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Abstract: 

Recent advancements in Weakly Supervised Semantic Segmentation have highlighted the use of image-

level class labels as a form of supervision. Many methods use pseudo-labels from Class Activation Maps 

to address the limited spatial information in class labels. However, Class Activation Maps generated from 

Convolutional Neural Networks are often led to focus on prominent features, making it difficult to 

distinguish foreground objects from their backgrounds. While recent studies show that features from 

Vision Transformers are more effective in capturing the scene layout than Convolutional Neural 

Networks, the use of hierarchical Vision Transformers has not been widely studied in Weakly Supervised 

Semantic Segmentation. This work introduces "SWTformer" and explores the effect of Swin 

Transformer’s local-to-global view on improving the accuracy of initial seed Class Activation Maps. 

SWTformer-V1 produces Class Activation Maps solely based on patch tokens as its input features. 

SWTformer-V2 enhances this process by integrating a multi-scale feature fusion mechanism and 

employing a background-aware mechanism that refines the accuracy of localization maps, resulting in 

better differentiation between objects. Experiments on the Pascal VOC 2012 dataset demonstrate that 

compared to state-of-the-art models, SWTformer-V1 achieves 0.98% mAP higher in localization 

accuracy and generates initial localization maps that are 0.82% mIoU higher in accuracy while relying 

solely on the classification network. SWTformer-V2 enhances the accuracy of the seed Class Activation 

Maps by 5.32% mIoU. Code available at: https://github.com/RozhanAhmadi/SWTformer 

Keywords: Weakly Supervised Semantic Segmentation, Class Activation Map, Hierarchical Vision 

Transformer, Image-level label 
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1. Introduction 

Semantic segmentation is an important task in computer vision where every pixel in an image is 

classified. Although advancements in fully supervised learning have highly improved results in this area, 

manually annotating images at the pixel level is labor-intensive and expensive. 

In recent years, weakly supervised semantic segmentation (WSSS) has emerged as a solution to lower 

annotation costs. This method trains segmentation models using weak labels (bounding boxes [1], 

scribble [2, 3], points [4], and image-level labels). Image-level labels are the most commonly used in 

WSSS due to their ease of annotation, despite lacking detailed spatial information about objects. To tackle 

this, many approaches use a three-step pipeline. These labels are involved in generating seed Class 

Activation Maps (CAMs) from an image classification model, which highlight key object parts [5]. These 

seeds are then refined to create pseudo-labels, which are used to train a fully supervised segmentation 

network. The success of this approach heavily relies on the quality of the initial seed CAMs, making them 

a critical focus of research efforts. 

Convolutional neural networks (CNNs) are commonly used for WSSS but struggle with capturing 

complete object regions, Fig. 1 (a), due to their limited local perception. In comparison to CNNs, Vision 

Transformers (ViTs) are able to capture  long-range dependencies for a more global understanding of 

scenes, Fig. 1 (b). However, switching from CNNs to ViTs can result in losing fine details while gaining 

better coverage of large objects. Hierarchical Vision Transformers (HVTs) combine the strengths of both 

CNNs and ViTs by generating feature maps at multiple resolutions. This allows them to capture both 

local and global context effectively, Fig. 1 (c), making them suitable for accurate multi-scale object 

localization. Despite their potential, HVTs have not yet been applied in WSSS.  

This research presents a new method, SWTformer, to explore the validity of this concept. SWTformer-

V1, which utilizes Swin Transformer [6] as its backbone classifier network, is supervised by image-level 

labels. This presents challenges since Swin Transformer relies on patch tokens instead of class tokens  
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Fig. 1. Class activation maps generated by a (a) CNN (Resnet-50), (b) ViT (DeiT-S) and (c) HVT (Swin-T). Red and yellow 

boxes indicate the large and small scale objects relative to the image size. 

commonly used in WSSS. The shifted window mechanism of Swin Transformer also requires careful 

tuning. In order to generate more accurate CAMs, previous ViTs have benefited from Attention Roll-Out 

[7] which is a mechanism that aggregates attention maps derived from the layers. Attention Roll-Out 

facilitates a more nuanced analysis of the attention flow present within the network. Despite being 

effective, this method is not directly applicable to Swin Transformer due to its shifted window mechanism 

and hierarchical multi-scale features. To address these challenges and enhance contextual understanding, 

SWTformer-V2 proposes a multi-scale feature fusion module within a background-aware refinement 

mechanism. This aims to produce more accurate localization masks with improved discrimination across 

objects. 

The main contributions of this work are: 
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• Introducing SWTformer, the first hierarchical transformer-based solution for generating initial 

Class Activation Maps (CAMs) in weakly supervised semantic segmentation (WSSS). This 

approach addresses the limitations of CNNs' local receptive fields and ViTs' global scene views. 

• Presenting SWTformer-V1, which utilizes the Swin Transformer as a backbone for classification 

and initial CAM generation using only patch tokens. 

• Developing SWTformer-V2 to overcome the challenges of applying Attention Roll-Out to the 

Swin Transformer architecture, proposing a solution that incorporates hierarchical feature fusion 

and a background-aware refinement mechanism. 

• Validating the effectiveness of the proposed methods through extensive experiments on the 

Pascal VOC 2012 dataset. 

 

2. RELATED WORK 

2-1- Vision Transformers 

In recent years, Vision Transformers (ViTs) have significantly revolutionized the field of computer 

vision. ViT [8] is a deep learning model that transforms an input image into a sequence of patch tokens 

plus a class token that represents the entire image, and analyzes the visual data using multi-head self-

attention blocks. This self-attention mechanism allows ViT to capture global information and long-range 

dependencies in the data. DeiT [9] builds on ViT by introducing new data augmentation methods and a 

distillation token. Although ViTs succeed in capturing global context, they have limitations in capturing 

local details. Conformer [10] addresses ViT’s limitation in capturing local details by combining a CNN 

branch with a ViT branch, although this integration requires significant training adjustments and 

computational resources. Hierarchical Vision Transformers (HVTs), namely T2T [11] and PVT [12], 

provide an effective solution by bringing the strengths of ViTs and CNNs together. Their pipeline starts 

from fine-grained local details and moves towards long-range global dependencies. Swin Transformer [6] 

utilizes a novel patch merging module and a shifted window self-attention mechanism. This approach 

https://doi.org/10.22060/eej.2024.23490.5616


AUT Journal of Electrical Engineering 
10.22060/EEJ.2024.23490.5616 

allows smaller groups of patches to be mixed together, enabling the model to capture long-range feature 

dependencies more accurately. 

2-2- Weakly Supervised Semantic Segmentation with CNNs 

Recent studies on WSSS mostly use image-level labels for supervision and rely on Class Activation Maps 

(CAM) to localize objects. Methods that utilize a CNN as the classification backbone, generate the seed 

localization maps by calculating a CAM for each class through a weighted combination of the feature 

maps in the last layer of a CNN [5]. While CAMs are capable of visualizing the most discriminative 

regions of an image, they have limitations in comprehensively activating objects and distinguishing them 

from the background. Post-processing methods such as PSA [13] and IRN [14] have further refined the 

initial CAMs through iterative seed region growing. As the performance of WSSS is heavily dependent 

on the quality of the initial CAMs, various techniques have been explored to improve the accuracy of the 

initial activation maps. These methods include adversarial erasing [15-17], cross-affinity extraction 

modules and contrastive learning [18-21], prototype-based learning [22-24], attention mechanism [25, 26] 

and self-supervised learning [23, 27]. Recent research [28-33], pioneered by CLIMS [34], has also 

explored using language models such as CLIP [35] in order to extract further context from an image by 

matching the corresponding label prompts in the CLIP embedding space. With the emergence of SAM 

[36] in the field of full-supervised semantic segmentation, some recent works such as [37-40] have 

investigated the effect of combining the features extracted from this model with conventional methods in 

WSSS. Knowledge distillation is another popular field that has been utilized in SeCo [41] to mitigate the 

issue of frequent object co-occurrence in images.  

2-3- Weakly Supervised Semantic Segmentation with ViTs 

With Vision Transformers (ViTs) making significant progress in various tasks, some recent works have 

utilized them for WSSS. AFA [42] proposes refining initial pseudo labels using global semantic affinity 

learned from self-attention. MCTformer [43] replaces ViT’s singular class token with multiple tokens, 
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each corresponding to a particular semantic class. It also employs patch affinity learned from attention 

maps to refine the initial CAMs. ViT-PCM [44] proposes an end-to-end CAM independent framework 

relying on ViT’s spatial characteristics. ToCo [45] addresses the over-smoothing issues of ViTs by using 

the model’s intermediate knowledge to supervise its output features. TransCam [46] adopts Conformer 

[10] by proposing to use the attention weights of the ViT branch to refine the CAMs generated from the 

CNN branch. A recent work, CTI [47] has focused on class tokens and proposed infusion methods to 

improve CAM consistency within classes. DuPL [48] integrates two ViT subnets to provide supervision 

for one another while also developing regularization on discarded regions.  

It is worth mentioning that the majority of these studies rely on class tokens, inspired by observations 

made in DINO [49] that class tokens and their attention to patch tokens contain useful knowledge 

regarding the semantic layout of a scene. Hierarchical Vision Transformers are a rather recent 

development in the field of vision transformers and have not yet been introduced to WSSS. HVTs are 

expected to capture scene layout more effectively than CNNs and ViTs. However, their specific impact in 

the context of WSSS remains an open area for research. 

 

 

Fig. 2. An overview of the proposed SWTformer (V2). The backbone is the Swin-T version of the Swin Transformer and the 

training of the model is optimized by the CLS, GSC and CCL loss functions. The “Structure-aware seed locating” and 

“Background-aware prototype modeling” modules are adopted from SIPE [23] with modifications.  
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3. PROPOSED METHOD 

3-1- Overview 

This paper introduces SWTformer, illustrated in Fig. 2, a novel framework that utilizes the Swin 

Transformer as the classifier backbone to generate initial localization maps for WSSS. Moreover, Swin 

Transformer’s multiscale contextual information is utilized through a novel Hierarchical Feature Fusion 

(HFF) module within a background-aware prototype exploration mechanism based on SIPE [23].  

3-2- Generating Class Activation Maps from Patch Tokens 

Unlike traditional ViTs, Swin Transformer (SWTformer-V1) utilizes only patch tokens without class 

tokens. Inspired by [43], SWTformer-V1 incorporates a CAM module to generate activation seeds and 

class scores from Swin's output patch tokens for classifier training. Swin encodes an input image

3 H WI    by partitioning it into N N patches and later projecting them into tokens
D N NT   with

D being the embedding dimension. A patch merging module connects subsequent transformer blocks, 

doubling the embedding dimension and halving the patch size, resulting in an output token sequence of 

'D N N

outT   , where 
' 8D D= and / 8P N= . To generate CAMs for C  classes, outT  is converted to a 

to a 2D  feature map
C P P

outF   . Since outF  may contain negative values,  a ReLU function is applied 

to outF , followed by a feature normalization function. This process results in feature maps 
C P P

outC    

and can be summarized as Eq. (1) 

 
2DConv ( )

Norm(ReLU( ))

out out

out out

F T

C F

=

=
  (1) 

outC is then upsampled to the size of the original image, producing the initial class activation maps

C H WM   . 
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3-3- Multi-label Classification Training 

For multi-label classification, global average pooling is applied to outF , generating class scores C

cs 

for {1,.., }c C  semantic categories. The classification loss, CLSL , is then calculated by averaging over 

multi-label soft margin losses over all C  classes as Eq. (2), 

 
1

1
log( ) (1 ) log(1 ).

C

CLS c c c c

i

L s s s s
C =

= + − −   (2) 

where cs and cs represent the predicted score and its corresponding ground-truth, respectively. This loss 

helps with the training optimization of the classifier by using image-level labels as supervision. 

 

 3-4- Hierarchical Feature Fusion 

SWTformer-V1 uses patch tokens to compute class scores and generate CAMs, but its hierarchical 

structure makes combining attention maps from intermediate layers challenging. To address this, 

SWTformer-V2 introduces a Hierarchical Feature Fusion (HFF) module, which leverages Swin's 

multiscale contextual information, instead of combining attention maps to learn semantic patch affinity. 

In the field of deep learning, leveraging feature maps from both the final and intermediate layers of a 

hierarchical network is a well-established strategy [50], [51]. Inspired by this, the suggested approach 

takes advantage of the distinct characteristics of information captured at different stages of the network. 

Shallow layers, which are closer to the input data, are capable of identifying low-level granular local 

features such as edges, texture and color. On the other hand, deep layers, as the network hierarchy is 

ascended, are capable of recognizing more abstract, high-level features and complex patterns. By fusing 

feature maps from both shallow and deep layers, the model can harness a comprehensive range of 

information, from simple to complex patterns. This fusion does not add significant computational 

overhead and maximizes semantic knowledge from all four transformer blocks. Fig. 3 illustrates the 
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proposed hierarchical feature fusion method. The HFF module extracts the output patch features from all 

four transformer blocks and concatenates them in two stages to maximize the semantic knowledge 

obtained. The upsampling in this module is achieved through bilinear interpolation, while the 

downsampling is performed using a convolutional layer. This module is specifically designed to be 

compatible with the Swin Transformer and outputs a new feature map hieF  that contains the combined 

local to global semantic contexts of the scene. 

 

Fig. 3. Illustration of the proposed hierarchical feature fusion (HFF) module in SWTformer. 

 

3-5- Background-aware Prototype Exploration 

SWTformer-V2 builds the HFF module on SWTformer-V1 by employing it in a background-aware 

prototype exploration mechanism. The primary goal of SWTformer-V2 is to refine the initially generated 

CAMs from SWTformer-V1, enabling the model to create more comprehensive object regions and 

accurately distinguish foreground objects from the background. In order to leverage the semantic 

knowledge encapsulated in hieF  for enhancing the initially generated CAMs and generating masks with 
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more comprehensive object activation, SWTformer-V2 adapts and modifies the utilization strategy 

demonstrated by SIPE [23], an architecture based on a CNN.  Given 
C H WM    for C   foreground 

classes, to enhance the model's awareness of the background, an activation map BM   is estimated as Eq. 

(3) 

 
1

1 maxB c
c C

M M
 

= −   (3) 

 BM  is then concatenated to the initial foreground CAMs, making
( 1)C H WM +   . 

In the next step, outT  and M are input to a modified version of the structure-aware seed locating module 

from SIPE [23]. This module generates seed maps
( 1)C P PR +   for each class category 1C + , including 

the background. The module operates by calculating the cross-token semantic affinity map cS   from outT  

to capture each token’s spatial structure. It then compares the similarity between each token’s spatial 

structure in cS with the class activations in M  and assigns that token the class label to which it has the 

most structural similarity. In contrast to the original method, SWTformer-V2 produces the cross-token 

semantic similarity map cS by calculating the cosine similarity as Eq. (4) 

 
( )

( ) Cos ( , ) ,
( )

T

out out
c out out out T

out out

T T
S T Sim T T

T T


= =   (4) 

where  denotes the dot product. The use of the absolute value of the similarity is motivated by 

experiments showing that even a negative value similarity between two tokens represents a high structural 

correlation between them. 

In the final step of this framework, the generated seed maps R  and the hierarchical feature hieF  are 

passed to the background-aware prototype modeling module from SIPE [23]. This module first creates 

image-specific prototypes cP   for all 1C + , classes, which are equivalent to the centroid of R  for each 
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class in the feature space of hieF . Lastly, the refined image-specific CAMs, R-CAMs, are generated from 

the correlation calculated between cP and hieF . 

To ensure consistency between the initial CAM and the refined R-CAM, the utilization of a normalization 

loss is suggested by the original paper as Eq. (5), 

 
1

1
_ .

1
GSCL CAM R CAM

C
= −

+
  (5) 

SWTformer-V2 proposes to use a Class-wise Contrastive Loss (CCL ) in addition to the GSC loss. The 

CCL loss aims to enhance the generation of comprehensive initial CAMs at each step, building on the R-

CAMs generated in the previous step. It achieves this by optimizing the model to minimize the distance 

between the representations of similar classes and maximize the distance between representations of 

dissimilar classes, represented in CAM and R-CAM. The CCL  loss is calculated as Eq. (6) 

 
2 21 2

( Cos ( , _ )) (1 Cos ( , _ )) .
2 3

CCLL Sim CAM R CAM Sim CAM R CAM
 

=  + − 
 

  (6) 

In summary, the overall loss for optimizing the model training includes the CLS , GSC  and CCL  loss 

functions as Eq. (7) 

 .Total CLS GSC CCLL L L L= + +   (7) 

4. EXPERIMENTS 

4-1- Dataset 

The proposed method is evaluated on the PASCAL VOC 2012 [52] dataset, a widely used benchmark for 

image classification and segmentation, particularly in WSSS. The dataset consists of 20 classes, 1,464 

training images, 1,449 for validation, and 1,456 for testing. Additionally, an augmented set of 10,582 

images is added from [53] for training, following standard practices in semantic segmentation.  
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4-2- Evaluation Metrics 

The mean Average Precision (mAP) metric is used to evaluate the classifier model's localization 

accuracy. Additionally, mean Intersection-over-Union (mIoU) is employed to measure the accuracy of the 

generated class activation maps. 

4-3- Implementation Details 

SWTformer is built with Swin-T [6] pre-trained on ImageNet [54] as its backbone. Images are cropped to 

224 × 224 for training, and data augmentation is done following [55]. The model is trained using the 

AdamW optimizer with a batch size of 16 on two Nvidia T4 GPUs. Seed maps are equivalent to the 

refined CAMs, R-CAM. 

4-4- Experimental Results 

4-4-1  Improvement on object localization 

The main objective of this study is to investigate the impact of using the Swin Transformer as the 

classification backbone for WSSS in localizing objects supervised by image-level labels and generating 

CAMs. Table 1 compares the localization accuracy of the Swin Transformer used in SWTformer with 

DeiT-S [9], which is commonly employed in state-of-the-art WSSS methods using a vision transformer as 

the backbone. Specifically, the localization results of DeiT-S utilized in MCTformer [43] are considered 

for comparison. The results show that using Swin-T outperforms DeiT-S as a backbone for WSSS by 

0.98%, demonstrating the effectiveness of Swin’s local-to-global view in localizing objects.   

In terms of computational complexity, fine-tuning Swin-T took approximately one hour for both versions 

of SWTformer, converging in 30 epochs. In contrast, fine-tuning DeiT-S required twice as long, about 

two hours and 60 epochs to converge, demonstrating Swin-T's advantage in both localization accuracy 

and efficiency. 
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Table 1. COMPARISON OF OBJECT LOCALIZATION ON PASCAL VOC 2012 DATASET. † DENOTES OUR 

IMPLEMENTATION. 

Method Backbone mAP (%) 

MCTformer-V1† [43] DeiT-S 95.62 

MCTformer-V2† [43] DeiT-S 95.47 

SWTformer-V1 Swin-T 96.49 

SWTformer-V2 Swin-T 96.60 

 

4-4-2 Evaluation of seed localization maps 

Given that the generation of seed CAMs is the most crucial step in WSSS, this study aimed to propose a 

framework for utilizing the Swin Transformer in this process. A comparison of the proposed method with 

other state-of-the-art methods is presented in Table 2, demonstrating the mIoU accuracy of the seed maps. 

To ensure an accurate comparison and evaluate the effectiveness of the Swin Transformer, results from 

other approaches that rely solely on the backbone are utilized. The comparison reveals that SWTformer 

V1 achieves an average of 0.82% mIoU accuracy higher than other methods, demonstrating the method’s 

comparable performance. Furthermore, SWTformerV2 improves upon SWTformer-V1 by 5.32% in 

mIoU, therefore demonstrating the effectiveness of the strategies proposed to address the limitation of 

using attention maps from the Swin Transformer for refinement.   

Table 2. EVALUATION OF THE INITIAL SEED LOCALIZATION MAPS (SEED) ON THE PASCAL VOC 2012 

TRAIN SET IN TERMS OF MIOU (%). 

Method Backbone Seed 

PSA [13] VGG-16 48.00 

IRN [14] ResNet-50 48.30 

SEAM [26] ResNet-38 47.43 

SC-CAM [27] ResNet-101 50.90 

SIPE [23] ResNet-50 50.10 

MCTformer-V1 [43] DeiT-S 47.20 

MCTformer-V2 [43] DeiT-S 48.51 

TransCAM [46] Conformer 51.70 

SWTformer-V1 Swin-T 49.84 

SWTformer-V2 Swin-T 55.16 
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4-4-3  Qualitative results 

The effectiveness of the proposed approach is further confirmed through various qualitative evaluations 

of the model’s performance. Fig. 4 visualizes refined seed class activation maps (R-CAM) generated by 

SWTformer for various categories. 

 

Fig. 4. Qualitative results of the class activation maps generated by SWTformer on PASCAL VOC 2012 train set. Images contain 

singular or multiple class labels. 

4-5- Ablation Studies 

The training procedure of the proposed model is optimized by the sum of three loss functions, termed 

CLS  loss, GSC  loss, and CCL  loss. An analysis of the impact of each of these loss functions on the 

enhancement of SWTformer is presented in Table 3. Experiments demonstrate that the simultaneous use 

of these three losses results in the best accuracy. Specifically, CLS  is responsible for classification, 

GSC  provides consistency between the two sets of CAMs, and CCL  further balances these modules. 

Table 3. ABLATION STUDY ON THE EFFECTIVENESS OF THE PROPOSED LOSS FUNCTIONS ON THE 

ACCURACY OF THE SEED MAP. 

LCLS LGSC LCCL mIoU (%) 

✓   49.84 

✓ ✓  54.58 

✓ ✓ ✓ 55.16 

 

https://doi.org/10.22060/eej.2024.23490.5616


AUT Journal of Electrical Engineering 
10.22060/EEJ.2024.23490.5616 

5. Conclusion 

This paper introduces SWTformer, a novel approach that uses the Swin Transformer as a backbone for 

weakly supervised semantic segmentation (WSSS). SWTformer-V1 effectively captures both local details 

and global structure through the Swin Transformer’s hierarchical flow. However, due to the challenges 

introduced by the Swin Transformer’s shifted window and multi-scale feature mechanisms, which limit 

direct use of the transformer’s attention flow for refining activation maps (a common approach in non-

hierarchical strategies), SWTformer-V2 introduces a hierarchical feature fusion module to capture multi-

scale semantic knowledge. It also refines activation maps through a modified background-aware 

mechanism. SWTformer outperforms state-of-the-art transformers in object localization and yields 

comparable results to other approaches in generating seed activation maps. The strategies introduced in 

SWTformer-V2 further enhance this framework, refining initial activation maps to cover object regions 

more comprehensively. Future work aims to further leverage Swin Transformer’s attention mechanisms 

to unlock its full potential for refined activation map generation and object localization. 
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