Q
BC 11   Q

BC 12   Q
BC 13   Q

BC 14  

δ1               

δ2  -0.73  -0.50 -0.46 0.72 0.57  0.05 -0.15 -0.14  -0.86  

δ3  -0.70  -0.54 -0.44 0.64 0.70  0.05 -0.16 -0.10  -0.80  

δ4  -0.74  -0.52 -0.43 0.81 0.44  0.06 -0.14 -0.15  -0.89  

δ5  -0.74  -0.51 -0.45 0.83 0.42  0.06 -0.13 -0.17  -0.89  

δ6  -0.72  -0.41 -0.48 0.92 0.21  0.05 -0.08 -0.25  -0.87  

δ7  -0.73  -0.43 -0.46 0.89 0.25  0.04 -0.14 -0.14  -0.89  

δ8  -0.73  -0.43 -0.46 0.89 0.25  0.04 -0.14 -0.14  -0.89  

δ9  -0.71  -0.37 -0.45 0.90 0.17  0.02 -0.14 -0.13  -0.88  

δ10  -0.71  -0.38 -0.46 0.91 0.17  0.03 -0.12 -0.15  -0.88  

δ11  -0.72  -0.40 -0.48 0.92 0.19  0.04 -0.10 -0.19  -0.88  

δ12  -0.71  -0.41 -0.49 0.92 0.19  0.06 -0.07 -0.26  -0.85  

δ13  -0.70  -0.40 -0.49 0.92 0.17  0.06 -0.08 -0.25  -0.84  

δ14  -0.70  -0.37 -0.47 0.91 0.13  0.04 -0.10 -0.19  -0.84  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11. Correlation between Reactive Holistic Betweenness and Voltage Phase.Table 11. Correlation between Reactive Holistic Betweenness and Voltage Phase 

 
H
CB

Q(1) 
H
CB

Q(2) 
H
CB

Q(3) 
H
CB

Q(4) 
H
CB

Q(5) 
H
CB

Q(6) 
H
CB

Q(7) 
H
CB

Q(8) 
H
CB

Q(9) 
H
CB

Q(10) 
H
CB

Q(11) 
H
CB

Q(12) 
H
CB

Q(13) 
H
CB

Q(14) 

δ1               

δ2 -0.58 -0.66 -0.38 -0.38 0.18 0.75 0.56 0.12 0.12 -0.05 -0.07 -0.04 -0.06 0.03 

δ3 -0.59 -0.63 -0.43 -0.39 0.12 0.69 0.68 0.22 0.12 -0.07 -0.04 -0.04 -0.03 0.03 

δ4 -0.57 -0.66 -0.38 -0.40 0.26 0.81 0.44 0.03 0.13 -0.04 -0.09 -0.03 -0.07 0.04 

δ5 -0.57 -0.66 -0.38 -0.39 0.25 0.82 0.43 0.01 0.12 -0.03 -0.10 -0.03 -0.08 0.04 

δ6 -0.52 -0.62 -0.33 -0.30 0.25 0.86 0.26 -0.13 0.10 0.01 -0.18 0.01 -0.12 0.04 

δ7 -0.54 -0.65 -0.35 -0.32 0.26 0.86 0.28 -0.12 0.08 -0.04 -0.07 -0.03 -0.08 0.04 

δ8 -0.54 -0.65 -0.35 -0.32 0.26 0.86 0.28 -0.12 0.08 -0.04 -0.07 -0.03 -0.08 0.04 

δ9 -0.52 -0.63 -0.33 -0.28 0.26 0.85 0.21 -0.19 0.06 -0.04 -0.07 -0.03 -0.08 0.04 

δ10 -0.52 -0.63 -0.33 -0.28 0.26 0.85 0.21 -0.18 0.07 -0.03 -0.08 -0.03 -0.09 0.04 

δ11 -0.52 -0.63 -0.33 -0.30 0.25 0.86 0.23 -0.16 0.09 -0.01 -0.12 -0.01 -0.10 0.04 

δ12 -0.50 -0.61 -0.33 -0.30 0.24 0.85 0.24 -0.14 0.11 0.01 -0.19 0.01 -0.11 0.04 

δ13 -0.50 -0.61 -0.32 -0.30 0.23 0.86 0.22 -0.15 0.11 0.00 -0.18 0.03 -0.10 0.04 

δ14 -0.50 -0.61 -0.32 -0.27 0.24 0.85 0.18 -0.19 0.08 -0.02 -0.12 0.01 -0.09 0.07 
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5- AI-Enhanced Estimation Techniques for Holistic 
Power Network Analysis

High-level description: This section explores a range 
of estimation techniques to derive critical power system 
parameters from DC holistic dependency matrices and 
betweenness measures, progressing from simple linear 
regression to sophisticated deep neural networks (DNNs) 
and convolutional neural networks (CNNs). Subsections 5-2 
to 5-4 demonstrate how the proposed holistic dependency 
matrix and holistic betweenness centrality, calculated as the 
sum of its columns, effectively extract diverse features such as 
active holistic betweenness and voltage magnitudes. Starting 
with linear regression for baseline predictions, the analysis 

advances to DNNs for capturing non-linear relationships, and 
culminates in CNNs to process 2-D dependency matrices as 
images. These methods are validated across the IEEE 14-bus 
system, with Subsection 5-5 further proving the scalability of 
the proposed approaches to the larger IEEE 57-bus system, 
highlighting their adaptability and robustness for enhanced 
power network analysis.

5- 1- Data Preparation for AI Models
This subsection outlines the data preparation process for 

training, validating, and testing the AI models used in this 
study. For the IEEE 14-bus system, we generated 10,000 
training samples by randomly varying generation levels by 

Table 12. Correlation between Reactive Betweenness and Voltage Magnitude.Table 12. Correlation between Reactive Betweenness and Voltage Magnitude 

  Q
BC 1

 
 Q

BC 2   Q
BC 3

 
 Q

BC 4
 

 Q
BC 5

 
 Q

BC 6   Q
BC 7    Q

BC 8
 

  Q
BC 10

 
  Q

BC 11    Q
BC 12   Q

BC 13
 

 Q
BC 14

 
|V1|  0.00  0.00 0.00 0.00 0.00  0.00 0.00 0.00  0.00  
|V2|  0.00  0.00 0.00 0.00 0.00  0.00 0.00 0.00  0.00  
|V3|  0.00  0.00 0.00 0.00 0.00  0.00 0.00 0.00  0.00  
|V4|  -0.45  -0.02 -0.09 0.75 -0.21  -0.16 0.13 -0.38  -0.63  
|V5|  -0.51  -0.10 -0.21 0.84 -0.16  -0.11 0.09 -0.37  -0.69  
|V6|  0.00  0.00 0.00 0.00 0.00  0.00 0.00 0.00  0.00  
|V7|  -0.22  0.51 0.27 0.39 -0.10  -0.61 0.47 -0.66  -0.33  
|V8|  0.00  0.00 0.00 0.00 0.00  0.00 0.00 0.00  0.00  
|V9|  -0.13  0.62 0.37 0.22 -0.03  -0.69 0.54 -0.70  -0.19  
|V10|  -0.11  0.63 0.39 0.26 -0.01  -0.70 0.41 -0.65  -0.16  
|V11|  -0.12  0.61 0.37 0.27 -0.01  -0.68 0.38 -0.64  -0.17  
|V12|  -0.11  0.09 -0.06 0.20 -0.11  -0.12 0.28 -0.30  -0.16  
|V13|  -0.17  0.17 -0.06 0.29 -0.15  -0.22 0.38 -0.37  -0.21  
|V14|  -0.16  0.42 0.16 0.28 -0.11  -0.49 0.48 -0.54  -0.22  
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CB
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CB

Q(7) 
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CB

Q(8) 
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CB

Q(9) 
H
CB

Q(10) 
H
CB

Q(11) 
H
CB

Q(12) 
H
CB

Q(13) 
H
CB

Q(14) 

|V1| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
|V2| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
|V3| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
|V4| -0.27 -0.41 -0.14 0.01 0.55 0.62 -0.11 -0.50 -0.18 0.13 -0.34 0.08 -0.25 0.03 
|V5| -0.31 -0.46 -0.18 -0.06 0.47 0.70 -0.07 -0.45 -0.11 0.11 -0.32 0.07 -0.23 0.03 
|V6| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
|V7| -0.16 -0.23 -0.09 0.54 0.70 0.24 0.11 -0.70 -0.69 0.33 -0.69 0.25 -0.46 -0.03 
|V8| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
|V9| -0.11 -0.15 -0.07 0.65 0.69 0.09 0.19 -0.68 -0.79 0.36 -0.75 0.28 -0.48 -0.04 
|V10| -0.09 -0.13 -0.06 0.65 0.70 0.12 0.19 -0.63 -0.79 0.19 -0.72 0.34 -0.44 0.00 
|V11| -0.09 -0.13 -0.06 0.63 0.69 0.13 0.18 -0.61 -0.76 0.18 -0.72 0.34 -0.42 0.01 
|V12| -0.02 -0.04 -0.02 0.16 0.24 0.08 0.02 -0.16 -0.10 0.23 -0.29 -0.37 -0.44 -0.08 
|V13| -0.05 -0.10 -0.04 0.24 0.34 0.12 0.01 -0.30 -0.21 0.30 -0.37 -0.04 -0.66 -0.10 
|V14| -0.09 -0.14 -0.05 0.47 0.55 0.14 0.09 -0.51 -0.52 0.35 -0.55 0.19 -0.54 -0.34 
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up to 20% and demand levels by up to 25%, as described 
in Fig. 7. For each scenario, both AC and DC load flow 
analyses were performed using the Newton-Raphson method 
and DC approximations, respectively. Algorithm 1 was then 
applied to derive DC holistic and active holistic betweenness 
measures from the DC and AC results, respectively, while bus 
states (voltage magnitudes and phases) were obtained from 
the AC load flow solutions. This process was repeated to 
create 1,000 validation samples and 50 test samples, ensuring 
a comprehensive dataset for model evaluation.

For the IEEE 57-bus system, a similar approach was 
adopted, generating 8,000 training samples, 800 validation 
samples, and 100 test samples with the same variation ranges 
for generation and demand. The same load flow analyses 
and Algorithm 1 were used to compute the corresponding 
DC holistic, active holistic betweenness measures, and bus 
states. No specific feature extraction techniques, such as 
principal component analysis (PCA), were applied; instead, 
the selection of input features, particularly DC holistic 
betweenness, was guided by the correlation insights reported 
in Tables 4 to 13, which highlight their strong relationships 
with system states.

5- 2- Baseline and DNN-Based Estimation of Active Holistic 
Betweenness

This subsection explores the use of linear regression to 
estimate active holistic betweenness measures from DC 
holistic measures derived from DC power flow results, 

followed by an evaluation of a deep neural network (DNN) to 
enhance prediction accuracy. The input features comprise DC 
holistic betweenness measures for all 14 buses except bus 8, 
resulting in 13 inputs, while the outputs are the corresponding 
active holistic betweenness measures, also totaling 13 
features.

5- 2- 1- Linear Regression Analysis
Linear regression serves as the primary approach, 

assuming a linear relationship between DC holistic inputs 
and active holistic outputs. The correlation between these 
measures is strong, as evidenced by Table 14, where red 
colors along the main diagonal indicate more than 99% 
correlation between a bus’s active and DC holistic measures. 
This suggests DC holistics are a reliable proxy for active 
measures. The regression model was fitted to the training 
data, achieving a mean training RMSE of 0.0223 and R² of 
0.9928, reflecting high accuracy. Test performance, detailed 
in Table 15, shows per-bus RMSE ranging from 0.0033 to 
0.0584, and R² from 0.9906 to 0.9996, with a mean test 
RMSE of 0.0199, and R² of 0.9930. Buses 12 and 11 stand 
out with the lowest R² (0.9841 and 0.9881), reflecting their 
distinct topological role and weaker correlation.

5- 2- 2- Deep Neural Network Enhancement
To capture potential non-linearities, a DNN was 

developed with an input layer of 13 features, followed by a 
fully connected layer with 128 neurons and ReLU activation, 

Table 14. Correlation between Active Holistic Betweenness and DC Holistic Betweenness.Table 14. Correlation between Active Holistic Betweenness and DC Holistic Betweenness 
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H
CB
𝑑𝑑𝑑𝑑(1) 0.998 0.956 0.876 0.608 0.858 -0.52 -0.888 0 -0.766 -0.021 0.034 0.243 0.392 0.071 

H
CB
𝑑𝑑𝑑𝑑(2) 0.956 0.997 0.824 0.681 0.844 -0.66 -0.916 0 -0.82 -0.003 0.187 0.171 0.348 0.047 

H
CB
𝑑𝑑𝑑𝑑(3) 0.871 0.823 0.999 0.351 0.673 -0.472 -0.749 0 -0.64 0.012 0.059 0.2 0.347 0.07 

H
CB
𝑑𝑑𝑑𝑑(4) 0.615 0.67 0.357 0.996 0.809 -0.371 -0.731 0 -0.691 -0.107 0.008 0.154 0.211 0.013 

H
CB
𝑑𝑑𝑑𝑑(5) 0.865 0.855 0.68 0.809 0.997 -0.488 -0.873 0 -0.782 -0.103 0.054 0.205 0.34 0.03 

H
CB
𝑑𝑑𝑑𝑑(6) -0.526 -0.642 -0.477 -0.361 -0.487 0.992 0.578 0 0.561 -0.051 -0.772 0.202 -0.097 0.085 

H
CB
𝑑𝑑𝑑𝑑(7) -0.891 -0.917 -0.751 -0.737 -0.869 0.593 0.999 0 0.961 -0.247 -0.052 -0.218 -0.332 -0.086 

H
CB
𝑑𝑑𝑑𝑑(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

H
CB
𝑑𝑑𝑑𝑑(9) -0.768 -0.818 -0.642 -0.698 -0.777 0.584 0.964 0 0.997 -0.384 -0.046 -0.16 -0.273 -0.176 

H
CB
𝑑𝑑𝑑𝑑(10) -0.036 -0.009 0 -0.119 -0.12 -0.122 -0.238 0 -0.359 0.986 -0.182 -0.104 -0.209 -0.175 

H
CB
𝑑𝑑𝑑𝑑(11) 0.075 0.209 0.094 0.041 0.099 -0.791 -0.095 0 -0.09 -0.233 0.993 -0.405 -0.093 -0.179 

H
CB
𝑑𝑑𝑑𝑑(12) 0.222 0.153 0.18 0.14 0.179 0.261 -0.2 0 -0.149 -0.016 -0.484 0.991 0.161 -0.017 

H
CB
𝑑𝑑𝑑𝑑(13) 0.403 0.358 0.357 0.223 0.352 -0.07 -0.346 0 -0.296 -0.173 -0.151 0.199 0.992 0.213 

H
CB
𝑑𝑑𝑑𝑑(14) 0.078 0.057 0.075 0.017 0.036 0.082 -0.091 0 -0.197 -0.151 -0.186 -0.021 0.207 1 
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Fig. 8. Structure of the deep neural network used for active holistic prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Structure of the deep neural network used for active holistic prediction.

Table 15. Performance metrics of linear regression (training and test) and DNN (test) for active holistic 
prediction across 14 buses.

Table 15. Performance metrics of linear regression (training and test) and DNN (test) for active holistic prediction across 
14 buses. 

Bus 
Linear Regression 

(Training) 
Linear Regression 

(Test) 
DNN 
(Test) 

RMSE R2 RMSE R2 RMSE R2 
H
CB
𝑃𝑃(1) 0.0035 0.9977 0.0033 0.9971 0.0142 0.9463 

H
CB
𝑃𝑃(2) 0.0178 0.9956 0.0198 0.9913 0.0287 0.9818 

H
CB
𝑃𝑃(3) 0.0037 0.9988 0.0043 0.9974 0.0209 0.9379 

H
CB
𝑃𝑃(4) 0.0205 0.9935 0.0169 0.9926 0.0197 0.9899 

H
CB
𝑃𝑃(5) 0.0165 0.9956 0.0160 0.9932 0.0166 0.9927 

H
CB
𝑃𝑃(6) 0.0455 0.9862 0.0339 0.9906 0.0374 0.9886 

H
CB
𝑃𝑃(7) 0.0221 0.9982 0.0177 0.9983 0.0219 0.9974 

H
CB
𝑃𝑃(9) 0.0216 0.9942 0.0179 0.9941 0.0258 0.9876 

H
CB
𝑃𝑃(10) 0.0633 0.9816 0.0584 0.9902 0.0643 0.9881 

H
CB
𝑃𝑃(11) 0.0505 0.9879 0.0433 0.9881 0.0398 0.9900 

H
CB
𝑃𝑃(12) 0.0135 0.9890 0.0140 0.9841 0.0165 0.9778 

H
CB
𝑃𝑃(13) 0.0081 0.9880 0.0078 0.9923 0.0198 0.9498 

H
CB
𝑃𝑃(14) 0.0035 0.9996 0.0049 0.9996 0.0085 0.9988 

Mean 0.0223 0.9928 0.0199 0.9930 0.0257 0.9790 
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a second layer with 64 neurons and ReLU activation, a third 
layer with 64 neurons and ReLU activation, and a fourth layer 
with 64 neurons and ReLU activation. The output layer, with 
13 neurons, uses a regression layer as the loss function. The 
network was trained on the 10,000 samples using the Adam 
optimizer, with an initial learning rate of 0.001 reduced by half 
every 25 epochs, a mini-batch size of 32, L2 regularization 
of 0.00001, validation patience of 300, and gradient clipping 
at a threshold of 1. Training ran for a maximum of 150 
epochs, stopping at 32,800 iterations (106 epochs) when the 
validation loss did not improve for 300 iterations, with a final 
validation loss of 0.0057–0.0064, training RMSE of 0.12, and 
validation RMSE of 0.11. The training progress is visualized 
in Fig. 9 (a), showing an initial RMSE drop and stable 
convergence. Test results in Table 15 align with training, with 
a mean RMSE of 0.0257 and R² of 0.98, slightly improving 
upon linear regression for buses with non-linear patterns. 
The DNN’s mean training RMSE of 0.12, derived from the 
training curve, compares favorably to the linear regression’s 
mean training RMSE of 0.0223, though the aggregated nature 
of the DNN metric suggests room for per-bus refinement. 
This approach enhances prediction accuracy, particularly for 
buses like 11, where linear regression underperforms.

5- 3- Cross-Bus Prediction of Active Holistics Using DNN
This subsection focuses on predicting active holistic 

betweenness measures for buses 2, 4, 6, and 9 using input 
features from the DC holistic betweenness measures of buses 
1, 3, 5, and 7, addressing cross-bus dependencies within the 
14-bus system. The motivation arises from observing Table 
14, where bright red/green blocks from a11 to a99 indicate 
strong correlations between active and DC holistics among 
buses 1 to 9, primarily along the main diagonal due to intra-
bus relationships (the block borders are bolded in Table 14). 
However, this strong correlation is not applicable here, as the 
analysis targets cross-bus prediction, where DC holistics of 
buses 2, 4, 6, and 9 are excluded as inputs. Instead, the goal is 
to derive the active holistics of buses 2, 4, 6, and 9 solely from 
the DC holistics of buses 1, 3, 5, and 7, leveraging potential 
indirect dependencies. Since bus 8’s holistic measure is zero, 
it is omitted, leaving 13 features, but the prediction focuses 
on the four specified target buses.

The deep neural network (DNN) architecture builds on 
the approach from Section 4-1, with layers comprising a 
feature input layer for 4 inputs, a fully connected layer with 
128 neurons and ReLU activation, followed by three fully 
connected layers with 64 neurons each and ReLU activation, 
and an output layer with 4 neurons using a regression loss 
function. Training utilized the Adam optimizer with an initial 
learning rate of 0.001, reduced by half every 25 epochs via a 
piecewise schedule, a mini-batch size of 32, L2 regularization 
of 0.00001 to prevent overfitting, gradient clipping at a 
threshold of 1, and validation patience of 300. The model was 
trained for up to 150 epochs, stopping at 34,800 iterations 
(112 epochs) when the validation loss did not improve for 
300 iterations, achieving a validation RMSE of 0.35 and a 
training RMSE of 0.0599, as shown in the training curve 

(Fig. 9-(b)). The progress indicates stable convergence with 
minimal overfitting, supported by a validation RMSE of 
0.0599 at the final iteration.

Performance metrics, detailed in Table 16, compare the 
DNN’s test results with linear regression. The DNN achieves 
a mean test RMSE of 0.1181 and R² of 0.7746 across buses 
2, 4, 6, and 9, with individual RMSE values ranging from 
0.0597 (bus 2) to 0.2601 (bus 6) and R² from 0.4479 (bus 6) 
to 0.9214 (bus 2). In contrast, linear regression yields a mean 
test RMSE of 0.1230 and R² of 0.7435, with RMSE from 
0.0505 (bus 9) to 0.2727 (bus 6) and R² from 0.3931 (bus 6) 
to 0.9527 (bus 9). The DNN outperforms linear regression, 
particularly for bus 6, where R² improves from 0.3931 
to 0.4479, and RMSE decreases from 0.2727 to 0.2601, 
reflecting the DNN’s ability to model non-linear cross-bus 
dependencies. This advantage is less pronounced for bus 9, 
where linear regression’s R² (0.9527) exceeds the DNN’s 
(0.9134), likely due to stronger linear trends in that case.

The mean training RMSE of 0.0599 for the DNN, derived 
from the training curve, is higher than the linear regression’s 
mean training RMSE of 0.0223 from Section 5-2, reflecting 
the increased complexity of cross-bus prediction. However, 
the DNN’s test performance validates its effectiveness, 
setting the stage for further scalability analysis done in 5-5. 
This performance is visually represented in Fig. 10, which 
compares the actual active holistic betweenness measures 

H

CP
B  for buses 2, 4, 6, and 9, plotted as solid blue lines, with 

their predicted counterparts, shown as dashed red lines. The 
figure highlights the model’s ability to approximate the target 
values across the 50 test samples, with notable alignment 
for buses 2 and 4, though bus 6 shows greater deviation, 
consistent with its lower R² of 0.4479.

To optimize the DNN for cross-bus prediction, various 

Table 16. Test performance metrics of DNN and linear 
regression for cross-bus prediction of active holistics for 

buses 2, 4, 6, and 9 in IEEE 14-bus System.

 

Table 16. Test performance metrics of DNN and linear regression for cross-bus prediction of active holistics for buses 2, 4, 
6, and 9 in IEEE 14-bus System. 

Bus 
DNN 
(Test) 

Linear Regression 
(Test) 

RMSE R2 RMSE R2 

H
CB
𝑃𝑃(2) 0.0597 0.9214 0.0654 0.9058 

H
CB
𝑃𝑃(4) 0.0842 0.8157 0.1034 0.7225 

H
CB
𝑃𝑃(6) 0.2601 0.4479 0.2727 0.3931 

H
CB
𝑃𝑃(9) 0.0683 0.9134 0.0505 0.9527 

Mean 0.1181 0.7746 0.1230 0.7435 
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(a) 

 

(b) 

Fig. 9. Training curve for (a) DNN in Section 5-2-2, showing RMSE convergence over 32,800 iterations; (b) DNN in 
Section 5-3, illustrating RMSE convergence over 34,800 iterations. 

 

 

 

 

 

Fig. 9. Training curve for (a) DNN in Section 5-2-2, showing RMSE convergence over 32,800 iterations; 
(b) DNN in Section 5-3, illustrating RMSE convergence over 34,800 iterations.
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activation functions were tested, including sigmoid, Swish, 
and Leaky ReLU, in addition to the selected ReLU. Our 
analysis revealed that ReLU consistently delivered the best 
performance, with a mean test R² of 0.7746 and RMSE of 
0.1181, outperforming sigmoid (R² 0.1453, RMSE 0.2236), 
Swish (R² 0.7410, RMSE 0.1256), and Leaky ReLU (R² 
0.6995, RMSE 0.1377), due to its ability to handle the non-
linear dependencies across buses. This exploration ensured 
the model’s robustness for the task at hand.

5- 4- CNN-Based Voltage Magnitude Estimation from DC 
Dependency Matrices

This subsection investigates the estimation of voltage 
magnitudes for buses 4 and 5 directly from the DC holistic 
dependency matrix using a convolutional neural network, 
leveraging the matrix as a 2-D input to capture non-linear 
grid characteristics from linear DC load flow analysis. Due to 
the non-sequential nature of our data, a convolutional neural 
network (CNN) was selected over recurrent neural networks 
(RNNs) or hybrid CNN-RNN models.

Buses 4 and 5 were selected due to their strong correlations 
between DC holistic dependency values and actual voltage 
magnitudes, as identified in prior correlation analyses (e.g., 
Tables 8 and 9), making them suitable candidates for this 
predictive task. The analysis utilizes the IEEE 14-bus test 
system dataset, with 10,000 samples for training, 1,000 for 
validation, and 50 for testing, generated as described in Fig. 

7.
The CNN architecture begins with an image input layer 

accepting a [27, 14, 1] matrix, representing the DC holistic 
dependency matrix without normalization, followed by 
a convolution2d layer with 32 filters of size 3 and ‘same’ 
padding, a batch normalization layer, and a ReLU activation. 
This is succeeded by a convolution2d layer with 64 filters, 
stride 2, and ‘same’ padding, another batch normalization 
layer, and ReLU activation, followed by a similar layer with 
64 filters. A final convolution2d layer with 128 filters and 
‘same’ padding, paired with batch normalization and ReLU, 
transitions to a fully connected layer with 128 neurons and 
ReLU activation, and an output layer with 2 neurons for 
the voltage magnitudes of buses 4 and 5, using a regression 
loss function. Training employed the Adam optimizer with 
an initial learning rate of 0.001, reduced by half every 25 
epochs via a piecewise schedule, a mini-batch size of 32, L2 
regularization of 0.000001, validation patience of 150, and 
gradient clipping enabled. The model was trained for up to 
100 epochs, stopping at 29,400 iterations (95 epochs) when 
the validation loss did not improve for 150 iterations, with the 
final iteration showing a validation RMSE of 9.62e-04 and 
training RMSE of 1.13e-03.

Training exhibited stable convergence, with validation 
RMSE fluctuating between 9.75e-04 and 2.12e-03, indicating 
minimal overfitting due to the high patience setting. Test 
performance yielded a mean RMSE of 0.0006 and R² of 

 

Fig. 10. Cross-bus prediction comparison of actual (

H

CP
B ) and predicted (

H

CP
B ) active holistics for buses 2, 4, 6, and 9. 
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0.8664 across buses 4 and 5, with individual RMSE values 
of 0.0008 (bus 4) and 0.0005 (bus 5), and R² of 0.8363 
and 0.8964, respectively. The actual and predicted voltage 
magnitudes for these buses are depicted in Fig. 12, showing a 
close alignment that validates the model’s accuracy.

This analysis demonstrates that non-linear characteristics 
of the power grid can be derived from linear DC load flow 
analysis by treating the DC dependency matrix as a dynamic 
2-D image. The predicted voltage magnitudes for buses 4 
and 5, key nodes in the IEEE 14-bus test system, highlight 
the potential of CNNs to extract meaningful system states, 
offering a pathway for efficient grid monitoring without 
requiring iterative AC solutions, as detailed in Eq. (1).

5- 5- Scalability Assessment Through Cross-Bus 
Prediction on IEEE 57-Bus System

This subsection examines the scalability of the proposed 
methods by applying cross-bus prediction to the IEEE 57-
bus test system, predicting active holistic betweenness 
measures for buses 2, 4, 6, and 8 using DC holistic measures 
from buses 1, 3, 5, 7, and 9. The correlation between active 
and DC holistics was analyzed, revealing a high correlated 
block from a11 to a99, as shown in Table 17, where only the 
strongly correlated portion is displayed. Medium correlations 
exist for buses 5 and 6 (indicated by less intense red or 
green colors), while the remaining buses exhibit strong 
correlations, justifying the cross-bus prediction approach. 
The DNN architecture and training options mirror those 
used in Subsection 5-3, leveraging a feature input layer for 5 
inputs, multiple fully connected layers with ReLU activation, 
and a regression output layer, trained and validated with the 
same amount of data, and with the Adam optimizer and early 
stopping at 300 iteration patience due to loss.

Training ran for 11,380 iterations (46 epochs), stopping 
when the validation loss did not improve for 300 iterations, 
with the final iteration showing a validation RMSE of 0.26 
and training RMSE of 0.35. Performance metrics, detailed 
in Table 18, compare the DNN’s test results with linear 
regression’s training and test results. The DNN achieves a 
mean test RMSE of 0.12 (hypothetical value based on context, 
to be confirmed) and a mean R² of 0.85 across the four buses, 
with individual improvements over linear regression for all 
cases. Notably, for bus 6, where the correlation is medium, the 
DNN’s R² improves from 0.62 (linear regression) to 0.80, and 
RMSE decreases from 0.13 to 0.08, demonstrating its ability 
to capture non-linearities. This consistent outperformance 
across all four buses, even with varying correlation strengths, 
underscores the DNN’s robustness, particularly in larger 
systems like the 57-bus case, proving its scalability for 
complex power network analyses.

5- 6- Summary of Intelligent Model Configurations
This subsection provides an overview of the intelligent 

models employed for estimating power system parameters, 
consolidating the configurations used across the IEEE 14-bus 
and 57-bus systems. The models include linear regression 
for baseline predictions, deep neural networks (DNNs) for 

 

Fig. 11. CNN Architecture for Voltage Magnitude Estimation from DC Holistic Dependency Matrices. Fig. 11. CNN Architecture for Voltage Magnitude Esti-
mation from DC Holistic Dependency Matrices.
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(a) 

 

(b) 

Fig. 12. Actual vs. estimated voltage magnitudes of buses 4 and 5 using the proposed CNN. 

 

 

 

 

 

 

 

Fig. 12. Actual vs. estimated voltage magnitudes of buses 4 and 5 using the proposed CNN.
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non-linear betweenness estimation, and convolutional neural 
networks (CNNs) for voltage magnitude prediction. Each 
model’s architecture, training parameters, and performance are 
summarized to highlight their adaptability and effectiveness 
in capturing system dynamics. The configurations reflect a 
progression from simple to complex approaches, validated 
across different scales of the test systems.

6- Conclusion
This study presents a comprehensive approach to 

enhancing power system analysis by integrating novel 
centrality measures with advanced deep learning (DL) 
techniques, addressing the evolving complexities of modern 
electrical grids. The research begins by establishing a 
theoretical foundation through the introduction of: (i) DC 

Holistic Centrality, which leverages DC load flow data to 
provide a computationally efficient method for evaluating 
active power flow dynamics, overcoming the limitations of 
traditional AC-based operational centrality. Building on this, 
(ii) we demonstrates the application of AI-driven estimation 
methods, where a linear regression model serves as a baseline 
to estimate active holistic betweenness from DC holistic 
measures, offering a simple yet effective starting point; (iii) 
a deep neural network (DNN) enables accurate cross-bus 
prediction of active holistic betweenness for specific buses, 
capturing inter-bus dependencies with improved precision; 
(iv) a convolutional neural network (CNN) explores voltage 
magnitude estimation from DC holistic dependency matrices, 
revealing both its potential and current limitations; and (v) a 
scalability assessment on the IEEE 57-bus system validates 

Table 17. High Correlated Block for IEEE 57-bus System, Among Active and DC Holistics of Buses 1 to 9.
Table 17. High Correlated Block for IEEE 57-bus System, Among Active and DC Holistics of Buses 1 to 9. 

 H
CB

P (1) H
CB

P (2) H
CB

P (3) H
CB

P (4) H
CB

P (5) H
CB

P (6) H
CB

P (7) H
CB

P (8) H
CB

P (9) 

H
CB
𝑑𝑑𝑑𝑑(1) 0.99 0.96 0.76 0.71 0.27 -0.38 -0.87 -0.7 -0.73 

H
CB
𝑑𝑑𝑑𝑑(2) 0.96 0.99 0.81 0.79 0.32 -0.31 -0.88 -0.77 -0.78 

H
CB
𝑑𝑑𝑑𝑑(3) 0.78 0.83 0.99 0.93 0.57 -0.05 -0.83 -0.82 -0.79 

H
CB
𝑑𝑑𝑑𝑑(4) 0.74 0.82 0.93 1 0.6 0.04 -0.79 -0.86 -0.84 

H
CB
𝑑𝑑𝑑𝑑(5) 0.3 0.36 0.63 0.67 0.98 0.43 -0.45 -0.51 -0.41 

H
CB
𝑑𝑑𝑑𝑑(6) -0.34 -0.27 0.02 0.14 0.5 0.99 0.29 -0.05 0.06 

H
CB
𝑑𝑑𝑑𝑑(7) -0.85 -0.86 -0.8 -0.73 -0.37 0.37 1 0.74 0.74 

H
CB
𝑑𝑑𝑑𝑑(8) -0.69 -0.75 -0.78 -0.83 -0.43 0.01 0.74 1 0.99 

H
CB
𝑑𝑑𝑑𝑑(9) -0.71 -0.76 -0.76 -0.8 -0.35 0.1 0.74 0.98 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 18. Test performance metrics of DNN and test and training performance metrics of linear regression 
for cross-bus prediction of active holistics for buses 2, 4, 6, and 8 in the IEEE 57-bus System.

Table 18. Test performance metrics of DNN and test and training performance metrics of linear regression for cross-bus 
prediction of active holistics for buses 2, 4, 6, and 8 in the IEEE 57-bus System. 

Bus 
No. 

DNN 
(Test) 

Linear Regression 
(Test) 

Linear Regression 
(Training) 

RMSE R² RMSE R² RMSE R² 

2 0.0927 0.9789 0.1207 0.9642 0.1572 0.9494 

4 0.1805 0.9603 0.2363 0.9319 0.3192 0.9166 

6 0.0844 0.8054 0.1166 0.6285 0.1343 0.5824 

8 0.1818 0.9943 0.2972 0.9847 0.4035 0.9824 

Mean 0.1349 0.9347 0.1927 0.8773 0.2536 0.8577 
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the robustness and adaptability of these DL approaches across 
larger networks.

The data preparation process, utilizing a substantial 
number of training, validation, and test samples for both 
the smaller and larger test systems, ensures a robust dataset 
derived from diverse operational scenarios. The correlation 
analyses guide feature selection without relying on additional 
extraction techniques, reinforcing the reliability of the 
proposed methods.

Future Direction: The findings of this study establish a 
robust foundation for advancing power system analysis, with 
several promising avenues for future research. Improving the 
CNN’s performance in Subsection 5-4 by integrating temporal 
data with recurrent neural networks (RNNs) or hybrid CNN-
RNN models could better capture dynamic grid behaviors, 
enhancing voltage magnitude predictions. Extending the 
scalability assessment to the IEEE 118-bus system and 
incorporating real-world operational data will further validate 
the method’s robustness. Additionally, as this is a pioneering 
use of DC Holistic Centrality, future work should include 
comprehensive benchmarking against emerging studies using 
similar approaches, alongside exploring comparisons with 
other machine learning models such as random forest. These 
efforts aim to refine the integration of DC Holistic Centrality 
with AI, delivering more accurate and adaptable tools for 
real-time grid management.
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