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Abstract: 

Current-based methods for bearing fault diagnosis primarily rely on analyzing the current signal, leading 

to challenges in detecting fault frequencies due to their low magnitude amid the noise in the current 

spectrum. This issue intensifies for weak bearing faults in their early stages. The presence of noise 

components increases the risk of false alarms, as fault characteristics are often obscured in the raw current 

spectral analysis. To address this, effective bearing fault diagnosis necessitates the reduction of noise 

components. This paper presents a novel noise cancellation method that enhances the estimation of 

bearing fault signals in induction motors by utilizing the deviation of instantaneous frequency in 

synchronized motor voltage and current signals. The proposed method efficiently diagnoses bearing fault 

characteristic frequencies during spectral analysis. Simulation and experimental results substantiate the 

effectiveness of this approach in detecting outer/inner raceway and ball bearing faults. 
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1. Introduction 

Fault diagnosis in bearings constitutes a critical aspect of condition monitoring and predictive 

maintenance across diverse industrial applications. Bearings are pivotal in ensuring the proper functioning 

of rotating machinery, such as motors, pumps, and turbines. Over time, factors like wear, misalignment, 

or contamination can give rise to bearing issues. If left undetected, these issues may lead to reduced 

efficiency, increased downtime, and, in extreme scenarios, catastrophic failure. Traditionally, the bearing 

fault diagnosis heavily relies on vibration analysis, involving the measurement and examination of 

mechanical vibrations generated by rotating equipment. However, in recent years, there has been a 

growing interest in utilizing electrical signals, particularly stator currents, for bearing fault detection [1-5]. 

The condition of the bearings directly influences the electrical signals generated by the motor. When 

bearing faults occur, they introduce irregularities in the motion of the rotating shaft, affecting the 

magnetic field and subsequently altering the stator currents. These deviations in electrical signals contain 

valuable information about the presence and severity of bearing faults. Using electrical signals for bearing 

fault diagnosis offers several advantages over traditional vibration-based methods. One significant 

advantage is the ability to detect faults in their early stages, allowing maintenance teams to proactively 

implement measures to prevent further deterioration [6]. Furthermore, electrical signal analysis can 

provide deeper insights into the root causes of bearing faults, facilitating improved fault classification and 

an understanding of the underlying mechanisms. 

In a pioneering effort, [7] investigates the utilization of stator current monitoring for the identification of 

motor bearing damage. The authors examine alterations in stator current patterns induced by bearing 

faults and propose a methodology for discerning specific fault signatures. This study underscores the 

potential of stator current analysis as a non-intrusive technique for the early detection of bearing faults. 

Another innovative approach for detecting faults in induction motors (IMs) is presented in [8]. This study 

focuses on the analysis of the space vector representation of motor current signals to pinpoint and 

diagnose misalignment and bearing faults. In [9], Bouras and colleagues employ fast Fourier transform 
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(FFT) spectral analysis, complemented by the Park vector, to extract bearing fault characteristics from 

current signals. Within the category of signal feature extraction research, distinctive features of the fault 

signal are isolated from the measured signal content. Techniques within this category encompass wavelet 

packet decomposition [10, 11], spectral kurtosis [12, 13], and empirical mode decomposition [14]. In 

another category of research, researchers have endeavored to enhance the signal-to-noise ratio (SNR) 

through methods such as Gaussian noise reduction [7], filter design [15-17], time shifting [1, 2], and 

linear prediction [3, 18]. In [19], a time-shift denoising and a discrete wavelet transform enhanced 

conditional domain adaptation framework is utilized. In [20], the IM current signal is subjected to a 

wavelet filter with a soft-hard threshold to eliminate the noise. Then, the processed data is fed as input to 

a one-dimensional neural network to diagnose rolling bearing faults. [21] presents an innovative method 

for bearing fault diagnosis, emphasizing current noise reduction using a model-based approach with a 

Luenberger observer. These methods aim to improve the detection of bearing fault characteristics in the 

frequency spectrum.  

There have been few studies exploring the use of various electrical signals for bearing fault detection. 

These signals encompass the instantaneous power factor [22] and the instantaneous frequency of motor 

voltage (IFMV) [23, 24] signals. In [24], for the first time, the impact of bearing faults on stator voltage 

has been empirically established, and the IFMV signal has been introduced as a novel signal for detecting 

bearing faults. This signal identifies the presence of bearing faults in the time domain by utilizing 

statistical indicators like global kurtosis. However, it has encountered limitations in pinpointing specific 

types of bearing faults and identifying fault characteristic frequencies in the frequency domain.  

In this paper, a novel method for bearing fault diagnosis is proposed, relying on the synchronized 

deviation of the instantaneous frequency of voltage and current to generate a residue for bearing fault 

diagnosis purposes. The primary idea behind the proposed method in this paper stems from the unique 

characteristics of the IM, where, due to specific self-inductance properties within its coil windings, the 

current signal exhibits a phase difference with the voltage signal. Consequently, in transient states, 
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mechanical faults can affect the current and voltage signals with a phase difference (time shifting) equal 

to the phase difference between both. Given the minimal impact of faults on the voltage signal, previous 

works [23, 24]  have relied solely on statistical indices and time-domain analysis for fault detection using 

IFMV signal, failing to identify the fault characteristic frequency in the frequency domain. Unfortunately, 

they were unable to identify the characteristic fault frequency in the frequency domain analysis, primarily 

due to the low magnitude of the fault characteristic frequency and its overshadowing by noise in the 

frequency spectrum. In this paper, an attempt has been made to synchronize the effects of the bearing 

fault on the IFMV signal with the effects of the bearing fault on the instantaneous frequency of the motor 

current (IFMC) signal by time-shifting the IFMV signal and then to perform spectral analysis on the 

deviation of IFMC and IFMV signals. In fact, in the rest of the paper, it is proven that the proposed 

deviation signal, named residue, can greatly reduce the noises, and help to better see the fault 

characteristic frequency in the frequency analysis. In essence, the proposed residue reduces the magnitude 

of non-fault components, thereby enhancing the SNR and enabling the detection of the specific type of 

bearing fault. Importantly, this method does not necessitate additional sensors and solely utilizes 

information already available from the stator voltage and current. The proposed method undergoes testing 

under various load conditions and for three types of bearing faults: outer raceway (with two severity 

levels), inner raceway, and ball faults. The key advantages of this bearing fault detection method are as 

follows: 

 Introduction of a novel signal for bearing fault diagnosis. 

 Presentation of a systematic noise reduction technique using the proposed residue in place of a 

portion of the signal conditioning process in bearing fault diagnosis approaches. 

The remainder of this paper is organized as follows: Section III outlines the overall structure of the 

proposed bearing fault detection approach. Section IV conducts a simulation test to validate the 

effectiveness of the proposed method. In Section V, the experimental setup employed in this study is 
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elucidated, and subsequent experimental results are presented, illustrating the efficacy of the proposed 

diagnostic approach under various faulty conditions (outer raceway, inner raceway, and ball faults on the 

bearing), different operating points of an IM, and two levels of fault severity (low-level and high-level). 

Finally, Section VI presents the conclusions. 

2. Proposed Model-Based Bearing Fault Diagnosis 

In this section, an explanation of the overall structure of the proposed method is provided. 

2-1- Instantaneous Frequency of Motor Voltage and Current 

The typical structure of a ball bearing is depicted in Fig. 1. Its main components include the inner 

raceway, outer raceway, and ball elements. To prevent contact between the balls and to maintain uniform 

spacing, a cage encases the ball elements. Industrial bearing faults are generally categorized into two 

types: single-point faults and generalized roughness faults [25]. A "single-point fault" refers to a localized 

defect, such as a pit or spall, on the bearing surface, often caused by overloading during operation. On the 

other hand, a "generalized roughness fault" involves surface roughening and deformation, typically 

resulting from factors such as insufficient lubrication, misalignment, or contamination [23]. This study 

focuses exclusively on "single-point faults." When a fault occurs in any bearing component, it generates a 

specific frequency characteristic of that component. These fault frequencies are determined by the 

bearing’s geometry and operating speed [32]. The frequency characteristics of such faults are outlined as 

follows: 
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Fig. 1. Common configuration of a ball bearing 

Here, FR, FI, FO, and FB denote the rotor mechanical frequency, inner raceway fault frequency, outer 

raceway fault frequency, and ball fault frequency, respectively. Dc represents the pitch diameter, Db is the 

ball diameter, NB refers to the number of ball elements, and β is the ball contact angle. In this study, the 

motor bearings used are type 6309, which contain 8 balls. The pitch diameter Dc and ball diameter Db are 

74.0mm and 17.2mm, respectively. The ball contact angle β is assumed to be zero (cosβ=1). 

Consequently, the fault frequencies for the type 6309 bearing are calculated using (1) as FO = 3.06×FR, FI 

= 4.95×FR, and FB = 2.00×FR. 

In [7], the connection between the distinctive frequencies associated with bearing faults in vibration and 

stator current signals is articulated as follows: 

 i- -bg s v bgf f kf   (2) 

here, k=1,2,3, … and - -,i bg v bgf f and
sf represent the current harmonic due to the faulty bearing, the 

vibration characteristic frequency due to the faulty bearing, and the fundamental supply current 

frequency, respectively. Therefore, in the case of an IM with a bearing fault, the stator current can be 

depicted as follows (without taking Gaussian noise into account) [1]: 
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where, is current angle. 2s sf   and 2f v bgf    are the angular speed of the power supply and the 

bearing fault characteristic, respectively. Now, let's contemplate the equivalent circuit of a squirrel cage 

IM, illustrated in Fig. 2. To simplify the calculations, we only consider the first component of the fault 

current in Eq. (3) (where k=1): 
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Fig. 2. Equivalent circuit of a squirrel cage IM. 

Following the application of Kirchhoff's voltage law (KVL) and Kirchhoff's current law (KCL), the stator 

voltage is derived as follows: 
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In this equation, the coefficients z, G, H, I, J, K, and L are detailed in the appendix. It's important to note 

that under steady-state conditions, the first term of Eq. (5) becomes zero.  

As outlined in [23], the IFMV signal is derived from the following equation: 
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where, 
sV

 is the phase of the analytical signal ( ) :sV t
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    (7) 

here, VH(t) is the Hilbert transform of Vs(t) and can be obtained from Eq. (5) as follows: 
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Finally, the frequency is obtained as follows: 
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In a manner like Eq. (6) through Eq. (8), and by utilizing Eq. (4), the IFMC is calculated as follows: 
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where, functions d(t) and d’(t) and coefficients M, M’, N, N’, O, O’, P, P’, Q, and R are included in the 

Appendix. 

Notably, Eq. (9) and Eq. (10) do not account for measurement noise. It is evident from these equations 

that the fault characteristic frequency is discernible in the IFMV but not in the IFMC. When measurement 

noise is introduced into Eq. (9), the magnitude of the fault characteristic frequency can potentially 

become obscured within the existing noise spectrum. This may explain why [23] encountered challenges 

in diagnosing the fault type based on the IFMV frequency spectrum. In the subsequent sections, an effort 

is made to enhance the SNR by synchronizing the IFMV and IFMC signals. This synchronization aims to 
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mitigate the impact of background noise and non-fault signal components, consequently improving the 

SNR. 

In the discrete-time domain and assuming rapid sampling, the calculations for IFMV and IFMC are as 

follows [23]: 
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In these equations, Vs and Is denote the stator voltage and current, while t signifies time. The indices m 

and H refer to the mth sample and the Hilbert transform, respectively. 

2-2- General Framework of the Proposed Method for Diagnosing Bearing Faults 

Fig. 3 illustrates the comprehensive framework of the proposed approach for bearing fault diagnosis. To 

commence the process, the motor's voltage and current data are acquired using the voltage and current 

transformers (PTs and CTs) integrated into the system. The acquired data is then stored within the 

MATLAB environment. Next, to ensure uniform weighting for each dataset in the fault detection process, 

the collected data is subjected to normalization. The phase difference between the stator voltage and 

current occurs due to the time needed for magnetic fields to be established. Because of the motor's 

inductive nature, the current lags the voltage, causing a delay in the field response, which is a 

fundamental aspect of motor operation. This paper attempts to focus on synchronizing the impact of 

bearing faults on the IFMV and IFMC signals. It provided a more accurate estimation of the bearing fault 

signal, effectively enhancing the SNR in an automated manner. The synchronization is achieved by time 

shifting the IFMV signal as much as the existing phase difference (α) between voltage and current. 

Subsequently, subtracting the synchronized IFMV signal from the IFMC is expected to amplify the 
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bearing fault effects (magnitude) at the fault characteristic frequency due to synchronization, while 

reducing the effects of any components unrelated to the fault frequency (noise). Through this process, the 

SNR in the proposed novel residue signal termed the "synchronized deviation of instantaneous frequency 

of voltage and current" ΔIF, is enhanced. In the absence of a fault, the residue remains close to zero, 

while the presence of a fault causes it to deviate from zero. The selection of an appropriate residue is 

crucial, as it plays a key role in both detecting the presence or absence of a fault and determining its 

location. Subsequently, after acquiring the residue signal, the fault signatures for a faulty bearing can be 

revealed through spectral analysis, typically utilizing a straightforward FFT. 
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Fig. 3. General framework of the proposed method for diagnosing bearing faults 
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3- Simulation Results 

A simulation test was conducted to ascertain the presence of fault signatures and reduce Gaussian noise in 

the spectral analysis of the proposed residue for a faulty bearing in an IM, as depicted in Fig. 4. This 

simulation was carried out using the Simpower toolbox in MATLAB. Following the methodology outlined 

in [1], a series of impulsive disturbances were introduced to the load torque to replicate a single-point 

bearing fault. This specific test employed a typical squirrel-cage IM, utilizing a star connection for the 

stator windings. The motor's characteristics are outlined in Table 1. The IM was connected to a three-

phase voltage source with a line impedance of z = 1 + j0.3Ω. 

Three-phase 

voltage Source

R jX

Z
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Motor
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Fig. 4. Simulation of the influence of bearing faults on an IM and the generation of the proposed residue signal. 

 

Considering that all experimental data discussed in Section IV were obtained from bearings of type 6309, 

the same bearing type was used for the simulation test. Consequently, the fault frequencies for this 

bearing type were determined as FO = 3.06×FR, FI = 4.95×FR, and FB = 2.00×FR. Assuming the IM 

operates at 1430 rpm (corresponding to FR = 23.84 Hz), the fault frequency for the outer raceway, for 

example, translates to FO = 3.06×FR = 72.98 Hz. As depicted in Fig. 4, by measuring the rotor speed, a 

periodic impulsive function proportional to the fault signature of the outer raceway bearing is generated 

and then introduced into the load torque. Fig. 5 illustrates the load torque and standard Gaussian 

background noise for the bearing with an outer raceway fault. A constant load torque component of 50 
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N·m has also been considered. The amplitudes of the impulsive torque disturbances follow a Gaussian 

distribution with a mean and standard deviation of 30 and 5, respectively. 

Table 1. Properties of the IM used in Fig. 4 

Symbol Quantity Value 

Pn nominal power 7.5kW 

fs frequency 50Hz 

VL-L voltage (line-line) 380Vrms 

Rs stator resistance 0.7384Ω 

Ls stator inductance 3.045mH 

Lm mutual inductance 124.1mH 

R'
r rotor resistance 0.7402Ω 

L'
r rotor inductance 3.045mH 

J inertia 0.0343J (kg.m2) 

F friction factor 0.000503 N.m.s 

P pole pairs 2 

 

  

Fig. 5. Load torque for a bearing with an outer raceway fault. 

The simulation results of the spectral analysis for an IM with a bearing featuring an outer raceway fault 

are presented in Fig. 6. As depicted in Fig. 6, the spectral analysis of IFMV and IFMC shows no 

noticeable effects from characteristic fault frequencies or other non-fault components, such as twice the 

frequency of the power supply (2×fs). However, within the spectrum of the proposed residue signal, the 

characteristic fault frequency is distinguishable. By comparing the vertical axis scale ranges of Fig. 6(a) 

and Fig. 6(b) with Fig. 6(c), it becomes evident that the magnitudes of both fault and non-fault frequency 

components are considerably lower than the level of Gaussian noise. This explains why in spectra Fig. 

6(a) and Fig. 6(b), the fault component is not easily detectable. Nevertheless, the proposed method 
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effectively reduces both Gaussian noise signals through the synchronization of IFMV with IFMC and 

their subtraction. This substantially enhances the SNR value in the proposed signal, making it readily 

noticeable in the spectrum presented in Fig. 6(c).  

 

Fig. 6. Simulation results of spectral analysis for an outer raceway bearing fault - a comparison between (a) IFMV, (b) IFMC, and 

(c) the proposed residue signal (ΔIF). 

4- Evaluation and Validation via Experimental Testing 

4-1- Experimental Data Compilation 

To evaluate the effectiveness of the suggested method in diagnosing bearing faults, we utilized a dataset 

obtained from an experimental setup illustrated in Fig. 7. This setup included an IM coupled with a 

centrifugal pump acting as the load device. The specifications of the IM and pump system are provided in 
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[1], and the pump is operated using water as the working fluid. A rigid coupling was employed to connect 

the motor and pump, ensuring consistent and reliable torque transmission during the tests. A custom-

designed data acquisition systems were employed to capture stator current and voltage. IM voltage signals 

were captured using advanced National Instruments (NI) modules. For voltage measurements, the "NI 

9225 300Vrms" module was used, which is specifically designed for three-phase systems and can handle 

line-to-neutral voltages up to 300Vrms. This module was particularly suitable for the 380Vrms power 

grid of the IM, enabling precise line-to-neutral voltage assessments. Two 50/5 CTs were employed to step 

down two of the stator currents for safe measurement using the module, while the third current waveform 

was computed in MATLAB using Kirchhoff’s current law. The signals from the CTs were transmitted to 

a laptop through the "NI 9227" module, which was integrated into an "NI Compact DAQ" data 

acquisition chassis. Data sampling was performed at a high frequency of 51.2 kHz over 40 seconds for 

each test case. All acquired data were stored and processed using MATLAB [1]. 

The primary focus of this investigation was on real faults occurring in SKF ball bearings with 

specifications given in [1], specifically the 6309 type. The tests considered various fault types and sizes, 

including outer raceway faults (1 mm and 2 mm), inner raceway faults (1 mm), and ball faults (1 mm). 

These faults were artificially induced to simulate real-world conditions and assess the robustness of the 

proposed fault diagnosis method. To ensure comprehensive evaluation, the dataset was expanded to cover 

three distinct operational modes, where the motor was tested at 80%, 65%, and 50% of its rated 

current. During these tests, the motor speed varied between 2908 and 2957 rpm, representing typical 

operating conditions. Subsequently, the proposed method was applied to the dataset extracted from the 

three-phase voltages and currents of the IM's stator, encompassing 14 distinct operating conditions. These 

experimental scenarios have been succinctly summarized in Table 2. The scenarios are classified into 4 

categories: healthy (C1), outer raceway (C2-C7), inner raceway (C8-C10), and ball (C11-C13) faults. Test 14 

is a double fault (simultaneous inner and outer raceway faults). This diverse set of experimental 

conditions provided a comprehensive foundation for validating the proposed method. The extracted 
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dataset included three-phase voltages and currents of the IM stator, capturing a wide range of fault 

scenarios and operating conditions. 

 

Fig. 7. Test rig and data collection system enclosed within the measurement panel for experimental validation [1]. 

Table 2. Bearing Conditions 

Bearing Condition Load 

percentage 

label 

Healthy 80 C1 

Outer raceway fault with a size of 2mm 80 C2 

Outer raceway fault with a size of 2mm 65 C3 

Outer raceway fault with a size of 2mm 50 C4 

Outer raceway fault with a size of 1mm 80 C5 

Outer raceway fault with a size of 1mm 65 C6 

Outer raceway fault with a size of 1mm 50 C7 

Inner raceway fault with a size of 1mm 80 C8 

Inner raceway fault with a size of 1mm 65 C9 

Inner raceway fault with a size of 1mm 50 C10 

Ball fault with a size of 1mm 80 C11 

Ball fault with a size of 1mm 65 C12 

Ball fault with a size of 1mm 50 C13 

Double faults (simultaneous inner and outer raceway faults) 65 C14 
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4-2- Diagnosing Faults in the Outer Raceway  

To evaluate the effectiveness of the proposed bearing fault diagnosis method, the FFT technique is 

applied. Practical experiments are conducted to assess the functionality of this proposed approach. These 

tests involve subjecting the IM to conditions in which faulty bearings are present, all under varying load 

conditions corresponding to different percentages of the rated current (80%, 65%, and 50%).  

For high-level outer raceway faults (C2-C4), a 2mm outer raceway fault, the IM operates at 80%, 65%, 

and 50% of its rated current, with a shaft speed of 2919, 2937, and 2951 rpm (C2: FR=48.65Hz, C3: 

FR=48.95Hz, and C4: FR=49.19Hz). expected spikes are anticipated at FOuter=148.87Hz, FOuter=149.78Hz, 

and FOuter=150.53Hz, respectively. The spectra depicted in Fig. 8 (c, f, and i), obtained using the proposed 

residue signal (ΔIF), illustrate the bearing fault diagnosis process for these fault conditions. The observed 

fault signatures on the spectra align closely with the calculated outer raceway fault signatures at 

148.83Hz, 149.15Hz, and 151.07Hz, respectively. 

As discussed in Section III, the core aim of the proposed method is to systematically reduce noise and 

enhance the SNR. As evident from the frequency spectrum comparison of the IFMV, IFMC, and ΔIF 

signals in all three tests from C2 to C4, the proposed signal (ΔIF) can significantly reduce the Gaussian 

noise present in both IFMV and IFMC signals by synchronizing the effects of bearing faults existing in 

these signals and subtracting them from each other. This noise reduction is so effective that fault 

frequencies, previously concealed within the background noise due to their low magnitude, become 

visible in the frequency spectrum of the proposed signal. Even in the case of test C4, where the motor 

operates at 50% of its rated current and the fault characteristic frequency is close to the third harmonic 

frequency of the power grid (3×fs), the proposed signal successfully unveils the fault frequency to a 

significant extent. 
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Fig. 8. Spectral analysis of IFMV, IFMC, and ΔIF (the proposed signal) for high-level outer raceway fault: (a-c) 80% of the rated 

current, (d-f) 65% of the rated current, and (g-i) 50% of the rated current (tests C2-C4). 

Moving on to the examination of low-level outer raceway faults (C5-C7), the objective is to assess the 

method's capability to detect less severe faults within the outer raceway. In this scenario, a deliberately 

introduced 1mm-sized fault replaces the previous 2mm fault in a separate bearing. Data collection occurs 

as the IM operates at 80%, 65%, and 50% of its rated current. In Fig. 9, which focuses on the frequency 

range of 120Hz-180Hz, the anticipated fault signatures in all three spectra become apparent. A visual 

examination of this figure highlights the effectiveness of the proposed method, as the outer raceway fault 
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signatures are clearly and prominently distinguishable. This indicates the method's robustness in detecting 

even subtle faults under varying operating conditions. 

  

Fig. 9. Spectral analysis of IFMV, IFMC, and ΔIF (the proposed signal) for low-level outer raceway fault: (a-c) 80% of the rated 

current, (d-f) 65% of the rated current, and (g-i) 50% of the rated current (tests C5-C7). 

4-3- Diagnosing Faults in the Inner Raceway and Ball 

In an additional experimental scenario, single-point faults with a magnitude of 1mm were introduced on 

both the inner raceway (C8-C10) and the ball (C11-C13) of the bearing. The rotational frequencies for these 

tests are detailed as follows: C8 (FR=48.48Hz), C9 (FR=48.85Hz), C10 (FR=49.17Hz), C11 (FR=48.61Hz), 

C12 (FR=48.85Hz), and C13 (FR=49.22Hz). As a result, it is expected that spikes will appear at 
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FInner=239.54Hz, 241.77Hz, 243.34Hz, and FBall=97.22Hz, 97.70Hz, and 98.44Hz, respectively. To 

facilitate a more reader-friendly interpretation, Figs. 10(a-i) and 11(a-i) have been incorporated to 

illustrate the spectrum of the proposed residue signal in comparison with the IFMV and IFMC signals for 

conditions (C8-C10) and (C11-C13), respectively.  

 

Fig. 10. Spectral analysis of IFMV, IFMC, and ΔIF (the proposed signal) for inner raceway fault: (a-c) 80% of the rated current, 

(d-f) 65% of the rated current, and (g-i) 50% of the rated current (tests C8-C10). 
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Upon analysis of the presented figures, it is evident that the fault frequencies derived from the proposed 

residual signal (ΔIF) are measured at 239.99Hz, 241.72Hz, and 243.34Hz for the inner raceway faults 

(C8-C10), and 97.22Hz, 97.68Hz, and 98.41Hz for the ball faults (C11-C13). Importantly, these recorded 

frequencies closely align with the calculated inner raceway and ball fault frequencies. Notably, in this 

scenario, neither the inner raceway fault frequency nor the ball fault is discernible within the spectrum of 

the IFMV and IFMC signals. Only the IFMV signal accurately displays the ball fault frequency. 

However, upon a meticulous comparison between the IFMV signal and the spectrum of the proposed 

residual signal (Fig. 10 (a with c), (d with f), and (g with i)), it becomes apparent that the proposed 

method has effectively mitigated Gaussian noise interference in the ball fault tests, thereby showcasing 

the method's ability to enhance fault detection under challenging conditions. 

4-4- Diagnosing Double Faults 

In practical scenarios, it is possible for a bearing to experience multiple faults simultaneously, such as a 

combination of outer raceway and inner raceway defects, or ball defects occurring alongside raceway 

damage. Diagnosing such "double faults" better demonstrates the effectiveness of a fault diagnosis 

method. To address this, a special test has been performed considering the simultaneous presence of inner 

and outer ring faults in the bearing (test C14). The rotational frequency for this test is FR=48.96Hz. 

Consequently, spectral analysis is expected to reveal spikes at FInner=242.35Hz, and FOuter=149.82Hz. To 

demonstrate this, Fig. 12 has been included, showing the spectrum of the proposed residual signal 

alongside the IFMV and IFMC signals. As it is clear, the proposed residual signal has been able to reveal 

both fault components in the frequency spectrum with good approximation. 
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Fig. 11. Spectral analysis of IFMV, IFMC, and ΔIF (the proposed signal) for ball fault: (a-c) 80% of the rated current, (d-f) 65% of 

the rated current, and (g-i) 50% of the rated current (tests C11-C13). 

https://doi.org/10.22060/eej.2024.23513.5622


AUT Journal of Electrical Engineering 

10.22060/eej.2024.23513.5622 

 

Fig. 12. Spectral analysis of IFMV, IFMC, and ΔIF (the proposed signal) for double faults: the simultaneous existence of inner and 

outer raceway faults in the bearing (test C14): (a) IFMV, (b) IFMC, and (c) ΔIF. 
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6- Conclusion  

In this paper, we have addressed a significant challenge in the domain of bearing fault diagnosis, with a 

particular focus on detecting subtle or early-stage defects in IMs. The conventional approach of analyzing 

current signals often encounters issues related to noise interference, leading to difficulties in accurately 

identifying fault characteristic frequencies. To overcome this challenge, we have introduced an innovative 

noise cancellation technique based on the synchronized deviation of instantaneous frequency of voltage 

and current. The proposed method represents a promising solution to the persistent problem of noise 

interference that has historically hindered accurate bearing fault diagnosis. The results obtained from both 

simulation and real-world experiments validate the effectiveness of this approach in identifying faults 

within the outer/inner raceways and ball faults. 

By successfully reducing noise components, this method significantly enhances the precision and 

reliability of bearing fault diagnosis in the context of IMs. Consequently, it has the potential to make a 

substantial impact on the field of machinery maintenance and operational efficiency by facilitating early 

detection and intervention in bearing faults. This, in turn, can lead to a reduction in downtime and 

minimize costly breakdowns. The advancement presented in this paper holds the promise of not only 

improving the overall performance but also extending the longevity of industrial machinery, contributing 

to the broader goals of efficiency and reliability in industrial operations. In conclusion, this study provides 

a novel and effective approach to bearing fault diagnosis in IMs, with practical implications for the 

maintenance of industrial machinery.  
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7- Nomenclature 

IM Induction motor 

FFT Fast Fourier transform 

SCRS Synchronized current residue square 

SNR Signal-to-noise ratio 

IFMV Instantaneous frequency of the motor voltage 

IFMC Instantaneous frequency of the motor current 
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