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Abstract: 

Traditionally, diagnosis of bearing faults involves analyzing the frequency spectra of monitored signals, 

like vibration and stator current, using various signal processing techniques. However, signal-based 

methods for fault diagnosis often produce false alarms due to changes in load and voltage imbalances in 

the motor's input. Furthermore, these methods have limited performance in detecting faults at early stages 

and readjusting based on speed, load, and voltage levels. To overcome these challenges, this paper proposes 

a model-based approach for bearing fault diagnosis utilizing the Luenberger observer. The suggested 

model-based method compares the real behavior of the system with the estimated behavior of its nominal 

model, eliminating non-fault-related factors that have similar effects on both the system and its 

mathematical model. The efficiency of the suggested model-based bearing fault diagnosis method is 

validated by comparing simulation and experimental results obtained from the proposed model-based 

method with a recent signal-based method. The proposed method introduces a novel application of the 

Luenberger observer for fault detection in induction motors, offering a simple and efficient approach to 

diagnosing bearing faults. It uniquely distinguishes mechanical faults without direct electrical signal 

correlation and incorporates a systematic noise cancellation technique, enhancing robustness and accuracy 

under varying loads. 
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1. Introduction 

Induction motors (IMs) are widely utilized in diverse industries due to their capacity to withstand 

challenging environments, wide operational spectrum, simple construction, cost efficiency, and high 

dependability. Despite these benefits, failures may occur in different motor parts such as bearings, rotors, 

and stators [1-7]. According to reports from the IEEE [8, 9], Faults related to bearings contribute to over 

40% of IMs’ failures. Primary issues with bearings can lead to alterations in air-gap eccentricity, shaft 

bending, and subsequent effects on rotor and stator functionality. Consequently, a significant demand exists 

for an efficient approach to detecting bearing faults. 

Fig. 1 depicts the typical structure of a ball bearing, comprising an outer raceway, inner raceway, ball 

elements, and a cage ensuring ball spacing and preventing contact. When faults arise in bearing components 

like the ball, inner raceway, or outer raceway, a particular frequency identified as fault signature frequency 

is generated [10]. Studies show that fault signature frequencies are influenced by factors like operating 

speed, bearing geometry, and fault location [11]. Vibration signals are widely employed in bearing 

condition monitoring as they directly reflect the mechanical response resulting from defects or wear in ball 

bearings, caused by interactions with the inner and outer raceways [12]. Utilizing signal conditioning 

techniques to preprocess these signals enables the detection of probabilistic faults in bearings by comparing 

the spectrum analysis of the measured signal with that of a healthy bearing operating under the same speed 

and load conditions. However, vibration analysis has limitations, including susceptibility to background 

noise, sensitivity to changes in sensor mounting positions, and the associated cost of sensors. As an 

alternative to vibration analysis, motor current signature analysis (MCSA) has become popular [13]. MCSA 

involves measuring the current at the motor control centers (MCCs), eliminating the need for additional 

sensors or devices and the associated installation costs.  In contrast to vibration analysis, in MCSA, the 

magnitude of the current spectral analysis at fault signature frequencies can vary at different motor loads 

and speeds [14]. In the MCSA analysis, because the magnitude of fault signature frequencies is often 

obscured among environmental noises, fault diagnosis process faces challenges. Therefore, researchers use 
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data-driven approaches, advanced signal processing methods, and model-based techniques to reduce noise 

and improve the signal-to-noise ratio (SNR). Data-driven methods rely on abundant input signals for 

training, employing quantitative approaches like utilizing the air gap variation profile derived from an 

electrical model based on stator current [12].  

 

Fig. 1. Common configuration of a ball bearing 

Signal-based methods encounter challenges in eliminating background noise and necessitate a thorough 

understanding of signal-processing techniques [1, 3, 4, 15-17]. These studies propose methods involving 

the time-shifting of IM's current to eliminate background noise. In [3], a technique for canceling current 

noise by employing time shifting is used to diminish background noise and the magnitude of multiple 

harmonics in the current signal. This is achieved by combining the current signal gathered with its delayed 

counterpart. In [4, 16], the challenge of background noise in the current signal is tackled by employing 

linear prediction (LP) techniques. LP method predicts and removes repetitive noise components, allowing 

for clearer identification of fault signatures associated with bearing faults through spectrum analysis of the 

filtered current signal. Leveraging the synchronized nature of the motor's three stator currents is introduced 

in [1, 17]. By strategically integrating these currents with time-shifting, the method cancels out background 

noise while retaining the fault signatures in the current spectrum. These methods enable clearer detection 

of bearing fault signatures in the current spectrum. Signal-based fault detection methods have limitations, 
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including reliance on signal analysis which may be less accurate in complex systems, limited capability for 

early detection, difficulty in handling intricate system dynamics, less adaptability to changes in system 

conditions, susceptibility to false alarms in noisy environments, and limited performance in the presence of 

noise or uncertain dynamics.   

Model-based methods offer a potential solution, but the challenge lies in selecting an appropriate 

mathematical model. Model-based fault diagnosis relies on mathematical models that describe the system's 

behavior. These models are based on physics, engineering principles, or another domain-specific 

knowledge. As a result, the diagnosis can be more accurate and precise compared to signal-based or purely 

data-driven methods. Since Model-based methods employ dynamic system models, they can often detect 

faults at an early stage or even predict potential faults before they lead to system failure. This early detection 

capability can contribute to proactive maintenance and reduce downtime. The objective of model-based 

methods is to make use of all accessible information, such as input and output signals, to generate a 

reference signal known as the residue. The residue indicates the disparity between the outputs of a healthy 

process and a faulty process. When the process is fault-free, the residue is close to zero; however, it deviates 

from zero in the presence of a fault. The selection of an appropriate residue is vital for detecting the presence 

and location of a fault. A significant advantage of utilizing a model-based approach for bearing fault 

diagnosis is its ability to minimize false alarms during normal operation. Signal-based fault diagnosis 

methods are prone to false alarms caused by load changes and voltage imbalances [18]. By incorporating 

knowledge about the system's behavior, model-based fault diagnosis can help reduce false alarms. This is 

especially important in critical applications where unnecessary alarms could lead to unwarranted 

maintenance actions or operational disruptions. Model-based methods achieve effective noise and 

disturbance cancellation by comparing the measured signal with the estimated signal, thereby eliminating 

non-fault-related noises that affect both the model and the actual system. This automatic noise cancellation 

is a notable advantage of model-based methods compared to signal-based methods. Furthermore, model-

based methods are not reliant on the operating point or variations in operating conditions, enhancing their 
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robustness and applicability. The comparison of the advantages and disadvantages of all three methods has 

been summarized in Table 1. This table highlights that model-based fault diagnosis methods stand out for 

their high accuracy, precision, and ability to detect faults early, thanks to their reliance on detailed 

mathematical models that accurately represent system dynamics. These methods are particularly well-suited 

for complex systems and offer robust performance with fewer false alarms, as they can be tailored to adapt 

to changes in system conditions. While developing accurate models can be challenging, the advantages of 

model-based approaches—such as their superior reliability in complex and dynamic environments—often 

make them a better choice compared to signal-based and data-driven methods, which may struggle with 

accuracy, adaptability, and false alarms, especially in noisy or uncertain conditions.  

Table 1. Comparing advantages and disadvantages of model-based, signal-based, and data-driven fault diagnosis 

methods 
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Model-based Signal-based Data-driven 
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Accuracy and 

Precision 

High accuracy and precision 

due to mathematical models 

representing system 

dynamics. 

Relies on signal analysis, 

and may be less accurate in 

complex systems. 

Depending on data quality 

and quantity, and may lack 

precision in certain cases. 

Early Detection of 

Faults 

Early detection and 

sometimes prediction of 

potential faults. 

Limited capability for early 

detection, especially in 

dynamic systems. 

Can detect anomalies and 

patterns but may not provide 

early fault detection. 

Handling 

Complex Systems 

Well-suited for complex 

systems with dynamic 

behavior. 

May struggle with intricate 

system dynamics. 

Suitable for complex systems 

but depends on quality and 

diversity of data. 

Robustness to 

Changes 

Can be designed to adapt to 

changes in system 

conditions. 

Less adaptable to changes 

in system conditions. 

Can adapt to changes but 

requires continuous learning 

from new data. 

Reduced False 

Alarms 

Can help reduce false alarms 

by incorporating system 

knowledge. 

This may lead to false 

alarms, especially in noisy 

environments. 

Prone to false alarms, 

especially when trained on 

noisy or incomplete data. 
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 Requires accurate models, 

which can be challenging for 

some systems. 

Limited performance in the 

presence of noise or 

uncertain dynamics. 

Susceptible to noisy or 

incomplete data, and may 

overfit or generalize poorly. 

https://doi.org/10.22060/eej.2024.23380.5610


AUT Journal of Electrical Engineering 
10.22060/EEJ.2024.23380.5610 

Model-based methods can be categorized into state/output observer, parameter estimation, and extended 

Kalman filter techniques [19-23]. They depend on a deep understanding of the physical characteristics of 

bearing faults and their effects on mechanical and electrical signals. While the Kalman filter and its 

modified versions have demonstrated advantages in fault diagnosis, they require precise specification of 

noise statistics [24-26]. A suggested model-based approach employs a conventional derivative-free Kalman 

filter for bearing fault diagnosis [19]. In [20], a comparison was made between stator current and estimated 

mechanical speed for model-based fault diagnosis in asynchronous drives, involving a complex extraction 

procedure. Other model-based methods, such as multiple coupled circuit and magnetic equivalent circuit, 

do not rely on observers [27-29]. In [29], a multiple coupled circuit modeling approach is introduced for 

simulating three-phase squirrel-cage IMs under localized bearing faults. However, it is crucial to note that 

this model overlooks load torque variation. A bearing model-based fault diagnosis method using airgap 

displacement is proposed in [12]. Its complexity and calibration challenges may arise in practical 

applications, particularly with varying operating conditions. A magnetic equivalent circuit is employed in 

[28] to investigate faulty rolling bearings. In this context, the IM model is created by segmenting uniform 

distribution parts into specific flux tubes. Connecting these flux tubes with nodes forms a magnetic 

equivalent network. Apart from its intricacy, the primary drawback of this modeling approach is its 

incorporation of air gap permeance between a stator and a rotor tooth, which is affected by fringing. Bearing 

faults impact motor performance by causing periodic radial movement of the rotor center and fluctuations 

in load torque. Although the influence of load torque variations on electrical signals is usually insignificant 

in the early stages of a bearing fault, alterations in the air gap length between the rotor and stator can modify 

stator current due to changes in the mutual inductance profile. However, additional research is needed to 

establish the precise physical model connecting vibrations to spectral components of motor current [18].  

This paper introduces a pioneering approach to bearing fault diagnosis, focusing on current noise 

cancellation through a model-based method employing a Luenberger observer. By generating residues via 

a comparison of estimated and measured currents of an IM, leveraging existing stator voltage and current 
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information without the need for supplementary sensors, the complexity, and cost associated with bearing 

fault diagnosis setups are significantly mitigated. Notably, the efficiency of the proposed method is 

rigorously assessed across diverse load conditions, encompassing various types and severities of bearing 

faults: outer raceway (with two severity levels), inner raceway (with two severity levels), and ball faults. 

Overall, the novelty of this work resides in its capacity to offer a simplified, yet effective, model-based 

solution for bearing fault diagnosis that outperforms traditional methods in terms of simplicity, 

interpretability, and versatility. By bridging the gap between complexity and practicality, the novelty of the 

proposed method lies in its innovative application of the Luenberger observer for fault detection and 

identification in IMs. This approach introduces a simple yet efficient mathematical technique to diagnose 

bearing faults, distinguishing them by effectively identifying mechanical faults that do not directly correlate 

with electrical signals, such as stator currents. By treating bearing faults as internal disturbances, the method 

can accurately detect these mechanical issues. Additionally, it incorporates a systematic noise cancellation 

process within the Luenberger observer framework, enhancing the robustness and accuracy of fault 

diagnosis under varying load conditions, thereby representing a significant advancement in the field.  

The following sections of the paper are structured as follows: Section 2 illustrates details of the proposed 

model-based approach for bearing fault diagnosis and presents the dynamic model of a single squirrel cage 

IM. In Section 3, a simulation test is conducted to validate the effectiveness of the proposed method as a 

model-based bearing fault detector. Section 4 describes the experimental benchmark employed in the study. 

The experimental results, demonstrate the efficacy of the proposed diagnostic approach under various faulty 

conditions (outer raceway, inner raceway, and ball faults), different operating points of the IM, and two 

levels of fault severity (low-level and high-level). Finally, in Section 5, the study's conclusions are 

summarized.  

2. Proposed Model-Based Bearing Fault Diagnosis 
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In this section, the overall structure of the proposed model-based method to diagnose bearing faults is 

presented. Also, the mathematical model of a squirrel cage IM is explained, considering the effects of 

bearing faults as internal disturbances that require detection. 

2-1-Overall Structure of the Proposed Model-Based Bearing Fault Diagnosis Approach 

Fig. 2 depicts the overall structure of the proposed model-based approach for bearing fault diagnosis. First, 

the input (voltage) and output (current) signals of the IM are measured using voltage and current transformer 

sensors, respectively, and are fed into the computer through the data acquisition system. In the subsequent 

stage, the measured input signals, u(t), are applied to the mathematical model of the IM as inputs. The 

obtained output from the mathematical model, ˆ ,y(t) is compared with the real output signal, y(t); and using 

the Luenberger observer method, the residue signal is generated. Finally, the fault signatures of a faulty 

bearing can be identified through spectrum analysis using a simple fast Fourier transform (FFT). As known 

in the industry, all IMs are equipped with a voltage protection system that acts to disconnect IMs from the 

circuit in case of voltage drop or increase to prevent damage to the IM windings. Therefore, during normal 

operation of the IM, the input voltage remains constant (along with inherent fluctuations of the network), 

and hence variations in operating points for voltage have not been considered. It is worth mentioning that 

all test data (including the IM's voltage) have been collected in an industrial environment in the presence 

of various loads such as compressors and different types of motors. Fluctuations and noise originating from 

the network and environment have been recorded in the voltage data, yet fault detection results have been 

obtained despite these factors. Regarding changes in the current operating point, for each fault, the data 

were stored at three different operating points (50%, 65%, and 80% of the IM's rated current), and 

conducted the analysis related to fault detection. 
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Fig. 2. Overall structure of the proposed model-based bearing fault diagnosis approach 

The main innovation of the proposed method is the simplicity and ease of fault detection; So that by taking 

a test of a few seconds from the IM, and after transferring the IM's voltage and current data into the 

computer, with a simple subtraction, the proposed residue signal is obtained. Then, using a simple FFT, the 

bearing fault components (if any) are revealed. This is while the previous fault detection methods are 

usually forced to use complex signal processing techniques (signal-based) or use metaheuristics and 

artificial intelligence methods (data-based). The experimental results show that in addition to the visibility 

of the bearing fault signatures, the proposed method has been able to reduce the background noise well and 

automatically. In fact, by subtracting the actual output signal from the estimated output signal, the 

magnitude of the common frequency components between the real system and the mathematical model is 
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reduced, as well as due to their random nature, the amplitude of the existing background noise components 

is reduced by the subtraction of the real output and the estimated output. 

2-2-Electro-Mechanical Model of a Squirrel Cage 

The dq0 reference frame enhances fault detection in electric motors by simplifying fault signatures, 

decoupling fault effects, highlighting zero-sequence components, and facilitating advanced signal 

processing techniques. This leads to more accurate and real-time fault diagnosis, improving motor 

reliability and maintenance efficiency [30]. Thus, here dq0 reference frame is used to model the IM. A fifth-

order state space model is used to represent the squirrel cage IM, which includes electrical and mechanical 

components [30]. In the IM's equivalent circuit shown in Fig. 3, all electrical variables are referenced to the 

stator and shown by prime notation. 
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Fig. 3. Equivalent circuit of the electrical part of a squirrel cage IM 

The equations representing the stator voltage in the dq0 reference frame can be expressed as: 
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In the given equations, v represents the voltage, i represents the current, R denotes the motor resistance, ω 

and ωr represent the reference frame and electrical rotor angular speeds, respectively. φ represents the flux, 

with subscripts d and q representing the direct and quadrature axes, and subscripts s and r denoting the 

stator and rotor parameters. The fluxes mentioned in Fig. 3 and Eq. (1) are defined in the following manner: 
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where, Lm , Ls and L'r are magnetizing and total stator and rotor inductances, respectively. Total stator and 

rotor inductances are calculated as below: 

 
' '

s ls m

r lr m

L L L

L L L

= +


= +
  (3) 

where, Lls and L'lr are leakage inductances of stator and rotor, respectively. The electromagnetic torque is 

given by: 

 1.5 ( ),e ds qs qs dsT P i i = −   (4) 

where, P represents the number of pole pairs. The equations about the mechanical components (motor and 

load) are expressed as follows: 
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where, Tm represents the shaft's mechanical torque, J denotes the combined inertia coefficient of the rotor 

and load, and F represents the combined viscous friction coefficient of the rotor and load, ωm is mechanical 

angular speed, and θm is rotor mechanical angle. Now, considering Eq. (1)-(5), nonlinear state space 

equations of a squirrel cage IM can be obtained as Eq. (6): 
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The only nonlinear term in Eq. (6) is the final term, which corresponds to the state variable of the 

mechanical angular speed. The mechanical angular speed can vary from its nominal value by 0% to 2% 

depending on the load percentage. This is due to the IM's slip, which is close to zero at no load, causing the 

mechanical angular speed to be close to the nominal speed. At full load, the mechanical speed is 

approximately 1.5% to 2% lower than the nominal speed. Since the mechanical speed changes from 100% 

to 98% of its nominal speed as the motor load changes from 0% to 100% of the nominal load, respectively, 

the change in the last state variable (mechanical speed) is less than 2% over the entire operating range of 

the motor. Therefore, the linearized form of the last term of Eq. (6) can be used with good approximation 
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to represent the linearized state equations at all operating points. In continuation, the linearized state space 

equations around the working point X0 are obtained as follows: 
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where, 
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Note that by selecting the stator current as output as Eq. (9), the linearized state space model of a squirrel 

cage IM is completed. 
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2-3-Designing Luenberger Observer 
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 The Luenberger observer, introduced in previous works [31-33], has been utilized for detecting various 

faults in induction machines, converters, and inverters. However, the primary focus of this paper is to 

employ the Luenberger observer for the detection of mechanical faults, specifically bearing faults, in IMs. 

Unlike faults that directly affect electrical signals like stator current, bearing faults do not have a direct 

physical relationship. Therefore, the proposed approach in this paper aims to estimate the dq currents using 

the Luenberger observer to detect the internal disturbances caused by bearing faults in IMs. The specifics 

of the proposed Luenberger output observer are depicted in Fig. 4.  

 

Fig. 4. The proposed Luenberger observer 

The equations for the system’s model and Luenberger observer, as given in [34], are as follows: 
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where, G is the observer’s gain. A, B, and C are the state space matrixes extracted from Eq. (7) and (9). In 

Fig. 4, the input, u*(t), and output, y(t), data are the actual voltage and current of the IM, respectively, which 

are already measured by the voltage and current transformer sensors. The only unknown parameter in Fig. 

4 is the gain matrix, G, which is selected to achieve a satisfactory transient response. Indeed, G is designed 

to stabilize (push towards zero) the estimated error, which is the difference between the actual state and the 

estimated state, ex(t). If the state error signal ex(t) is defined as ˆ,xe x x=  −  then, by subtracting Eq. (10) 

and (11): 

 ( ) ( ) ( ).x xe t A GC e t= −   (12) 

Therefore, the observer’s gain G can be calculated by placing the observer poles at desired locations, λi, in 

the complex plane using pole placement.  To do this, it’s sufficient that the observer poles are chosen 

considering factors such as system stability (having positive real parts) and convergence rate (having fast 

dynamics).  By using the following equation: 

 ( )det ( ) 0,iI A GC − − =   (13) 

and the pole placement command in MATLAB (place(A',C', λi).')), the elements of the G matrix could be 

obtained. To achieve an acceptable response in terms of stability and transient response, according to the 

basic principles of modern control, the easiest way is to choose negative real poles with a large distance 

from each other. In section 3, how to choose the poles and design the gain matrix G is presented numerically. 

If there is no fault (in this case, arising from a bearing fault) present (healthy bearing), ˆ( )y t closely 

resembles the measured system output, and any slight differences observed may stem from the presence of 

environmental noise in the measured output, y(t), or the defined mathematical model. Therefore, in the case 

of a healthy bearing: r(t)≈0 and consequently: ˆ 0.xe x x=  −   When a fault occurs within the bearing, 

spikes appear in the measured output, y(t), during corresponding time intervals (proportional to the bearing 

fault frequency), leading to r(t)≠0. In such a situation, anything unrelated to the bearing fault is eliminated, 
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and the bearing fault components persist in the residue signal, r(t). Consequently, the effect of the bearing 

fault is reflected in the state error signal, ˆ 0.xe x x=  −    Considering Eq. (12) and following stability 

principles in modern control, the condition for the proposed fault diagnosis method to be universally 

effective is that the matrix (A-GC) be Hurwitz, meaning that all its eigenvalues lie on the left side of the jω 

axis (Eq. (12) remains stable). It is also preferable for these eigenvalues to exhibit a rapid transient response. 

3- Simulation Results 

To verify the presence of fault signatures and diminish Gaussian noise in frequency analysis of the output 

residue (current),
1

ˆ( ) ( ) ( ),d dr t i t i t= − from an IM with a faulty bearing, a simulation trial (depicted in Fig. 

5) was executed using MATLAB’s Simpower toolbox. Employing a methodology akin to prior investigations 

[3, 10], a sequence of impulsive disturbances was induced in the load torque to consider the impact of a 

single-point bearing fault on the load torque profile. The simulation involved a conventional squirrel-cage 

IM with star configuration in stator windings. The motor was linked to a three-phase power supply with an 

impedance of z=1+j0.3Ω in the line. The type 6309 bearing was chosen for the simulation. The fault 

frequencies for this bearing type were calculated as FO=3.06×FR, FI=4.95×FR, and FB=2.00×FR [1]. 

Suppose the IM works at a speed of 1434 rpm (which corresponds to a frequency of 23.91 Hz). In the case 

of a fault in the outer raceway bearing, for example, the fault frequency (FO) is calculated as 3.06 times the 

IM’s working frequency, resulting in 73.18 Hz. As depicted in Fig. 5, a periodic impulsive signal, 

correlating with the fault signature of the outer raceway bearing, is created through the monitoring of rotor 

speed and its integration into the load torque. In Fig. 6, the load torque is depicted alongside a standard 

Gaussian noise with an average of 50N.m, specifically concerning the bearing afflicted with a fault in the 

outer raceway. The magnitudes of the impulsive components affirm a Gaussian distribution with an average 

of 30 and a standard deviation of 5 [1]. 
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Fig. 5. Simulating the influence of bearing faults on an IM and generating residue using Luenberger 

 

Fig. 6. Load torque profile for a faulty bearing (fault in outer raceway fault) 

Considering IM parameters given in [1], Eq. (7) and (9), and following Section 2, part 2.1, an appropriate 

selection for desired eigenvalues (desired poles) can be as follows: 

4 4 3 2 24 10 2 10 1 10 7 10 5 10 .i  = −  −  −  −  −    

By placing λi on Eq. (13), the gain matrix G is obtained as: 

4 8 3 7 11

4 8 3 8 11
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Fig. 7 illustrates the outcome of the spectrum analysis simulation for a fault in the bearing inner raceway 

of an IM. To assess the efficiency of the model-based approach suggested in this study in comparison to a 
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signal-based method known as "synchronized current residue square (SCRS)" [1], the SNR index (SNRI) 

introduced in [1] is employed, as follows: 

 
2

.SF

n

n

A
SNRI

A
=


  (14) 

SFA represents the magnitude of the fault signature, while An signifies the magnitude of the nth sample. In 

Fig. 7(a) and Fig. 7(b), a comparison is made between the performance of the proposed model-based method 

and the SCRS method (signal-based). The results unequivocally show the successful detection of the fault 

frequency related to the bearing's outer raceway using the proposed model-based method. Fig. 7 illustrates 

the clear advantage of the proposed approach over the SCRS method. In Fig. 7(a), the results from the 

SCRS method are shown. The SCRS method struggles with unwanted components, including the 

mechanical speed frequency (fr), double the operating frequency of the IM (2×fs), and increased background 

noise levels.  

 

Fig. 7. Simulation results depicting spectrum analysis outcomes for a bearing fault located on the outer raceway: (a) 

implementation of the proposed Luenberger observer, and (b) employment of SCRS technique 
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This results in a less clean signal extraction. In contrast, Fig. 7(b) depicts the results from the proposed 

model-based method. Here, the signal is significantly cleaner with minimal unwanted components, 

demonstrating a more effective noise reduction. The SNRI enhancement is substantial, as shown in Table 

2, which validates a significant SNRI improvement of approximately 300% with our method compared to 

SCRS. This improvement is primarily due to the superior handling of unwanted noise and frequency 

components in the proposed approach. Theses and the corresponding data underscore the robustness and 

effectiveness of the proposed method, providing concrete proof of its advantages over the SCRS method. 

Table 2. Comparing SNR for simulating fault in outer raceway 

Method SNRI  

Luenberger observer (the proposed) 0.508 

SCRS [1]  0.162 

 

4- Assessment and Verification through Experimentation 

4-1- Designing Experimental Benchmark 

The efficiency of the proposed model-based technique for detecting bearing faults is evaluated by analyzing 

a dataset collected from an experimental benchmark, as shown in Fig. 8. This benchmark consists of an IM 

coupled with a centrifugal pump as load with specifications given in [1]. A custom-designed data 

acquisition system was utilized to capture stator currents and voltages. Voltage signals were captured using 

the "NI 9225 300Vrms" module. Current signals, acquired via two current transformers with step-down 

capability, were subsequently sent to a laptop through an "NI 9227" module integrated into an "NI Compact 

DAQ" data acquisition chassis. The collected data was subsequently stored and processed utilizing 

MATLAB [15]. The primary focus of this investigation was on real faults occurring in SKF ball bearings 

with specifications given in [1], specifically the 6309 type. These faults primarily impact the outer or inner 

raceway, showing differences in both severity and dimensions, with diameters ranging from 1mm to 2mm. 

The depth of defects is 1mm in all tests. Additionally, ball defects are measuring 1mm in size. The dataset 
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is expanded by adding three operational modes (80%, 65%, and 50% of the nominal load) over a mechanical 

speed span from 2908 to 2957 rpm, using a sampling rate of 51.2kHz. As depicted in Fig. 8, these changes 

in IM's current have been simulated by altering the percentage of opening and closing the control valve. 

The model-based approach is tested on the system under 18 distinct scenarios, as outlined in Table 3.  

4-2- Signature of the d-axis current residue 

Experimental tests are conducted to assess the performance of the proposed method, wherein the IM 

operates with faulty bearings at different load conditions corresponding to percentages of the nominal load 

(80%, 65%, and 50%). It's important to note that in all the tests, the only variation is the input operating 

points (voltages and currents) provided by the proposed model-based method introduced in Section 2. 

 

Fig. 8. The test rig and data acquisition system enclosed within the measurement panel for experimental validation [1] 
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Table 3. Bearing Conditions 

Bearing Condition Load percentage label 

Healthy 80 C1 
Outer raceway fault with 2mm in size  80 C2 

Outer raceway fault with 2mm in size 65 C3 

Outer raceway fault with 2mm in size  50 C4 
Outer raceway fault with 1mm in size  80 C5 
Outer raceway fault with 1mm in size  65 C6 
Outer raceway fault with 1mm in size  50 C7 
Inner raceway fault with 2mm in size  80 C8 
Inner raceway fault with 2mm in size  65 C9 
Inner raceway fault with 2mm in size  50 C10 
Inner raceway fault with 1mm in size  80 C11 
Inner raceway fault with 1mm in size  65 C12 
Inner raceway fault with 1mm in size 50 C13 

Ball fault with 1mm in size 80 C14 
Ball fault with 1mm in size  65 C15 
Ball fault with 1mm in size  50 C16 

Early stages of the bearing fault (due to misalignment) 100 C17 

Outer raceway fault with 2mm in size (measuring from 

MCC)  

100 C18 

 

4-2-1 High-Level Fault in Outer Raceway (C2-C4) 

In a specific scenario where the IM operates at 80% of its nominal load and a mechanical speed of 2919 

rpm (C2: FR=48.65Hz) with a 2mm fault in the outer raceway, an anticipated spike is expected to appear at 

FO=148.87Hz. Fig. 9 displays the spectrum obtained using the proposed model-based approach compared 

to the SCRS method for bearing fault diagnosis, specifically for the high-level outer raceway fault. The 

observed fault signature in the spectrum is 148.83Hz, which closely aligns with the calculated outer raceway 

fault signature. The primary objective of the proposed model-based method, as explained in Section 1, is 

to reduce noise, systematically and improve the SNR. In Fig. 9(a), a visual analysis unequivocally 

showcases a significant reduction in the magnitude of the noise component, compared to the SCRS method 

(Fig. 9(b)). This reduction contributes to improved clarity in observing the fault signature, thereby 

enhancing the overall visibility of the detected fault. The discernible effect on noise reduction is a testament 

to the efficacy of the proposed model-based method. To further validate the robustness and versatility of 
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the proposed method, Fig. 10(a) and 10(c) present the spectra of the current residue for the IM operating at 

65% and 50% of its nominal load, respectively. These different operating points simulate varying load 

conditions. It is noteworthy that as the load decreases, both the motor speed and the fault signature exhibit 

an increase. Upon scrutinizing Fig. 10, one can readily discern that the proposed model-based method 

consistently and successfully identifies the high-level outer raceway fault across distinct operating 

conditions, compared to the SCRS method (Fig. 10(b) and 10(d)). This finding emphasizes the adaptability 

of the method, showcasing its ability to reliably detect faults even as the motor operates at different current 

levels. The method's proficiency in recognizing the fault signature amidst changing operational parameters 

underscores its potential for widespread applicability in fault diagnosis and condition monitoring of the IM. 

 

Fig. 9. Spectrum analysis of current residue: (a) Luenberger method and (b) SCRS method for the high-level fault in the outer 

raceway at 80% of the nominal load (test C2) 
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Fig. 10. Spectrum analysis of current residue: Luenberger and SCRS methods for high-level fault in the outer raceway at (a, b) 

65% and (c, d) 50% of the nominal load (tests C3 and C4) 

4-2-2 Low-Level Fault in Outer Raceway (C5-C7) 

To assess the proficiency of the proposed approach in identifying low-level faults within the outer raceway, 

deliberate experimentation involves the introduction of a 1mm-sized fault deliberately placed in a different 

bearing, replacing the previous one. Subsequent data collection from the IM occurs while the system is 

operating at three distinct current levels: 80%, 65%, and 50% of its nominal load. In Fig. 11, the expected 

fault signatures manifest clearly across all three spectra, providing tangible evidence of the method's 

capability to detect and isolate faults even of a smaller magnitude. A meticulous visual examination of this 

figure affirms the proposed approach's efficacy, with fault signatures on the outer raceway conspicuously 

evident. However, in comparison to the high-level outer raceway fault examined in previous tests (C2-C4), 

it is noticeable that the magnitude of these signatures is relatively lower. This diminution in magnitude 

aligns with expectations, considering the inherently reduced severity of the intentionally introduced lower-

level fault. The discernible contrast in the magnitude of fault signatures between high-level and lower-level 

faults further underscores the adaptability and sensitivity of the proposed model-based method. Despite the 
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reduced severity of the fault, the proposed method demonstrates its ability to consistently detect and 

highlight fault signatures, reaffirming its utility in fault diagnosis across varying fault levels and operating 

conditions.  

 

Fig. 11. Spectrum analysis of current residue: Luenberger and SCRS methods for low-level fault in the outer raceway at (a, b) 

80%, (c, d) 65%, and (e, f) 50% of the nominal load (tests C5-C7) 

4-2-3 High-Level Fault in Inner Raceway (C8-C10) 

In a comparable scenario where the IM operates at 80%, 65%, and 50% of its nominal load, along with 

mechanical speeds of 2915 rpm (C8: FR=48.58Hz), 2931 rpm (C9: FR=48.85Hz), and 2954 rpm (C10: 

FR=49.24Hz), featuring a 2mm fault in the inner raceway, anticipated spikes are expected to appear at 

FI=240.47Hz, FI=241.81Hz, and FI=243.74Hz, respectively (FI=4.95×FR). Fig. 12 illustrates that the 

expected fault signatures are discernible in all three spectra, closely aligning with the calculated inner 

raceway fault signatures. An examination of this visual representation affirms the effectiveness of the 

proposed method, as the fault signatures on the inner raceway are prominently visible. Fig. 12 unmistakably 

https://doi.org/10.22060/eej.2024.23380.5610


AUT Journal of Electrical Engineering 
10.22060/EEJ.2024.23380.5610 

demonstrates that in all three tests (C8-C10), the SNR index in the proposed method surpasses that of the 

SCRS method, and the fault signature frequency is more prominently and observable. 

 

Fig. 12. Spectrum analysis of current residue: Luenberger and SCRS methods for high-level fault in the inner raceway at (a, b) 

80%, (c, d) 65%, and (e, f) 50% of the nominal load (tests C8-C10) 

4-2-4 Low-Level Fault in Inner Raceway (C11-C13) 

In the subsequent experiment, a meticulously placed deliberate single-point fault, measuring 1mm in size, 

is introduced with precision into the inner raceway of the bearing. This deliberate introduction of a fault in 

a specific location allows for a targeted assessment of the proposed model-based method's capability to 

identify and characterize inner raceway faults. Consider the example when the IM operates at 80% of its 

nominal load (test C11). In this scenario, the IM’s shaft rotational frequency, denoted as FR, is calculated to 

be 48.49Hz, equivalent to a mechanical speed of 2909 rpm. Consequently, an anticipated spike at 

FI=4.95×FR=240.02Hz is expected to manifest in the spectrum. Fig. 13(a) presents the spectrum obtained 

from the proposed model-based method under this specific condition. Remarkably, the observed fault 
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signature closely aligns with the calculated inner raceway fault signature, registering at 239.97Hz. This 

precise correspondence between the observed and calculated frequencies serves as compelling evidence of 

the method's accuracy in pinpointing the location and nature of the inner raceway fault. Expanding on these 

findings, Fig. 13(c) and 13(e) are included to furnish additional evidence substantiating the efficacy of the 

proposed model-based method across a spectrum of operational conditions. These figures showcase the 

method's consistent and reliable performance in detecting and characterizing faults even as the IM operates 

under diverse current levels. The wealth of evidence presented in these spectra reinforces the method's 

adaptability and robustness in fault detection, particularly in the nuanced identification of inner raceway 

faults within the bearing. This underscores the method's potential applicability in real-world scenarios 

where precise fault diagnosis is crucial for operational integrity and maintenance decision-making. 

 

Fig. 13. Spectrum analysis of current residue: Luenberger and SCRS methods for low-level fault in the inner raceway at (a, b) 

80%, (c, d) 65%, and (e, f) 50% of the nominal load (tests C11-C13) 

4-2-5 Ball Fault (C14-C16) 
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In another experimental scenario, a precise single-point fault, deliberately introduced at 1mm in size, is 

strategically placed in the ball of the bearing. This deliberate manipulation allows for a focused evaluation 

of the proposed model-based method's capability to accurately identify and characterize faults located in 

the ball component of the bearing. Consider the instance when the IM operates at 80% of its nominal load 

(C14). In this case, the FR is calculated to be 48.61Hz, corresponding to a mechanical speed of 2916 rpm. 

Consequently, an expected spike at FB=2.00×FR=97.22Hz is anticipated in the spectrum. Fig. 14(a) presents 

the spectrum acquired from the proposed model-based method under this specific operating condition. 

Impressively, the observed fault signature closely aligns with the calculated ball fault signature, registering 

at 97.19Hz. This precise correspondence serves as compelling evidence of the method's accuracy in 

identifying and characterizing faults specifically located in the ball component of the bearing. To fortify 

the reliability of these results, Fig. 14(c) and 14(e) are included, offering additional validation of the 

proposed model-based method's effectiveness at the remaining two operating points. These figures 

underscore the method's consistent and robust performance in fault detection, reinforcing its versatility 

across a range of operational conditions. The observed fault signatures across various scenarios further 

attest to the method's capability to reliably identify faults in different components of the bearing, supporting 

its potential application in diverse industrial settings where nuanced fault detection is critical for ensuring 

machinery reliability and performance. 
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Fig. 14. Spectrum analysis of current residue: Luenberger and SCRS methods for ball fault at (a, b) 80%, (c, d) 65%, and (e, f) 

50% of the nominal load (tests C14-C16) 

4-2-6 Further Assessment of Proposed Method Performance 

To test the effectiveness of the proposed method for weak faults, a different test (condition C17) was 

conducted. Typically, one of the reasons for the onset of bearing fault is the misalignment between the IM 

and the pump. Therefore, the data for this test pertains to a bearing that has operated for 500 hours under 

conditions where there is a 2mm parallel misalignment between the motor and the pump, running at full 

load. By analyzing the IM data under the mentioned misalignment condition, the effectiveness of the 

proposed method in the early detection of bearing faults can be better understood. Fig. 15 shows the 

spectrum of this test with the application of the proposed method: (a) for a healthy bearing (test C1), and 

(b) for the bearing in condition C17. As depicted in Fig.15(a), the fault signatures of the bearing (outer, 

inner, and ball faults) are not observed, indicating the correct identification of the bearing's healthy 

condition. In Fig. 15(b), the fault signatures of the ball and the outer raceway of the bearing can be seen, 
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albeit with a low magnitude, indicating the weak intensity of the fault due to the misalignment between the 

motor and the pump, which is causing degradation of the ball's outer surface and consequently, the bearing's 

outer raceway surface. This test demonstrates the effectiveness of the proposed method in detecting faults 

at their early stages. 

 

Fig. 15. Spectrum analysis of current residue: Luenberger method (a)healthy bearing (test C1), and (b) early stages of fault due to 

misalignment (test C17) 

4-2-7 Robust Assessment 

Considering the diversity of faults (outer raceway, inner raceway, and ball faults), various working 

conditions (50%, 65%, and 80% of the nominal load of IM), and the proposed model-based method applied 

to two types of fault severity (1mm and 2mm-sized faults) at the tests C2-C16, the robustness of the suggested 

model-based method has been extensively examined.  To assess how well the suggested model-based 

method performs in real-world scenarios, a distinct test (test C18) was carried out. The data were gathered 

within the MCC of a pump station, located more than 100 meters away from the original benchmark site, 

to gauge its robustness. Within the MCC, there was a mix of loads, such as lighting and electro-pumps, 

adding complexity to the field. The data collected within the MCC exhibited a reduced SNR due to the 
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relatively minor fault signatures and the potential for noise disruption via the electrical cord. During this 

experiment, the IM worked at full capacity and maximum operating stresses, presenting a single fault 

occurring at the outer raceway of the bearing with dimensions of 2 mm in diameter and depth. Fig. 16 

presents the outcomes of the proposed method in comparison with the SCRS method. 

 

Fig. 16. Spectrum analysis of current residue: Luenberger and SCRS methods for outer raceway fault, at 50% of the nominal load, 

measuring from MCC (test C18) 

4-3- Comparison with previous works  

To better demonstrate the effectiveness of the proposed method, Table 4 presents a comparative overview 

of the SNRI index between the proposed model-based method, spectral kurtosis (SK) [2], Teager-Kaiser 

energy operator (TKEO) [5], linear prediction (LP) [4], time shifting (TS) [3], Fractional Linear Prediction 

(FLP) [16], and SCRS [1] methods on the tests C2-C18, highlighting the effectiveness of the proposed model-

based method. In Table 4, the asterisk (*) indicates that the specified method cannot identify the type of 

fault. 

4-4-Performance metrics 

To quantitatively verify the performance of the proposed model-based method using quantitative analysis, 

an additional 42 tests were conducted (in addition to the 18 tests intended in Table 3), resulting in a total of 

60 tests categorized as follows: 20 tests with healthy bearings, 20 tests with outer raceway faults, 10 tests 

with inner raceway faults, and 10 tests with ball faults. These tests evaluated the performance of two fault 

https://doi.org/10.22060/eej.2024.23380.5610


AUT Journal of Electrical Engineering 
10.22060/EEJ.2024.23380.5610 

detection methods: Luenberger observer (the proposed method)) and SCRS [1] in identifying four bearing 

states: healthy (class 0), outer fault (class 1), inner fault (class 2), and ball fault (class 3).  

Table 4. Comparison of the SNR in the current noise cancellation methods for all three fault types 
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High-Level Outer Raceway 

Fault 

C2=80% 0.007 0.036 0.004 0.059 0.132 0.162 0.508 

C3=65% 0.006 0.022 0.003 0.043 0.212 0.417 0.748 

C4=50% 0.015 0.015 0.003 0.068 0.571 0.689 0.977 

Low-Level Outer Raceway 

Fault 

C5=80% 0.001 0.056 0.002 0.079 0.173 0.142 0.871 

C6=65% 0.006 0.045 0.005 0.082 0.111 0.145 0.524 

C7=50% 0.008 0.034 0.004 0.078 0.091 0.162 0.317 

High-Level Inner Raceway 

Fault 

C8=80% * 0.010 0.005 0.110 0.121 0.145 0.505 

C9=65% * 0.009 0.003 0.076 0.095 0.092 0.305 

C10=50% * 0.006 0.002 0.063 0.087 0.104 0.302 

Low-Level Inner Raceway 

Fault 

C11=80% * 0.155 0.080 0.196 0.243 0.397 0.674 

C12=65% * 0.052 0.055 0.063 0.126 0.181 0.821 

C13=50% * 0.082 0.051 0.093 0.342 0.25 0.713 

Ball Fault 

C14=80% 0.030 * 0.011 0.017 0.123 0.158 0.533 

C15=65% 0.035 * 0.023 0.027 0.075 0.319 0.607 

C16=50% 0.079 * 0.013 0.016 0.298 0.421 0.879 

Weak ball fault (due to 

misalignment) 

C17=100% * * * * * * 0.095 

High-Level Outer Raceway 

Fault (measuring from 

MCC) 

C18=100% * * * * * 0.121 0.243 

A confusion matrix [35] is used to summarize the comparison results (see Fig. 17). Fig. 17(a) shows that 

out of the 40 tests conducted on faulty bearings, the proposed method correctly identified 39 as faulty and 

misclassified 1 as healthy. Meanwhile, the SCRS method identifies 35 tests as faulty and incorrectly 

predicts 5 tests as healthy (Fig. 17(b)).  The matrix demonstrates that the proposed method effectively 

differentiates between healthy and faulty bearings. Correct predictions are positioned along the diagonal of 

the matrix, making it straightforward to visually identify any prediction errors, which appear as values 

outside the diagonal. The comparative charts of evaluation metrics: precision, recall, specificity, and 

accuracy [35] for both methods are shown in Fig. 18. The results indicate that the proposed model-based 

method generally outperforms the SCRS method across all evaluated metrics. For class 0 (healthy state), 

the proposed method shows a higher precision (0.95 vs. 0.78), specificity (0.97 vs. 0.88), and accuracy 
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(0.95 vs. 0.88), while both methods have the same recall (0.90). In class 1 (outer fault), the proposed method 

achieves perfect recall (1.00) and higher overall metrics than SCRS, which had a recall of 0.90. Both 

methods perform similarly with identical metrics for class 2 (inner fault). However, for class 3 (ball fault), 

the proposed method exhibits perfect precision, recall, specificity, and accuracy, while SCRS shows a lower 

recall (0.80). These findings, illustrated in Fig. 17 and Fig. 18, suggest that the proposed model-based 

method provides more reliable and consistent performance in bearing fault detection compared to the SCRS, 

particularly in achieving higher precision, which is critical for minimizing false positives and achieving a 

balanced performance. 

 

Fig. 17. Comparative analysis of confusion matrices for Luenberger observer (proposed) and SCRS methods 

 

Fig. 18. Comparative charts of evaluation metrics: (a) precision, (b) recall, (c) specificity, and (d) accuracy for Luenberger observer 

(proposed) and SCRS methods 
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5- Conclusion  

This paper introduces a robust model-based approach for the detection of bearing faults in IMs operating 

under diverse loads and challenging industrial conditions. The diagnostic strategy utilizes a Luenberger 

observer to generate current residues, allowing the extraction of fault signatures associated with the outer 

raceway, inner raceway, and ball faults. To validate the efficacy of our proposed method, comprehensive 

tests were conducted across three distinct operating points, intentionally introducing three types of bearing 

faults (outer raceway, inner raceway, and ball). Moreover, tests for outer raceway and inner raceway faults 

were conducted at both high and low severity levels. The results demonstrate the success of the proposed 

model-based approach in effectively addressing the complexities of bearing fault diagnosis across different 

operating conditions and varying degrees of fault severity.  

The proposed method, using the Luenberger observer, efficiently diagnoses bearing faults in IMs by 

distinguishing mechanical faults without relying on electrical signals. The integration of noise cancellation 

enhances robustness and accuracy, making this approach a significant advancement in fault detection. 

Unlike conventional methods that often rely on complex signal processing techniques; also, compared to 

traditional model-based methods, which often require intricate mathematical models and precise parameter 

estimation, the proposed approach offers a simpler and more practical solution. By utilizing a Luenberger 

observer, the method circumvents the need for complex models and extensive parameter tuning, thus 

reducing computational overhead and enhancing applicability across diverse operating conditions. In 

contrast to data-driven techniques, such as deep learning, which rely heavily on vast amounts of training 

data and intricate feature selection, the proposed method offers a more transparent and interpretable 

approach. Rather than depending solely on data patterns, the method leverages fundamental principles of 

motor operation and bearing fault characteristics, resulting in a more intuitive and physically meaningful 

diagnostic process. 

6- Nomenclature 
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IM Induction motor 

MCSA Motor current signature analysis 

MCC Motor control center 

SNR Signal-to-noise ratio 

LP Linear prediction 

FFT Fast Fourier transform 

SCRS Synchronized current residue square 

SNRI Signal-to-noise ratio index 

SK spectral kurtosis 

TKEO Teager-Kaiser energy operator 

TS time shifting 

FLP Fractional Linear Prediction 

FR Rotor mechanical frequency 

FO Outer raceway fault frequency 

FI Inner raceway fault frequency 

FB Ball fault frequency 

Db Ball diameter 

Dc Pitch diameter 

fs Supply frequency 
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