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Abstract: 

Distribution locational marginal pricing (DLMP) is an efficient approach to optimize the pricing of 

distribution systems. This paper focuses on DLMP to minimize losses within the distribution network. 

This approach can be strategically manipulated to adjust the profits for distributed generation (DG) 

owners and the distribution company. Furthermore, the paper employs the information gap decision 

theory (IGDT) method scenarios to model the uncertainty surrounding electricity market prices. By 

incorporating the risk-averse (RA) scenario, network operators can discern RA solutions and optimal 

outcomes derived from the algorithm. On the other hand, the risk-tolerance (RT) scenario helps identify 

riskier solutions, enabling appropriate decision-making based on whether the solutions are RA or risky in 

nature. To further enhance the quality of outcomes, this paper combines IGDT scenarios with the cheetah 

hunter optimization (CHO) algorithm to ensure the obtained results are both optimal and accurate. The 

proposed method’s performance is evaluated through simulations conducted on a 69-bus IEEE power 

network using the MATLAB software environment. The results obtained from this approach demonstrate 

its superior accuracy when compared to previous methodologies. 
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1. Introduction 

In power systems, electricity production and consumption exhibit dynamic behaviors. The cost of 

electricity at any given location within the power network can fluctuate due to various factors, including 

pressure, temperature, and demand dynamic [1]. Consequently, DLMP emerges as an invaluable 

optimization tool designed to enhance the efficiency of electricity production and consumption by 

considering the cost of electricity generation at each specific point [2]. The application of DLMP enables 

the precise allocation of load across different points within the power network while minimizing costs. 

This approach not only contributes to the enhancement of electricity supply quality but also serves to 

reduce electricity production expenses [3]. DLMP is one of the most efficient pricing methods in 

electricity distribution systems, which is widely used in modern electricity markets today due to its 

unique features. By providing an integrated framework for calculating prices, this method not only 

provides more accuracy and transparency in pricing, but also has a lower computational volume than 

other existing methods [4]. The most important advantage of DLMP is that it simultaneously considers 

different system costs, including energy, congestion and loss costs, and presents them in the form of a 

single price for each bus. This integrated approach, unlike traditional methods that require separate 

calculations for each of these components, leads to a significant reduction in the volume of calculations 

[5]. In addition, the use of consistent mathematical formulation in DLMP allows the use of efficient 

solution methods such as linear or nonlinear programming, which in turn increases the speed of 

convergence. Computationally, DLMP takes advantage of a matrix structure that allows for parallel 

processing and the use of advanced numerical solution techniques. This feature is especially important in 

large networks with a large number of buses. Also, unlike regional or uniform pricing methods that 

require repeating calculations for each region, DLMP calculates the prices of all network points by 

solving the optimization problem once. In addition to computational efficiency, DLMP leads to optimal 

allocation of resources in the system [6]. By providing accurate price signals, this method guides the 

market players towards optimal decisions and, as a result, reduces the costs of the entire system. Also, this 
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method has high flexibility in facing network topology changes and the arrival of DG resources. Recently, 

studies have been done on risk management in the electricity market. For example, Ref. [7] presents a 

stochastic planning for the informed planning of energy centers participating in daily and real-time 

electricity markets. A peer-to-peer power trading model for urban virtual power plants considering 

customer preference heterogeneity is presented in Ref. [8]. A stochastic framework for electricity market 

management with the participation of intelligent buildings and electric vehicles is presented in Ref. [9], 

and in Ref. [10], a dynamic pricing method for load shifting is presented in order to reduce the effects of 

electric vehicle charging on the grid through demand response using machine learning methods. Ref. [11] 

introduces a linear framework and DLMP calculations for a generalized active balanced distribution 

system. Ref. [12] offers a comprehensive systematic review of existing research on four key aspects: 

pricing with non-convexity, pricing with multiple intervals, pricing under uncertainty, and pricing in 

distribution systems. A new policy for calculating DLMP in distribution networks based on losses and 

emission reduction allocation using the nucleolus theory is introduced in [13]. In the context of balancing 

stochastic power fluctuations in electrical networks, Ref. [14] introduced a method of DLMP for 

frequency regulating reserves. This approach considers the locational implications of power service 

provisioning across a densely interconnected transmission system. Ref. [15] also presented a DLMP 

decomposition model founded on an optimal power flow framework featuring a fully distributed slack bus 

formulation. Reconfiguration of distribution network based on DLMP in buses connected to DG using the 

game theory and self-adaptive fire work algorithm has been done in [16]. Inaccurate cost calculations may 

arise if the uncertainty in market prices needs to be adequately considered. Therefore, employing an 

appropriate method to model market price uncertainty within the distribution network is highly efficient. 

This approach serves to mitigate disparities between predicted and actual electricity market prices. 

Numerous methods exist for modeling market price uncertainty, several of which have been introduced in 

Refs. [17], [18], [19], [20]. Ref. [21] has introduced a methodology to minimize losses in distribution 

networks through DLMP calculations. Notably, this approach leverages the two-point estimation method 

to model market price uncertainty. A plan to reduce losses in distribution systems whose buses are 
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connected to DG, based on DLMP calculation and modified honey bee mating optimization algorithm has 

been introduced in [22]. Moth flame optimization and DLMP have been used for optimal load flow for 

power system with integrated electric current controller in [23]. A multi-objective pricing strategy in 

distribution systems using DLMP-based multi-objective genetic algorithm optimization is presented in 

[24]. An area-to-bus planning route with power grid constraints for energy storage systems under 

uncertainties using DLMP is proposed in [25]. Also, a method for optimizing the location of DGs and 

maximizing profits in active distribution networks using generalized particle swarm optimization 

algorithm and DLMP is introduced in [26]. 

Furthermore, the influence of uncertainty in wind power forecasting on DLMP within the market has been 

investigated in Ref. [27] by employing fuzzy logic modeling. Ref. [28] presents a demand response model 

featuring elastic economic dispatch in a DLMP market, and it utilizes the Monte Carle simulation (MCs) 

method to encapsulate uncertainty in end-users response to the anticipated dispatch by an independent 

system operator. Additionally, Ref. [29] has proposed a method for calculating DLMP in wind farms by 

incorporating robust optimization techniques to address the uncertainty associated with wind generation. 

Previous studies in DLMP calculations and pricing in intelligent distribution systems have limitations. 

Most of these studies have used simple methods such as MCs, fuzzy logic, and two-point estimation to 

model market price uncertainty, which cannot comprehensively cover this uncertainty. Also, in previous 

research, the simultaneous analysis of risk-averse and risk-taking approaches in DLMP calculations has 

yet to be considered. In addition, the optimization algorithms used in previous studies needed more 

accuracy and efficiency to find optimal solutions, which can lead to inaccurate results in pricing 

calculations. 

In the realm of energy management and optimization, IGDT has found applications in various contexts, 

showcasing its versatility and efficacy: 
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Ref. [30] harnesses IGDT to maximize the acceptable risk levels for a designed collector about their 

expected returns. This utilization culminates in developing a bi-level strategy optimization model, which 

integrates considerations from wind power, energy storage systems, and controllable loads. Ref. [31] 

introduces a robust self-scheduling strategy in the context of virtual power plants. This strategy considers 

uncertainties in electricity prices, wind generation, and load profiles. Multi-horizon IGDT is employed to 

model and manage these uncertainties effectively. Ref. [32] delves into self-generation scheduling for 

electricity generation companies with renewable energy assets, centering on DLMP calculations. Within 

this framework, IGDT plays a pivotal role in modeling and addressing uncertainty, ensuring optimal 

decision-making. The domain of electric vehicle (EV) parking lot management is explored in Ref. [33], 

which proposes a distributed framework for optimal control of interconnected EV parking facilities. Here, 

IGDT is used to model uncertainties associated with upstream network DLMPs. Ref. [34] investigates the 

application of IGDT in aiding distribution network operators with supplier selection to meet customer 

demand efficiently. This research highlights IGDT's potential in optimizing supplier-source decisions 

within the distribution network. 

Given the expansive coverage of distribution networks, it is evident that specific points within the 

network pose more significant challenges in terms of accessibility and cost-effectiveness compared to 

others. Consequently, optimizing DLMPs across the distribution network constitutes a complex and 

nonlinear optimization problem. This paper employs the CHO algorithm to optimize the obtained results 

to address this challenge. The CHO algorithm, inspired by the swift and efficient movement patterns of 

cheetahs, demonstrates notable advantages: 

Accelerated convergence: The algorithm exhibits rapid convergence towards the desired target, reducing 

the time required to reach the final optimum. 

Enhanced reliability: The CHO algorithm leverages stochastic methods to enhance reliability, thereby 

enabling the optimization of DLMP values with heightened accuracy. 
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The utilization of the CHO algorithm in this context reflects a strategic choice to overcome the intricacies 

of DLMP optimization within distribution networks. 

In the realm of algorithmic applications, the CHO algorithm has found diverse utility in addressing 

complex optimization challenges: 

Ref. [35] presents a framework to identify abnormal energy consumers and mitigate electricity theft. 

Within this framework, the CHO algorithm is employed to extract meta-parameters optimally from 

convolutional neural networks, enhancing the solution's effectiveness. In the context of optimization 

problem simplification, Ref. [36] introduces the CHO algorithm as a critical tool. Specifically, it is 

leveraged for user scheduling within a two-level intrusion detection system featuring a graph-based 

reduction framework. This utilization of the CHO algorithm reduces the intricacies associated with 

optimization tasks. Ref. [37] offers a comprehensive framework geared towards optimizing the 

performance of collector microgrids actively participating in the electricity supply market. The CHO 

algorithm drives the optimization process, which is central to this framework's success, facilitating 

efficient decision-making within the microgrid context. 

The method proposed in this paper introduces significant scientific contributions by providing a 

comprehensive and innovative framework for optimizing pricing strategies in smart distribution systems. 

The first innovation of this research is the use of IGDT to model the uncertainty of the electricity market 

price. Unlike traditional approaches such as MCs or fuzzy logic, this method is able to more 

comprehensively and accurately model the uncertainties in the market price and provide a more realistic 

picture of market conditions. In addition, this research is a simultaneous analysis of RA and RT scenarios, 

which enables more comprehensive decision-making for network operators. In the risk-averse scenario, 

conservative solutions are proposed that minimize investment risk, while the risk-taking scenario 

identifies opportunities for greater profitability by accepting higher risk. This dual approach allows 

network managers to make more appropriate decisions based on their circumstances and strategies. Also, 
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the key innovation of this research is the smart combination of the IGDT method with the CHO 

algorithm. This innovative combination not only significantly increases the accuracy of calculations, but 

also makes it possible to find more optimal solutions by taking advantage of the unique features of the 

CHO algorithm. Inspired by the hunting behavior of the cheetah, the CHO algorithm has the ability to 

search the solution space effectively and can avoid the trap of local optima. 

The structure of the paper is shown in Fig. 1. 
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Fig. 1. Paper structure 

2. Mathematical formulation 

Eq. (1) represents the objective function for minimizing distribution network losses, a crucial aspect of 
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DLMP calculation in power systems. 

( )
2

1

min
branchN

n n

n

OF X R I
=

 
=  

 
  

(1) 

where OF  is the objective function, X  represents the control variables, branchN  signifies the number of 

branches within the distribution network, and nR  and nI  represent the resistance and the current of the 

thn  branch of the distribution network, respectively. 

The control variables in this problem encompass two components: The DLMP values and the Power 

Factors (PFs) of DG units within the distribution network. These variables are mathematically expressed 

as follows in Eq. (2): 
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where 
iDGDLMP  represents the DLMP value associated with the thi  DG unit, and 

iDGPF  signifies the PF 

of the thi  DG unit. 

The DLMP values of DG units directly correlate with their production power capacity. Consequently, the 

production power of DG units and the cost function for this problem are mathematically defined as Eqs. 

(3) and (4): 
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where 
iDGP  represents the active power output of the thi  DG unit, 

iDGCF  denotes the cost function 

associated with the thi  DG unit, and ia , ib , and ic  are the coefficients of the cost function specific to the 

thi  DG unit. 
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Also, the constraints governing this problem are delineated as follows: 

A) Constraint on the active power of DG units: 

( ) ( )min max
i i iDG DG DGP P P   (5) 

1,2, , DGi N=   

where ( )min
iDGP  and ( )max

iDGP  signify the minimum and maximum allowable active power outputs of 

the thi  DG unit, respectively, and DGN  is the total number of DG units. 

B) Constraint on the reactive power of DG units: 

( ) ( )min max
i i iDG DG DGQ Q Q   (6) 

1,2, , DGi N=   

where ( )min
iDGQ  and ( )max

iDGQ  represent the minimum and maximum allowable reactive power 

outputs of the thi  DG unit, respectively. 

C) Constraint on the PF of DG units: 

( ) ( )min max
i i iDG DG DGPF PF PF   (7) 

1,2, , DGi N=   

where ( )min
iDGPF  and ( )min

iDGPF  denote the minimum and maximum allowable PF values of the thi  

DG unit, respectively. 

D) Constraint on the voltage of the distribution network: 

( ) ( )min maxV V V   (8) 

where ( )min V  and ( )max V  represent the minimum and maximum allowable voltage levels of the 
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distribution network, respectively. 

E) Constraint on the voltage of the buses: 

( ) ( )min max
m m mbus bus busV V V   (9) 

1,2, , busm N=   

where ( )min
mbusV  and ( )max

mbusV  are the minimum and maximum voltage of the thm  bus in the 

distribution system, respectively. Also, busN  represents the total number of the buses. 

F) Security constraint to ensure network stability: 

( ) ( )min min criticalV V  (10) 

where ( )min criticalV  is the minimum critical voltage (the minimum acceptable voltage level to ensure 

network stability). 

G) Constraint on the time for DLMP calculation: 

( ) ( )min maxDLMP DLMP DLMPt t t   (11) 

where ( )min DLMPt  and ( )max DLMPt  are the minimum and maximum allowable for DLMP calculations, 

respectively. 

H) Load balance constraint to maintain network balance: 

1 1 1

bus bus DG

m m i

N N N

load gen DG

m m i

P P P
= = =

= +    
(12) 

where 
mloadP  denotes the load at the thm  bus and 

mgenP  is the power generation at the thm  bus in the 

distribution network. 

I) Merchandising surplus (MS) constraint: 
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Incorporating a financial constraint to regulate the additional benefits derived from DG units, where the 

source of this benefit is attributed to loss reduction. This constraint is presented as Eq. (13): 

MS   (13) 

where MS  is the merchandising surplus value and   is the maximum allowable deviation of the 

additional benefit. The calculation of MS  is given by Eq. (14): 

( ) ( ) ( )
1 1

N N

i i i i

DG DG

DG Q DG P p

i i

MS L L Q p P p
= =

 
=  − − + − 

 
   

(14) 

where p  represents the price of active power at the substation bus, L  denotes the network losses, L  is 

the network losses in the presence of DG units, and 
iQp  and 

iPp  signify the price of reactive and active 

power for the thi  DG unit, respectively. 

3. Implementation of the IGDT scenarios 

The problem is solved using the IGDT method proposed in Ref. [38], which considers three scenarios of 

IGDT: 

A) Base case scenario (BC):  

This scenario assumes that the uncertainty in the problem parameter does not affect the objective function 

value. In this way, the objective function value in the BC scenario is equal to its expected value and is 

given by Eq. (15): 

( )
2

1 ˆ

min
m

DG DGi i

Branch

BC n n

n P P

OF X R I
= =

 
=  

 
  

(15) 

( ) 0iH X    

( ) 0jG X =   
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where ( )BCOF X  is the distribution network losses in the BC scenario and ˆ
iDGP  is the estimated power 

value of the thi  DG unit. Also, ( )iH X  and ( )jG X  are equal and unequal constraints, respectively. 

B) Risk-aversion scenario (RA):  

This scenario considers the case where the uncertain parameter of the problem leads to a higher objective 

function value than its expected value. That is, the uncertain parameter of the problem worsens the 

objective function from its base value. In this way, this scenario aims to find the most significant value of 

the uncertainty radius of the uncertain robustness of the objective function against the potential variations 

of the uncertain parameter of the problem. The objective function of the problem in the RA scenario is 

given by: 

( ) ( ) ( )1RA BCOF X OF X   +  (16) 

( )ˆ 1
i iDG DGP P = −  (17) 

( ) 0iH X    

( ) 0jG X =   

where ( )RAOF X  is the distribution network losses in the RA scenario,   is the radius of uncertainty and 

its value is 0 1   and   is the maximum possible deviation value of the non-deterministic parameter 

from its predicted value. 

By using the RA scenario, the network operator can check the risk-averse nature of the responses and 

make the best decisions. 

C) Risk-tolerance scenario (RT):  

This scenario considers the case where the problem's uncertain parameter leads to a lower objective 

function value than its expected value. That is, the uncertain parameter improves the objective function 
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from its base value. This scenario allows the network operator to assess the riskiness of the solutions 

obtained. 

Eqs. (18) and (19) give the objective function of the problem and the active power output of DG units in 

the RT scenario. 

( ) ( ) ( )1RT BCOF X OF X   −  (18) 

( )ˆ 1
i iDG DGP P = +  (19) 

( ) 0iH X    

( ) 0jG X =   

where ( )RTOF X  is the network losses of the distribution system in the RT scenario. 

Figure 2 shows a clear understanding of the performance of the IGDT method scenarios. 

- +

Uncertainty range

RT range RA range

BC
 

Fig. 2. The generality of the uncertainty modeling method using the IGDT scenarios 

4. CHO algorithm 

The CHO algorithm is chosen as a new meta-heuristic algorithm to solve the pricing optimization 

problem in this research. This choice is based on this algorithm's unique features, making it very suitable 

for the given problem. The CHO algorithm is inspired by the intelligent behavior of the cheetah in prey 
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hunting and has advanced mechanisms for searching the solution space. This algorithm uses a two-stage 

strategy, including global and local searches, which gives it a unique ability to find optimal points. One of 

the most important reasons for choosing this algorithm is its ability to avoid the trap of local optima. This 

feature is essential in our pricing problem with a complex and non-linear search space. The CHO 

algorithm can effectively explore the search space and identify better solutions using its hunting 

mechanism. Also, the high convergence speed of this algorithm and its adaptability to complex problems 

have made it a suitable option for solving the multi-objective optimization problem in this research. In 

addition, compared to other meta-heuristic algorithms, the CHO algorithm has fewer tuning parameters, 

which makes its implementation and tuning simpler. This algorithm is also computationally efficient and 

performs well in problems with large dimensions. The high combinability of this algorithm with the 

IGDT method is another reason for choosing it; this combination can effectively manage the uncertainties 

in the problem and provide optimal solutions considering different risk scenarios. 

The CHO algorithm models each cheetah hunter as an optimization agent that searches for food and hunts 

in the optimization process. Each hunter tries to find the optimal position to locate food and prey based on 

their position and speed in the search space [39]. In this way, the position and speed of the cheetah 

hunters are updated in each iteration of the CHO algorithm according to the cheetah’s movement rules 

and the objective function of the problem, which optimizes the DLMP values. 

Eq. (20) shows the change of position of cheetah hunters in the CHO algorithm: 

( ) ( ) ( )1 1i i iX t x t V t+ = + +  (20) 

where ( )1iX t +  is the next position of the DLMP, and ( )ix t  and ( )iV t  are the thi  hunter position and 

velocity at the time of t , respectively. 

Also, Eq. (21) represents the change in the velocity of cheetah hunters: 
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( ) ( ) ( )( ) ( )( )1 1 2 21
ii i best i best iV t wV t c r P X t c r g X t+ = + − + −  (21) 

where w  is the specified weight for the previous velocity, 1c  and 2c  are the learning coefficients, 
ibestP is 

the best position of the thi  hunter during the search history and bestg  is the best global position during the 

search history. 

A) Evolution phase:  

In this phase, the algorithm parameters are optimized. The evolution phase starts with generating an initial 

population of cheetah loops and then improves the population by applying evolutionary operators and 

selecting better loops for the next optimization phase. 

The evolutionary operators are divided into two main types: 

1. Replacement: In this type, the replacement operator replaces the old loop with the new loop. 

2. Combination: In this type, the combination operator combines two parent loops and produces a child 

loop. 

( ) ( )
1 2new old R best old C parent parentX X r X X r X X= + − + −  (22) 

where newX  is the new cheetah loop to be produced, oldX is the previous cheetah loop, Rr  is the 

replacement rate, bestX  is the better loop in the population, Cr  is the combined rate, and 
1parentX  and 

2parentX  are the parent loops that are used to generate new loops. 

B) Descent gradient phase:  

In this phase, the gradient of the objective function with respect to the DLMP values is computed first, 

and then the optimal DLMP values are determined using the gradient descent method. 

new old LDLMP DLMP r OF= −   (23) 
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where newDLMP  is the new optimal value of DLMP, oldDLMP  is the previous value of DLMP and Lr  is 

the learning rate. 

Using Eq. (23), the DLMP values are updated to their optimal values. This process is iterated until the 

optimal values. This process is iterated until the optimal DLMP value converges. 

Fig. 3 illustrates the general procedure of optimizing DLMP values using the CHO algorithm. 

Search space: Range of DLMP values

Determining the position 

and speed of the cheetah

Evolution phaseDescent gradient phase

ReplacementCombination

Optimal DLMP value

 

Fig. 3. Process of optimizing DLMP values using the CHO algorithm 

5. Solution methodology 

This paper combines the IGDT scenarios and the CHO algorithm so that the answers obtained for DLMP 

are optimal. Also, Fig. 4 shows the problem-solving flowchart. The steps to do this are as follows: 

Step 1: The basic information about the network includes the resistance and reactance of the network 

lines, the active and reactive power of the buses, the market price, and the constraints of the problem. 

Step 2: The initial value of the algorithm's counting index 𝑙 and the market price are considered equal to 1 

and the definite value of the market price, respectively. 
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D =   (24) 

 
1

, , ,
N

D D D DG
DLMP


=     (25) 

Step 3: Parameters related to the CHO algorithm are defined. Also, the random position and speed of the 

cheetah are determined. 

Step 4: This step is dedicated to the CHO algorithm's evolutionary and descent gradient phases. In this 

step, the objective function of the problem is calculated to find the best and global positions along the 

search space history using Eqs. (21) and (22). This step is shown with red blocks in Fig. 4. 

Step 5: The algorithm's stopping and convergence conditions are checked. If the stop conditions are 

satisfied, step 6 is executed; otherwise, the algorithm repeats from step 4. 

Step 6: The condition of the RA scenario is examined according to Eq. (16). According to this condition, 

the objective function must be smaller than 1 +  times the objective function in the BC scenario. If this 

condition is met, the market price will be calculated according to Eq. (26). 

( )( )1 1D l =  − +  (26) 

where   is the degree of increase in the radius of uncertainty. 

Step 7: If the condition of the RA scenario were not met, or in other words, if the objective function in 

the RA scenario were more significant than the objective function in the BC scenario, the market price 

would be calculated through Eq. (27): 

( )( )1D l =  −  (27) 

Step 8: The condition of the RT scenario is examined according to Eq. (18). According to this condition, 

the objective function must be smaller than 1 −  times the objective function in the BC scenario. If this 

condition is met, the market price will be calculated according to Eq. (28): 
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( )( )1 1D l =  − −  (28) 

Step 9: If the condition of the RT scenario were not met or in other words, if the objective function in the 

RT scenario were more significant than the objective function in the BC scenario, the market price would 

be calculated through Eq. (29): 

( )( )1D l =  +  (29) 
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Fig. 4. Flowchart of the proposed IGDT-CHO method
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6. Simulation results 

The proposed algorithm in this paper is tested on a 69-bus IEEE network with 13.8kV substation voltage. 

The bus power data and the line impedance of the 69-bus IEEE network are taken from Ref. [40]. The 

initial population of the CHO algorithm, the number of iteration of the CHO algorithm, and the 

uncertainty radius of the IGDT are set to 700, 200, and 0.18, respectively. Additionally, Ψ and cheetah 

speed coefficient are considered 0.005 and 0.5, respectively. Also, the simulation has been conducted 

using a personal computer system with the following specifications: Intel® Core™ i7-11370H CPU @ 

3.30GHz, 8.00GB RAM, 512GB SSD. Fig. 5 depicts the modified 69-bus IEEE network. Also, the data 

related to the 69-bus IEEE distribution network are given in appendix. 

1
Substation 

bus
2 3 4 5 6 7 8 9 10 11 12 13

14

15

16

17

181920212223242526

47 48 49 50 66

67

68

69

28

29 30 31 32 33 34 35

36

51 52

27

37

383940414243444546

53

54

55

56575859606162636465

DG1

DG2

DG3 DG5

DG4 DG6

 

Fig. 5. Diagram of the modified 69-bus IEEE network system 

Table 1 also provides information related to DG units, including the production power capacity, PF, and 

their cost function coefficients.  
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Table 1. Information of DG units 

DG Number Capacity (kW) PF [Lead-Lag] Cost function coefficients 

a ($/MW2) b ($/MW) c ($) 

1 1300 [0.9-0.9] 0.000018 20 0 

2 1300 [0.9-0.9] 0.000023 18 0 

3 1300 [0.9-0.9] 0.000016 24 0 

4 1300 [0.9-0.9] 0.000024 25 0 

5 1300 [0.9-0.9] 0.000017 21 0 

6 1300 [0.9-0.9] 0.000023 23 0 

 

6-1- Obtained values 

Table 2 gives the DLMP values of DG units at various market prices for the BC, RA, and RT scenarios. 

Table 2. DLMP values of DG units in various market prices 

Initial market 

price ($) 

Scenario DLMP value ($/MWh) 

DG1 DG2 DG3 DG4 DG5 DG6 

25 BC 21.02 20.00 21.24 25.46 23.20 30.00 

RA 20.85 20.55 17.10 18.68 17.17 18.25 

RT 23.50 29.75 24.13 25.48 30.68 28.16 

27 BC 21.60 21.60 24.13 25.48 22.09 29.96 

RA 22.59 19.05 22.22 22.13 24.14 24.14 

RT 23.44 29.80 24.13 25.48 29.74 28.17 

29 BC 23.20 28.67 24.13 25.48 30.17 28.20 

RA 22.56 27.16 23.91 22.98 28.95 27.19 

RT 23.78 28.75 24.13 25.48 29.88 28.12 

31 BC 33.43 29.74 24.80 25.48 31.90 27.99 

RA 23.39 30.18 24.19 25.79 30.18 27.99 

RT 33.42 32.86 25.17 25.48 31.02 27.99 

33 BC 33.45 31.40 26.40 26.40 34.53 27.99 

RA 33.07 34.41 25.99 25.89 35.18 32.31 

RT 33.16 35.86 26.80 26.80 36.51 35.65 

 

Using the DLMP values, we can easily calculate the profit of each DG unit. Table 3 shows the profit 

obtained for each DG unit in the BC, RA, and RT scenarios at the various market prices. Table 3 shows 

that DG units are profitable at higher market prices, such as $31 and $33, in the RA and RT scenarios. 
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Table 3. Profit of DG units in various market prices 

Initial market 

price ($) 

Scenario Profit ($/MWh) 

DG1 DG2 DG3 DG4 DG5 DG6 

25 BC 0.29 0.87 0 0.05 1.42 9.10 

RA 0.13 1.58 0 0 0 0 

RT 3.40 15.27 0 0.05 12.58 5.79 

27 BC 0.71 2.82 0 0.05 0.35 9.05 

RA 1.86 0.24 0 0 2.90 0.93 

RT 3.28 15.34 0 0.05 11.36 5.81 

29 BC 2.84 13.87 0 0.05 11.92 5.88 

RA 1.83 11.45 0 0 11.54 4.01 

RT 3.97 13.97 0 0.05 11.97 5.80 

31 BC 17.34 15.26 0.20 0.05 14.17 5.42 

RA 17.41 18.23 10.91 0.11 14.98 5.40 

RT 17.45 19.32 13.20 0.18 15.03 6.49 

33 BC 17.48 17.42 1.80 0.41 17.59 5.42 

RA 17.61 20.22 2.01 0.51 19.09 13.90 

RT 17.11 23.22 2.15 0.67 20.16 16.44 

 

Their profit in the RT scenario is higher than in the RA scenario, and in the RA scenario, it is higher than 

in the BC scenario. Also, Table 4 shows the amount of network losses in the BC, RA, and RT scenarios 

for various market prices. It should be noted that the network losses without DGs is equal to 184.03kW 

and the network losses without DGs and without considering the IGDT is equal to 152.75kW [41]. The 

results from Table 4 show that network losses decrease in all scenarios at higher market prices such as 

$29 to $33 in the RA strategy compared to the BC and RT scenarios. Also, at any market price, network 

losses in the RT scenario are always higher than in the RA scenario. 

Fig. 6 shows the process of the network loss convergence in the RA scenario at the various market prices 

in 60 iterations of the algorithm. The results in Table 4 and Fig. 6 show that the network losses in all 

market prices in the RT scenario are higher than in the RA scenario, indicating the riskiness of the 

responses obtained from the RT scenario. Therefore, to prevent the creation of risk in the network and the 

increase of network losses, it is preferable to choose the answers obtained from the RA scenario over the 

RT scenario. 
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Table 4. Network losses in the BC, RA, and RT scenarios for various market prices 

Initial Market price ($) Scenario Network losses (kW) 

25 BC 35.71 

RA 131.89 

RT 132.32 

27 BC 56.86 

RA 96.18 

RT 131.11 

29 BC 126.75 

RA 94.88 

RT 137.75 

31 BC 158.14 

RA 149.87 

RT 160.07 

33 BC 158.14 

RA 151.32 

RT 180.63 

 

 

Fig. 6. Process of network losses comvergence in the RA scenario for various market prices 

6-2- Comparison IGDT with the other uncertainty modeling methods 

To prove the advantage of using IGDT in modeling market price uncertainty, Table 5 compares IGDT 

with MCs and the two-point estimate method (2PEM) in terms of simulation time of each iteration of 
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methods, network losses of the distribution system, and the energy cost obtained from them at a value of 

$28 for initial market price. It should be noted that the MCs is applied for problem-solving with 

considering 50 random samples and the probability of each point in the 2PEM is considered 0.5. 

Table 5. Comparison IGDT with other uncertainty modeling methods at a value of $28 for initial market price 

Method Simulation time of 

each iteration (s) 

Network losses (kW) Energy price ($) 

MCs 59.32 168.99 71515.11 

2PEM [42] 111.58 218.64 64388.94 

IGDT (RA) 42.09 82.26 54616.63 

 

Table 5 shows that the IGDT method used in this paper to simulate the uncertainty of the market price has 

a shorter simulation time, network losses, and energy price than the other methods, which shows the 

advantage of using it to model uncertainty in power systems optimization problems. Fig. 7 shows the 

network loss distribution by applying the MCs for solving the problem. 

 

Fig. 7. Network losses distribution by applying the MCs for solving the problem at a value of $28 for initial market price 
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Fig. 7 shows the more abundance of the network loss is in the interval of the 36.6kW to 41.2kW with 8 

samples, while with apply the RA scenario for solving the problem, the network losses is equal to 

239.43kW for all 50 samples. 

In addition, Fig. 8 shows the comparison of the network losses by using the RA scenario and 2PEM for 

solving the problem. According to Fig. 8, network losses using the 2PEM for asolving the problem is 

equal to 218.64kW in all initial market prices. Also, The RA scenario has a lower network losses amont 

than the 2PEM in all amount of initial market prices. Hence, the RA scenario has a better performance for 

modeling the uncertainty in the initial market price and risk analysis of the DLMPs in the distribution 

network. 

 

Fig. 8. Network losses comparison by using the 2PEM and RA scenario for solving the problem 

6-3- Comparison the CHO algorithm with the other optimization algorithm 

To show the CHO algorithm's usefulness in optimizing the objective function of the problem and the 

control variables, it has been compared with the particle swarm optimization (PSO) and teaching-

learning-based optimization (TLBO) algorithms regarding the average time of the simulation and the 

amount of network losses. Table 6 shows the comparison between the CHO algorithm and the PSO and 
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TLBO algorithms in the RA scenario for 50 iterations for all the algorithms in $28 initial market price. It 

should be noted that the initial population and the iteration for all algorithms are considered 700 and 200, 

respectively. 

Table 6. Comparison the CHO algorithm with the PSO and TLBO algorithms in the RA scenario for a value of $28 

for initial market price 

Algorithm Average time of simulation (s) Network losses (kW) 

PSO [43] 3841.06 82.26 

TLBO [44] 5109.66 82.26 

CHO 2109.50 82.26 

 

Also, Fig. 9 shows the process of network loss convergence using the PSO, TLBO, and CHO algorithms 

in the RA scenario in 50. According to Fig. 9, the optimal value for the network losses is obtained 82.26 

using all of algorithm for problem-solving, while the CHO algorithm is converged at the 44th point and 

the TLBO and PSO algorithms are converged at the 49th and 50th point, respectively. 

 

Fig. 9. Process of network losses convergence with the PSO, TLBO, and CHO algorithms in the RA scenario for a value of $28 

for initial market price 

 

6-4- Comparison the IGDT scenarios 
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To prove the advantage of using the RA and RT scenarios in solving the problem, two cases are 

considered: 

First case: In the BC scenario, assuming the market price is $29, the total energy cost will be $71226.94. 

It is assumed that the predicted market price will not be realized, and the same price as calculated in the 

RA scenario will be realized, i.e., $25. In this case, assuming that the output power of DG units remains 

constant and only by changing the power exchanged with the upstream network, the total cost will be 

recalculated, equal to $16301.63. Also, in this case, the total energy cost in the RT scenario is 

$136510.91. 

Second case: In this case, contrary to the first case, it is assumed that according to the planning obtained 

from the RA and RT scenarios, for which the uncertainty radius is 0.18. The market price is $25, and the 

cost is $43331.09 and $136555.91, respectively; in reality, the predicted market price in the BC scenario, 

i.e., $29, will be realized. In this case, assuming the constant power of all DG units and only changing the 

power exchanged with the upstream network, the total cost will be recalculated, equaling $132527.63. 

7. Conclusion 

Uncertainty modeling in the market price was done with the IGDT scenarios in this paper, which 

performs better than other uncertainty modeling methods. Since the DLMP values of DG units are higher 

at market prices in the RA and RT scenarios than in the BC scenario, the profit of DG units in these 

scenarios is also higher than in the BC scenario. By using the RA scenario, the network operator can 

identify risk-averse responses with the least risk, and in addition, it faces fewer network losses in the 

network. Although using the RT scenario leads to more profit for DG units, the answers obtained from it 

have a high risk. In other words, by applying the RT scenario, the network operator will face risky 

answers to the problem, so in addition to more profit for DG units, it must bear more losses for the 

network. In general, Table 7 shows the comparison between the RA and RT scenarios. 

Since the goal is to optimize the DLMP values of DG units, the objective function is the network loss 
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minimization problem. In other words, obtaining more losses for the network is considered as receiving a 

risky answer to the problem. Table 7 shows that although the RA scenario is superior to the RT scenario 

in terms of having fewer network losses, it is chosen to solve the optimization problem. Also, this study 

used the CHO algorithm to optimize DLMP values, which have higher speed and accuracy than other 

optimization algorithms. 

Table 7. Comparison the RA and RT scenarios 

Scenario Fewer 

losses 

More 

DLMP 

More 

profit 

Less 

cost 

More 

risk 

Choice for DLMP 

analysis 

RA       

RT       

 

For future research and studies, it is suggested that IGDT be improved to model the uncertainty in the 

market price so that the answers that have a common point in the defined interval for the RA and RT 

scenarios will be moved toward the RA scenario. 

Appendix 

The data related to the 69-bus IEEE distribution network including the resistance and reactance of the 

lines and also active and reactive power of the buses are given in Table 8. 
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Table 8. Data of the 69-bus IEEE distribution system 

Sending 

bus 

Receiving 

bus 

R (Ω) X (Ω) P 

(kW) 

Q 

(kVAr) 

Sending 

bus 

Receiving 

bus 

R (Ω) X (Ω) P 

(kW) 

Q 

(kVAr) 

1 2 0.0005 0.0012 0 0 3 36 0.0044 0.0108 26 18.55 

2 3 0.0005 0.0012 0 0 36 37 0.0640 0.1565 26 18.55 

3 4 0.0015 0.0036 0 0 37 38 0.1053 0.1230 0 0 

4 5 0.0251 0.0294 0 0 38 39 0.0304 0.0355 24 17 

5 6 0.3660 0.1864 2.6 2.26 39 40 0.0018 0.0021 24 17 

6 7 0.3810 0.1941 40.4 30 40 41 0.7283 0.8509 1.2 1 

7 8 0.0922 0.0470 75 54 41 42 0.3100 0.3626 0 0 

8 9 0.0493 0.0251 30 22 42 43 0.0410 0.0475 6 4.3 

9 10 0.8190 0.2707 28 19 43 44 0.0092 0.0116 0 0 

10 11 0.1872 0.0619 145 104 44 45 0.1089 0.1373 39.22 26.3 

11 12 0.7114 0.2351 145 104 45 46 0.0009 0.0012 39.22 26.3 

12 13 1.0300 0.3400 8 5 4 47 0.0034 0.0084 0 0 

13 14 1.0440 0.3450 8 5.5 47 48 0.0851 0.2083 79 56.4 

14 15 1.0580 0.3496 0 0 48 49 0.2898 0.7091 384.7 274.5 

15 16 0.1966 0.0650 45.5 30 49 50 0.0822 0.2011 384.7 274.5 

16 17 0.3744 0.1238 60 35 8 51 0.0928 0.0473 40.5 28.3 

17 18 0.0047 0.0016 60 35 51 52 0.3319 0.1114 3.6 2.7 

18 19 0.3276 0.1083 0 0 9 53 0.1740 0.0886 4.35 3.5 

19 20 0.2106 0.0690 1 0.6 53 54 0.2030 0.1043 26.4 19 

20 21 0.3416 0.1129 114 81 54 55 0.2842 0.1447 24 17.2 

21 22 0.0140 0.0046 5 3.5 55 56 0.2813 0.1433 0 0 

22 23 0.1591 0.0526 0 0 56 57 1.5900 0.5337 0 0 

23 24 0.3460 0.1145 28 20 57 58 0.7837 0.2630 0 0 

24 25 0.7488 0.2475 0 0 58 59 0.3042 0.1006 100 72 

25 26 0.3089 0.1021 14 10 59 60 0.3861 0.1172 0 0 

26 27 0.1732 0.0572 14 10 60 61 0.5075 0.2585 1244 888 

3 28 0.0044 0.0108 26 18.6 61 62 0.0974 0.0496 32 23 

28 29 0.0640 0.1565 26 18.6 62 63 0.1450 0.0738 0 0 

29 30 0.3978 0.1315 0 0 63 64 0.7105 0.3619 227 162 

30 31 0.0702 0.0232 0 0 64 65 1.0410 0.5302 59 42 

31 32 0.3510 0.1160 0 0 11 66 0.2012 0.0611 18 13 

32 33 0.8390 0.2816 14 103 66 67 0.0047 0.0014 18 13 

33 34 1.7080 0.5646 19.5 14 12 68 0.7394 0.2444 28 20 

34 35 1.4740 0.4873 6 4 68 69 0.0047 0.0016 28 20 
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