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ABSTRACT: Recognizing the emotions from speech signals is very important in different applications 
of human-computer-interaction (HCI). In this paper, we present a novel model for speech emotion 
recognition (SER) based on new multi-task parallel convolutional autoencoder (PCAE) and transformer 
networks. The PCAEs have been proposed to generate high-level informative harmonic sparse features 
from the input. With the aid of the proposed parallel CAE, we can extract nonlinear sparse features in an 
ensemble manner improving the accuracy and the generalization of the model. These PCAEs also address 
the problem of the loss of initial sequential information during convolution operations for SER tasks. We 
have also proposed using a transformer in parallel with PCAEs to gather long-term dependencies between 
speech samples and make use of its self-attention mechanism. Finally, we have proposed a multi-task 
loss function made up of two terms of classification and AE mapper losses. This multi-task loss tries not 
only to reduce the classification error but also the regression error caused by the PCAEs which also work 
as mappers between the input and output Mel-frequency-cepstral-coefficients (MFCCs). Thus, we can 
both focus on finding accurate features with PCAEs and improving the classification results. We have 
evaluated our proposed method on the RAVDESS SER dataset in different terms of accuracy, precision, 
recall, and f1-score. The average accuracy of the proposed model on eight emotions outperforms all the 
recent baselines. 
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1- Introduction
Emotions serve as a window into human psychology, 

revealing both their underlying mental state and the true 
intent behind their words. Recognizing this is a critical 
step in cultivating more meaningful and harmonious 
interactions between humans and machines[1]. Speech, 
facial expressions[2], and EEG signals[3] are all forms of 
expressing emotion. Among these, EEG signals provide the 
clearest indication of emotion[4]. However, they cannot be 
used in everyday human-computer dialogue. Also, appearance 
alone cannot reliably reveal a person’s true emotions, as 
someone may outwardly seem happy but inwardly be upset 
or sad. Despite the fact that speech is the most natural and 
widely used form of communication, a person’s mental and 
psychological state can significantly impact their speech. 
This is why speech-based systems have gained particular 
importance in the field of emotion recognition.

Speech emotion recognition (SER) systems have a wide 
range of applications across diverse domains, including 
healthcare[5], cognitive science[6], psychology[7], 
marketing[8], call centers[9], lie detectors, voice assistants 
and the entertainment industry. For instance, SER systems 

can be utilized to identify the emotions of pilots in the 
cockpit or drivers on the road to enhance safety[10, 11], 
monitor patient well-being and detect early signs of distress 
in healthcare settings, develop more effective treatments for 
mental health disorders, create more engaging, personalized 
marketing campaigns and utilizing emotions detected from 
an actor’s speech to convey the emotional state of a particular 
scene in subtitles and suggest background music.

There are considerable challenges and complexities in 
enhancing the performance of these systems. First, emotions 
are inherently subjective and multifaceted, often perceived 
and expressed differently by individuals. Additionally, the 
vocal anatomy of the larynx and mouth varies significantly 
among individuals, further complicating accurate emotion 
recognition. Moreover, factors like age, gender, language, 
and dialect introduce even greater variations in vocal 
patterns. Furthermore, humans rarely express emotions in 
a purely basic, one-dimensional manner. Instead, emotions 
often manifest as complex blends of multiple emotions, 
making it difficult for SER systems to accurately identify 
the predominant emotion. Emotional speech data is another 
stumbling block in this field. In the field of emotion 
recognition from speech, there are two types of databases: 
natural and acted [12]. Natural databases are people’s 
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everyday conversations. Analyzing natural databases has 
yielded positive results. Nevertheless, accurately capturing 
everyday speech is challenging. Actors in acted databases are 
asked to say different sentences with different emotions. As 
a result, training systems on acted data is not as accurate as 
training them on real-world data because it fails to capture 
the natural variation of human speech [13]. Moreover, the 
development of SER systems is hampered by the need for 
extensive labeled data, which requires a significant amount 
of time and effort from professional annotators to classify and 
label audio recordings with corresponding emotions.

In this paper, we propose a novel method to learn a 
representation of Mel-Frequency Cepstral Coefficient 
(MFCC) features for speech emotion recognition. Speech 
signals are composed of both temporal and spatial information, 
and both types of information must be considered to achieve 
an effective representation. To consider the limited amount 
of available data and the need for generalizable models, 
we propose employing a convolutional autoencoder with a 
transformer to extract robust representations from speech 
data. We have proposed the transformer to enable the model 
to access both temporal features and the auxiliary task of 
reconstructing the MFCC from the feature vector which 
enhances the system’s generalization. We have proposed the 
autoencoder to provide the system with multi-task training 
ability. To this end, a multi-task loss function composed of two 
tasks of emotion classification and accurately mapping speech 
information in the autoencoder (AE) is proposed. Simple 
convolutional models often struggle to achieve the required 
accuracy in speech-emotion classification due to the loss of 
initial sequential information during convolution operations. 
To address this issue, we suggest two parallel convolutional 
networks to extract sequential information leading to high-
level features. We extract ensembled high-level features by 
this proposed parallel network. In other words, we train each 
convolutional autoencoder network with different random 
variables. Then, we finally insert both inputs for the classifier 
to make use of the ensemble learning technique. It is worth 
mentioning that we extract appropriate non-linear sparse 
features by this autoencoder. Therefore, we propose using 
sparse features almost free of irrelevant information from 
the bottleneck layer of AE leading to informative features 
for emotion recognition. Suggesting these non-linear sparse 
features by ensemble learning in a multi-task manner for 
speech emotion recognition is an important contribution 
of this paper. Additionally, white noise is introduced to the 
training data to enhance the model’s generalization and noise 
robustness. 

The paper is structured as follows: Section 2 reviews 
related work. Section 3 describes the proposed method. 
Section 4 presents the experiments and results as well as 
discussions. Finally, we conclude the paper in Section 5.

2- Related Work of SER
A typical approach to human speech emotion recognition 

has three stages of feature extraction, feature selection or 
dimension reduction, and classification[14]. The first two 

stages of feature extraction and feature dimension reduction 
can represent the data appropriately, which would solve 
many problems in this field. MFCC coefficients were used as 
features in the earlier works [15]. Later, MFCC or some other 
features such as non-negative matrix factorization (NMFCC) 
were used as inputs to machine learning classifiers including 
Support Vector Machine (SVM); Linear Discriminant 
Analysis; Hidden Markov Models[16-19].

The new ideas and developments in the speech recognition 
industry and its subfields that followed the birth of deep neural 
networks have made a big revolution to improve the results 
in this field. A very simple type of neural network known as 
a Multi-Layer Perceptron was suggested in [20] for emotion 
recognition based on age and gender as auxiliary features 
for discovering emotions from labeled data. In [21], the 
authors used a type of Convolutional Neural Network (CNN)  
architecture. This method was significantly superior to the 
Support Vector Machine method as the experiment results 
showed. In [22], emotion classification from spectrograms 
is done with pre-trained convolutional architectures such as 
AlexNet and VGG by transfer learning. A CNN trained on 
the dataset in [23] is used to extract features from speech 
spectrograms. These features are then used to train an SVM 
classifier to recognize speech emotions. In [24], a CNN-
based model was proposed that uses two convolutional layers 
with different kernel sizes to extract horizontal and vertical 
features from speech spectrograms. The output of these 
layers is then concatenated and fed to a fully connected layer 
for classification. The authors in [25] explored an alternative 
approach, utilizing a fully convolutional neural network 
(FCN) devoid of a dense layer, enabling the model to handle 
audio samples of varying durations. They trained the model 
using both Mel-spectrograms and MFCCs, discovering that 
MFCCs yielded superior performance.

Recently, Researchers have increasingly focused on 
methods that can automatically learn discriminative and 
high-level representations of speech data for emotion 
recognition. In [26], a sparse autoencoder-based method for 
transfer learning of features in the field of speech emotion 
recognition is proposed. After MFCC feature extraction, in 
[27], they implemented a simple autoencoder and stacked 
autoencoder model. In [28], the authors proposed the use 
of autoencoders for the harmonization of heterogeneous 
extracted features. They argued that using a wide range of 
features in emotion recognition reduces the final accuracy due 
to their heterogeneity. They presented a model that removes 
heterogeneous acoustic features that may contain redundant 
and irrelevant information.

After Google successfully employed attention 
mechanisms to enhance machine translation[29], attention 
has been incorporated into a wide range of deep learning 
models. Recent research [30] shows that the use of recurrent 
networks, such as LSTM (Long-Short-Term-Memory) with 
a directional attention layer, can perform well compared to 
other deep learning methods. Attention-based CNN models 
[31] have also shown good performance. In a recent study, Xu 
et al. [32] combined a multi-head attention-based approach 
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with a CNN. High accuracy rates were achieved using 
spectral features. 

3- Proposed Model
In this section, we describe our proposed model as 

illustrated in Fig. 1, which is suggested for improving the 
performance of self-supervised convolutional autoencoder 
speech emotion recognition systems, that can select and 
extract higher-level features from MFCCs. This network is 
trained in a multi-task manner so that reconstructing the input 
spectrogram as an auxiliary task is defined along with feature 
selection and extraction for classification. Also, to extract 
proper temporal features from the input, we have proposed 
a transformer.

We explain the main blocks of our proposed model in the 
following subsections.

3- 1- Mel Frequency Cepstral Coefficients
Mel Frequency Cepstral Coefficients are one of the most 

widely used features in this field. In this research, we use this 
feature because MFCCs are less sensitive to changes in the 
environment such as background noise and channel distortion 
[33]. Also, the mel frequency bank is consistent with the 
human cochlear frequency response, which causes the system 
to become well acquainted with the way humans perceive and 
distinguish sounds. 

3- 2- Parallel Convolutional Autoencoder Network with 
Ensemble Learning

Autoencoder networks are a type of unsupervised 
networks and do not require labeled data for their training. 
In this network, an output is tried to be made as similar as 
possible to the input. A key feature of autoencoders is their 
ability to reduce the dimensionality of the input data in 
their bottleneck layer. Convolutional autoencoders utilize 
convolutional layers to generate a compressed representation 
of the image [34]. Usually, convolutional autoencoders are 
used for reducing and compressing the input image and for 
eliminating noise while trying to retain important information 
[35-37]. More precisely, a convolutional autoencoder consists 
of two convolution-based models, the encoder and decoder, 
as depicted in Figure 2 The encoder is mainly used for 
encoding the initial input image into a hidden representation 
of smaller dimensions called the bottleneck layer. However, 
the decoder’s job is to restore the compressed hidden 
representation into an output image of equal dimensions to 
the original image.

We consider the vector x as the input data of the 
convolutional autoencoder (CAE) network such that:

(1) 𝑥𝑥 = 𝑋𝑋𝑀𝑀×𝐻𝐻×𝑊𝑊×𝐶𝐶  
 

(2) {𝑦𝑦 = 𝐸𝐸(𝑥𝑥)
𝑥𝑥 = 𝐷𝐷(𝑦𝑦) 

 

(3) 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) 
 

(4) 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) = 1
2 ‖𝑥̂𝑥(𝑘𝑘) − 𝑥𝑥(𝑘𝑘)‖2 

 

(5) 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶

= 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 (𝐷𝐷 (𝐸𝐸 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1
 

 

(6) 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘))

= 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶1 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘))

+ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶2 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) 

(7) 𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

= 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶1 (𝐷𝐷1 (𝐸𝐸1 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1

+ 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶2 (𝐷𝐷2 (𝐸𝐸2 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1
 

 

 

(8) 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝒬𝒬, Κ, 𝑉𝑉) = softmax (𝒬𝒬𝐾𝐾𝑇𝑇

√𝑛𝑛
) 𝑉𝑉 

 

 

(9) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝒬𝒬, 𝐾𝐾, 𝑉𝑉)
= [ℎ𝑒𝑒𝑒𝑒𝑒𝑒1; ℎ𝑒𝑒𝑒𝑒𝑒𝑒2; … ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚 ]𝑊𝑊𝜊𝜊 

 (1)

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The proposed model composed of parallel convolutional autoencoders and transformer with multi-task 
training 

Fig. 1. The proposed model composed of parallel convolutional autoencoders and transformer with multi-task 
training
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where M is the number of samples, H is the height of a 
sample, W is the width of a sample and C is the number of 
channels in input samples. The encoder and decoder outputs 
are as follows:

(1) 𝑥𝑥 = 𝑋𝑋𝑀𝑀×𝐻𝐻×𝑊𝑊×𝐶𝐶  
 

(2) {𝑦𝑦 = 𝐸𝐸(𝑥𝑥)
𝑥𝑥 = 𝐷𝐷(𝑦𝑦) 

 

(3) 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) 
 

(4) 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) = 1
2 ‖𝑥̂𝑥(𝑘𝑘) − 𝑥𝑥(𝑘𝑘)‖2 

 

(5) 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶

= 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 (𝐷𝐷 (𝐸𝐸 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1
 

 

(6) 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘))

= 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶1 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘))

+ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶2 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) 

(7) 𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

= 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶1 (𝐷𝐷1 (𝐸𝐸1 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1

+ 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶2 (𝐷𝐷2 (𝐸𝐸2 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1
 

 

 

(8) 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝒬𝒬, Κ, 𝑉𝑉) = softmax (𝒬𝒬𝐾𝐾𝑇𝑇

√𝑛𝑛
) 𝑉𝑉 

 

 

(9) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝒬𝒬, 𝐾𝐾, 𝑉𝑉)
= [ℎ𝑒𝑒𝑒𝑒𝑒𝑒1; ℎ𝑒𝑒𝑒𝑒𝑒𝑒2; … ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚 ]𝑊𝑊𝜊𝜊 

 (2)

The performance of the convolutional autoencoder can 
be measured by the reconstruction error, eCAE, which is 
calculated as follows:

(1) 𝑥𝑥 = 𝑋𝑋𝑀𝑀×𝐻𝐻×𝑊𝑊×𝐶𝐶  
 

(2) {𝑦𝑦 = 𝐸𝐸(𝑥𝑥)
𝑥𝑥 = 𝐷𝐷(𝑦𝑦) 

 

(3) 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) 
 

(4) 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) = 1
2 ‖𝑥̂𝑥(𝑘𝑘) − 𝑥𝑥(𝑘𝑘)‖2 

 

(5) 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶

= 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 (𝐷𝐷 (𝐸𝐸 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1
 

 

(6) 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘))

= 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶1 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘))

+ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶2 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) 

(7) 𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

= 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶1 (𝐷𝐷1 (𝐸𝐸1 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1

+ 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶2 (𝐷𝐷2 (𝐸𝐸2 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1
 

 

 

(8) 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝒬𝒬, Κ, 𝑉𝑉) = softmax (𝒬𝒬𝐾𝐾𝑇𝑇

√𝑛𝑛
) 𝑉𝑉 

 

 

(9) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝒬𝒬, 𝐾𝐾, 𝑉𝑉)
= [ℎ𝑒𝑒𝑒𝑒𝑒𝑒1; ℎ𝑒𝑒𝑒𝑒𝑒𝑒2; … ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚 ]𝑊𝑊𝜊𝜊 

 (3)

LCAE denotes the squared Euclidean distance defined as 
follows:

(1) 𝑥𝑥 = 𝑋𝑋𝑀𝑀×𝐻𝐻×𝑊𝑊×𝐶𝐶  
 

(2) {𝑦𝑦 = 𝐸𝐸(𝑥𝑥)
𝑥𝑥 = 𝐷𝐷(𝑦𝑦) 

 

(3) 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) 
 

(4) 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) = 1
2 ‖𝑥̂𝑥(𝑘𝑘) − 𝑥𝑥(𝑘𝑘)‖2 

 

(5) 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶

= 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 (𝐷𝐷 (𝐸𝐸 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1
 

 

(6) 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘))

= 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶1 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘))

+ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶2 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) 

(7) 𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

= 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶1 (𝐷𝐷1 (𝐸𝐸1 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1

+ 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶2 (𝐷𝐷2 (𝐸𝐸2 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1
 

 

 

(8) 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝒬𝒬, Κ, 𝑉𝑉) = softmax (𝒬𝒬𝐾𝐾𝑇𝑇

√𝑛𝑛
) 𝑉𝑉 

 

 

(9) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝒬𝒬, 𝐾𝐾, 𝑉𝑉)
= [ℎ𝑒𝑒𝑒𝑒𝑒𝑒1; ℎ𝑒𝑒𝑒𝑒𝑒𝑒2; … ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚 ]𝑊𝑊𝜊𝜊 

 (4)

Then the cost function can be shown in its general form 

as follows:

(1) 𝑥𝑥 = 𝑋𝑋𝑀𝑀×𝐻𝐻×𝑊𝑊×𝐶𝐶  
 

(2) {𝑦𝑦 = 𝐸𝐸(𝑥𝑥)
𝑥𝑥 = 𝐷𝐷(𝑦𝑦) 

 

(3) 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) 
 

(4) 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) = 1
2 ‖𝑥̂𝑥(𝑘𝑘) − 𝑥𝑥(𝑘𝑘)‖2 

 

(5) 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶

= 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 (𝐷𝐷 (𝐸𝐸 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1
 

 

(6) 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘))

= 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶1 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘))

+ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶2 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) 

(7) 𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

= 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶1 (𝐷𝐷1 (𝐸𝐸1 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1

+ 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶2 (𝐷𝐷2 (𝐸𝐸2 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1
 

 

 

(8) 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝒬𝒬, Κ, 𝑉𝑉) = softmax (𝒬𝒬𝐾𝐾𝑇𝑇

√𝑛𝑛
) 𝑉𝑉 

 

 

(9) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝒬𝒬, 𝐾𝐾, 𝑉𝑉)
= [ℎ𝑒𝑒𝑒𝑒𝑒𝑒1; ℎ𝑒𝑒𝑒𝑒𝑒𝑒2; … ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚 ]𝑊𝑊𝜊𝜊 

 (5)

In our proposed method, we use two convolutional 
autoencoders with architecture illustrated in Figure 3, in 
parallel to generate high-level features from the bottleneck 
layer of each AE without losing important information 
leading to a parallel CAE (PCAE). This parallel network 
extracts ensembled high-level features, i.e. we train each 
network with different random variables and finally use both 
as the inputs for the classifier making use of the ensemble 
learning procedure. In addition, the proposed network 
architecture can help reduce the local minimum problem by 
learning different features and combining them while it is 
being initialized by different values in the proposed PCAE. 
This autoencoder can also be considered as an appropriate 
network for extracting non-linear sparse features. Thus, its 
bottleneck layer represents the sparse features that have been 
proven to carry informative features and harmonic structure 
of speech signals for emotion recognition [19]. 

In other words, the bottleneck layer has much fewer 
features leading to more informative coefficients almost 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Convolutional autoencoder diagram 

Fig. 2. Convolutional autoencoder diagram

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Proposed convolutional autoencoder architecture 
Fig. 3. Proposed convolutional autoencoder architecture
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without irrelevant information. This is helpful for the final 
purpose of classification. 

The cost function of the parallel autoencoder, ,PCAEL  is 
as follows:

(1) 𝑥𝑥 = 𝑋𝑋𝑀𝑀×𝐻𝐻×𝑊𝑊×𝐶𝐶  
 

(2) {𝑦𝑦 = 𝐸𝐸(𝑥𝑥)
𝑥𝑥 = 𝐷𝐷(𝑦𝑦) 

 

(3) 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) 
 

(4) 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) = 1
2 ‖𝑥̂𝑥(𝑘𝑘) − 𝑥𝑥(𝑘𝑘)‖2 

 

(5) 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶

= 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 (𝐷𝐷 (𝐸𝐸 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1
 

 

(6) 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘))

= 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶1 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘))

+ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶2 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) 

(7) 𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

= 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶1 (𝐷𝐷1 (𝐸𝐸1 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1

+ 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶2 (𝐷𝐷2 (𝐸𝐸2 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1
 

 

 

(8) 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝒬𝒬, Κ, 𝑉𝑉) = softmax (𝒬𝒬𝐾𝐾𝑇𝑇

√𝑛𝑛
) 𝑉𝑉 

 

 

(9) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝒬𝒬, 𝐾𝐾, 𝑉𝑉)
= [ℎ𝑒𝑒𝑒𝑒𝑒𝑒1; ℎ𝑒𝑒𝑒𝑒𝑒𝑒2; … ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚 ]𝑊𝑊𝜊𝜊 

 (6)

(1) 𝑥𝑥 = 𝑋𝑋𝑀𝑀×𝐻𝐻×𝑊𝑊×𝐶𝐶  
 

(2) {𝑦𝑦 = 𝐸𝐸(𝑥𝑥)
𝑥𝑥 = 𝐷𝐷(𝑦𝑦) 

 

(3) 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) 
 

(4) 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) = 1
2 ‖𝑥̂𝑥(𝑘𝑘) − 𝑥𝑥(𝑘𝑘)‖2 

 

(5) 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶

= 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 (𝐷𝐷 (𝐸𝐸 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1
 

 

(6) 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘))

= 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶1 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘))

+ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶2 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) 

(7) 𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

= 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶1 (𝐷𝐷1 (𝐸𝐸1 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1

+ 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶2 (𝐷𝐷2 (𝐸𝐸2 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1
 

 

 

(8) 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝒬𝒬, Κ, 𝑉𝑉) = softmax (𝒬𝒬𝐾𝐾𝑇𝑇

√𝑛𝑛
) 𝑉𝑉 

 

 

(9) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝒬𝒬, 𝐾𝐾, 𝑉𝑉)
= [ℎ𝑒𝑒𝑒𝑒𝑒𝑒1; ℎ𝑒𝑒𝑒𝑒𝑒𝑒2; … ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚 ]𝑊𝑊𝜊𝜊 

 (7)

where 1CAEL  and 2CAEL  are the cost functions of the 
first and second convolutional autoencoder networks.

3- 3- Transformer Encoder
The transformer is much more effective in speech 

emotion recognition than recurrent networks. Recurrent 
networks are not able to detect the subtle changes in tone, 
amplitude, and pitch which frequently express emotions, as 
well as the transformer can. It is also capable of measuring 
long-term dependencies in speech sequences, which are 
necessary for inferring emotion from a long sequence of 
time steps. Moreover, it can also take several steps of time 

at once along the speech series Thus, it is able to grasp how 
emotion is distributed over the whole segment of speech. It 
is also computationally more efficient. The first sublayer is 
a self-attention layer and the second is a feedforward neural 
network. As illustrated in Figure 4, Each encoder has two 
sublayers. This encoder input first travels through a self-
attention layer which allows the encoder to concentrate on 
other parts at the same time that it is encoding one part. The 
output of the self-attention layer is passed to a feedforward 
neural network layer. The attention mechanism that allows 
the transformer to relate different elements of an input is 
computed as follows[29]:

(1) 𝑥𝑥 = 𝑋𝑋𝑀𝑀×𝐻𝐻×𝑊𝑊×𝐶𝐶  
 

(2) {𝑦𝑦 = 𝐸𝐸(𝑥𝑥)
𝑥𝑥 = 𝐷𝐷(𝑦𝑦) 

 

(3) 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) 
 

(4) 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) = 1
2 ‖𝑥̂𝑥(𝑘𝑘) − 𝑥𝑥(𝑘𝑘)‖2 

 

(5) 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶

= 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 (𝐷𝐷 (𝐸𝐸 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1
 

 

(6) 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘))

= 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶1 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘))

+ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶2 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) 

(7) 𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

= 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶1 (𝐷𝐷1 (𝐸𝐸1 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1

+ 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶2 (𝐷𝐷2 (𝐸𝐸2 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1
 

 

 

(8) 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝒬𝒬, Κ, 𝑉𝑉) = softmax (𝒬𝒬𝐾𝐾𝑇𝑇

√𝑛𝑛
) 𝑉𝑉 

 

 

(9) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝒬𝒬, 𝐾𝐾, 𝑉𝑉)
= [ℎ𝑒𝑒𝑒𝑒𝑒𝑒1; ℎ𝑒𝑒𝑒𝑒𝑒𝑒2; … ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚 ]𝑊𝑊𝜊𝜊 

 (8)

In this formula,  , K , and V  are input matrices.   is 
the query, K  is the key, and V  is the value matrices. n  is 
a constant parameter which is the dimension of the key space. 
The Softmax function normalizes the attention values.

Multi-head attention is a technique to compute attention in 
a language model, letting the model understand relationships 
between different parts of a sequence from different points 
of view. The multi-head attention approach computes the 
attention mechanism several times using different weight 
matrices. These weight matrices enable the model to 
concentrate on different aspects of the relations. It is defined 
as follows]29[:

(1) 𝑥𝑥 = 𝑋𝑋𝑀𝑀×𝐻𝐻×𝑊𝑊×𝐶𝐶  
 

(2) {𝑦𝑦 = 𝐸𝐸(𝑥𝑥)
𝑥𝑥 = 𝐷𝐷(𝑦𝑦) 

 

(3) 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) 
 

(4) 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) = 1
2 ‖𝑥̂𝑥(𝑘𝑘) − 𝑥𝑥(𝑘𝑘)‖2 

 

(5) 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶

= 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 (𝐷𝐷 (𝐸𝐸 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1
 

 

(6) 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘))

= 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶1 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘))

+ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶2 ((𝑥𝑥(𝑘𝑘)), 𝑥𝑥(𝑘𝑘)) 

(7) 𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

= 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶1 (𝐷𝐷1 (𝐸𝐸1 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1

+ 1
𝑀𝑀 ∑ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶2 (𝐷𝐷2 (𝐸𝐸2 ((𝑥𝑥(𝑘𝑘)))) , 𝑥𝑥(𝑘𝑘))

𝑀𝑀

𝑘𝑘=1
 

 

 

(8) 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝒬𝒬, Κ, 𝑉𝑉) = softmax (𝒬𝒬𝐾𝐾𝑇𝑇

√𝑛𝑛
) 𝑉𝑉 

 

 

(9) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝒬𝒬, 𝐾𝐾, 𝑉𝑉)
= [ℎ𝑒𝑒𝑒𝑒𝑒𝑒1; ℎ𝑒𝑒𝑒𝑒𝑒𝑒2; … ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚 ]𝑊𝑊𝜊𝜊 

 (9)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The block diagram of the transformer Fig. 4. The block diagram of the transformer
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(10) ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝒬𝒬𝑊𝑊𝑖𝑖
𝒬𝒬, Κ𝑊𝑊𝑖𝑖

𝑘𝑘, 𝑉𝑉𝑊𝑊𝑖𝑖
𝑉𝑉) 

 

 

(11) 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (1 − 𝛼𝛼) × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + (𝛼𝛼)
× 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  

 

(12) 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑝𝑝, 𝑞𝑞) = − ∑ 𝑝𝑝𝑖𝑖

𝑁𝑁

𝑖𝑖=1
𝑙𝑙𝑙𝑙𝑙𝑙𝑞𝑞𝑖𝑖 

 

(13) 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑡𝑡𝑝𝑝 + 𝑡𝑡𝑛𝑛

𝑡𝑡𝑝𝑝 + 𝑡𝑡𝑛𝑛 + 𝑓𝑓𝑝𝑝 + 𝑓𝑓𝑛𝑛
 

 

 

(14) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑡𝑡𝑝𝑝

𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑝𝑝
 

 

(15) 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑡𝑡𝑝𝑝

𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑛𝑛
 

 

 

(16) 𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙  

 

 (10)

The W  matrices here are the trainable weight matrices 
generated by the model. The proposed method uses four 
stacked identical blocks of the transformer encoder for feature 
extraction. Each block includes a multi-head self-attention 
layer and a fully connected neural network feedforward layer.

3- 4- Multi-Task Learning
In multi-task learning, the model is trained simultaneously 

on multiple tasks. This shared representation allows the model 
to learn all of these tasks more effectively. Therefore, multi-
task learning can improve the performance of the model on 
all the desired tasks. More importantly, multi-task learning 
reduces the number of training data samples required for each 
task, 

which benefits generalization. This method can also be 
used to address the problem of overfitting. 

In our proposed model, the model’s primary task is to map 
emotions from features extracted from the input data, while 
the secondary task is to reconstruct the input data using the 
output of the bottleneck layer of the autoencoder network. 
Therefore, we define the multi-task cost function as follows:

(10) ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝒬𝒬𝑊𝑊𝑖𝑖
𝒬𝒬, Κ𝑊𝑊𝑖𝑖

𝑘𝑘, 𝑉𝑉𝑊𝑊𝑖𝑖
𝑉𝑉) 

 

 

(11) 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (1 − 𝛼𝛼) × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + (𝛼𝛼)
× 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  

 

(12) 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑝𝑝, 𝑞𝑞) = − ∑ 𝑝𝑝𝑖𝑖

𝑁𝑁

𝑖𝑖=1
𝑙𝑙𝑙𝑙𝑙𝑙𝑞𝑞𝑖𝑖 

 

(13) 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑡𝑡𝑝𝑝 + 𝑡𝑡𝑛𝑛

𝑡𝑡𝑝𝑝 + 𝑡𝑡𝑛𝑛 + 𝑓𝑓𝑝𝑝 + 𝑓𝑓𝑛𝑛
 

 

 

(14) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑡𝑡𝑝𝑝

𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑝𝑝
 

 

(15) 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑡𝑡𝑝𝑝

𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑛𝑛
 

 

 

(16) 𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙  

 

 (11)

where α  is a threshold parameter to control the 
importance of each cost function term. Here, MTAE stands 
for Multi-Task Autoencoder. Since the main task in this paper 
is emotion classification and the auxiliary task is autoencoder 
training, we consider a larger α  so that the model’s main 
focus is on classification accuracy. For the classification loss, 
we use cross-entropy loss, which is defined as follows:

(10) ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝒬𝒬𝑊𝑊𝑖𝑖
𝒬𝒬, Κ𝑊𝑊𝑖𝑖

𝑘𝑘, 𝑉𝑉𝑊𝑊𝑖𝑖
𝑉𝑉) 

 

 

(11) 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (1 − 𝛼𝛼) × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + (𝛼𝛼)
× 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  

 

(12) 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑝𝑝, 𝑞𝑞) = − ∑ 𝑝𝑝𝑖𝑖

𝑁𝑁

𝑖𝑖=1
𝑙𝑙𝑙𝑙𝑙𝑙𝑞𝑞𝑖𝑖 

 

(13) 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑡𝑡𝑝𝑝 + 𝑡𝑡𝑛𝑛

𝑡𝑡𝑝𝑝 + 𝑡𝑡𝑛𝑛 + 𝑓𝑓𝑝𝑝 + 𝑓𝑓𝑛𝑛
 

 

 

(14) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑡𝑡𝑝𝑝

𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑝𝑝
 

 

(15) 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑡𝑡𝑝𝑝

𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑛𝑛
 

 

 

(16) 𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙  

 

 (12)

where N specifies the number of classes, iq  indicates the 
predicted probability distribution of category i, and ip  is the 
actual probability distribution of category i. The sum of p  
(or q ) equals one.

4- Experiments
This section empirically examines the proposed PCAENet 

model for speech emotion recognition and demonstrates 
its efficiency. We conduct extensive experiments using the 
standard REVDESS dataset. The performance comparison 
of the proposed model with other advanced reported models 
is also reported. A complete description of speech emotion 

datasets and emotion recognition outputs along with 
discussion is provided in the following subsections.

4- 1- Dataset
The RAVDESS [38]  dataset contains a total of 7356 

audio-visual files (24.8 GB) of speech, song, and facial 
displays recorded at a sampling rate of 48000. It is a dynamic, 
multimodal set of emotional states and contents from North 
American English speakers. The database is gender balanced 
consisting of 24 professional actors, vocalizing two lexically 
matched statements in a neutral North American accent. It 
consists of 8 emotions calm, happy, sad, angry, fearful, 
surprised, disgusted, and neutral. Each expression is produced 
at two levels of emotional intensity (normal, and strong), with 
an additional neutral expression. All data is available in three 
modality formats: Audio-Video, Audio-only, and Video-only. 
In this research, only the audio data has been used. Table.1  
provides a detailed breakdown of the emotions, audio files, 
and their respective percentage contributions. 

4- 2- Speech Data Preprocessing and Feature Extraction
In this research, the RADESS dataset speech data was read 

at a sampling rate of 48000. For the experiment, we have used 
the 80% split method for training, 10% for validation and 10% 
for testing. Gaussian white noise is added to the RAVDESS 
dataset to improve model generalization and make it more 
noise-resistant. Adding noise creates new training samples 
that are more realistic and representative of real-world data, 
reducing overfitting and enhancing the model’s ability to 
handle noisy inputs. In addition, it is an appropriate approach 
for data augmentation. This procedure and its effect on the 
data have been illustrated in Figure 5. We have used MFCCs 
as features to decrease the computational cost and also the 
redundant information. Here, we calculate 40 MFCCs for 282 
time steps with a 512-length Hann window. This part was 
implemented using the librosa library [39].

4- 3- Model Preparation
The architecture of the proposed parallel autoencoder 

model in this study is shown in Figure 1. After each 
convolutional layer, a dropout layer with a dropout probability 
of 0.1 was placed to prevent overfitting. Also, the output of 
the bottleneck layer of the parallel autoencoder is given to 
a maximum pooling layer to generate a 128-dimensional 
feature vector. In the transformer model, first, the input is 
given to a maximum pooling layer and its output is fed to 
the transformer encoder. The transformer consists of 4 multi-
head attention encoders and the dimension of its feedforward 
layer is 512. Also,

its activation function is a Rectified Linear Unit (Relu) 
with a 0.4 dropout layer. The outputs of the parallel encoders 
are concatenated with the mean output of the transformer and 
are given to a dropout layer with a dropout probability of 0.1. 
After that, it is given to the classification part which is a single-
layer neural network to convert the created 296-dimensional 
vector to an 8-dimensional vector that is the number of labels 
(emotions). Next, it is given to a softmax layer to calculate 
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(a) (b) 

(c) (d) 

Fig. 5. Data augmentation. a) Clean audio signal, b) Audio signal after adding white 
noise,c) clean audio signal spectrogram, d) noisy signal spectrogram 

Fig. 5. Data augmentation. a) Clean audio signal, b) Audio signal after adding white noise,c) clean audio signal spec-
trogram, d) noisy signal spectrogram

Table 1. A detailed breakdown of the emotions, audio files, and their respective percentage 
contributions from the RAVDESS dataset employed for the PCAENet model

Table 1. A detailed breakdown of the emotions, audio files, and their respective percentage contributions from the RAVDESS 
dataset employed for the PCAENet model 

contribution Audio files Emotion 

13.3% 192 surprised 
 

13.3% 192 angry 
 

13.3% 192 calm 
 

13.3% 192 happy 
 

13.3% 192 sad 
 

6.67% 96 neutral 
 

13.3% 192 fearful 
 

13.3% 192 disgust 
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the probability. The model was trained with a batch size of 
32 using the Adamw optimizer with a learning rate of 0.001. 
The model was trained for 600 epochs. The total trainable 
parameters are 360,682 for the PCAENet model.

The weight parameter α in (11) was empirically set to 0.4 
to achieve the best results according to Table 2.

4- 4- Baseline models
For the comparison, we have selected the following 

state-of-the-art (SOTA) baseline models to evaluate the 
performance of the proposed PCAENet model. Att-Net [40] 
is a SOTA lightweight self-attention model for SER, where a 
CNN uses channel and spatial attention for the extraction of 
cues from the input tensors. The SVM ensemble model with a 
Gaussian kernel [41] is a standard benchmark that is utilized 
for SER comparison. The 1D-CNN [42] model is also used 
for comparison, which extracts MFCC features and uses the 
trained 1D-CNN for emotion identification. The other SOTA 
models are the CNN-BLSTM-based SER method from [43], 
A vector quantized masked autoencoder (VQ-MAE-S-12)
[44], and CNN with a Convolutional Attention Block[45].

4- 5- Evaluation
The following evaluation measurements are used to 

investigate the emotion recognition performance of the 
proposed PCAENet model:

a) Accuracy is a metric that measures the proportion 
of correct predictions made by a machine learning model. 
It represents the percentage of correctly identified data 
points out of all the examples provided. The formulation is 
calculated as follows[46]:

(10) ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝒬𝒬𝑊𝑊𝑖𝑖
𝒬𝒬, Κ𝑊𝑊𝑖𝑖

𝑘𝑘, 𝑉𝑉𝑊𝑊𝑖𝑖
𝑉𝑉) 
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b) Precision is a metric that assesses the accuracy of 
positive predictions made by a machine learning model. 
It indicates the proportion of positive predictions that are 

actually correct. The formulation is calculated as follows[46]:
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c) Recall, also known as true positive rate evaluates the 
completeness of positive predictions made by a machine 
learning model. It measures the proportion of actual positives 
that are correctly identified. The formulation is calculated as 
follows[46]:
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d) The F1 score, also known as the F-measure, combines 
the precision and recall metrics to provide a single measure 
of the overall performance of a machine learning model. It 
aims to balance both precision and recall, making it suitable 
for situations where both are important. The formulation is 
calculated as follows[46]: 
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e) The confusion matrix is a table that summarizes the 
performance of a classification model by quantifying the true 
and false predictions it makes. 

the true positives (TP) are instances where the model 
correctly identified as positive examples, while the true 
negatives (TN) are instances where the model correctly 
identified as negative examples. False positives (FP) occur 
when the model incorrectly identifies negative examples as 
positive, while false negatives (FN) occur when the model 
incorrectly identifies positive examples as negative.

Table 2. Impact of α on the proposed model’s accuracyTable 2. Impact of α on the proposed model’s accuracy 

Accuracy 𝜶𝜶 

0.8198 0.2 

0.8278 0.3 

0.8527 0.4 

0.8217 0.5 
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4- 6- Results
The recognition evaluations for each emotion class as well 

as the average values of the proposed PCAENet model for the 
RAVDESS dataset are shown in Table 3 The highest score 
belongs to the disgust emotion according to this table. The 
lowest result in terms of precision and F1-score refers to sad 
emotion because of its natural confusion by calm and disgust 
classes. These results correspond well to Fig. 6 showing 
the confusion matrix of the proposed model for 8 speech 
emotion classes.  As the confusion matrix shows in Fig. 6, 
the highest error is for the happy class, which is mistakenly 
taken as the fearful class the most. This happens due to the 
way it is expressed. After the fear class, the highest error is 
for the neutral class. Given that there are few neutral labeled 
data, and also the fact that calm and sad data are very similar 
to the neutral audio data, this result was expected. Then, the 
surprised and angry classes have the most errors, which have 
been mistakenly taken as anger and fearful classes due to 
their expression shape.Fig. 7 illustrates the correct mapping 
done by the autoencoder. To examine the performance of 
autoencoders, it should be noted that the main focus of the 
model is to improve classification accuracy. Also, due to the 
existence of the dropout layer in the encoder section, the 
suggested autoencoder acts as a denoiser too. The decoder 
parts of the autoencoders are shown in Fig. 7, and its output 
indicates that it has correctly learned a certain feature, and 
hence, can be used to reconstruct the input. 

Table 4 compares the accuracy performance of the 

proposed PCAENet model with the baselines. According 
to this table, our proposed model has led to better results 
for SER. This has been achieved because of the following 
reasons:
•	 Suggesting parallel convolutional AEs for finding high-

level and more informative features which also improve 
the generalization of the model. These PCAEs also take 
into account the ensemble learning technique to improve 
the random initializations in the training phase leading to 
higher accuracies,

•	 Proposing to concatenate and insert the bottleneck layers 
of the PCAEs including the nonlinear sparse features. 
These features have been proven to be effective for 
extracting the harmonic structure of speech signals 
and specifically useful for SER especially due to their 
informative structure almost without irrelevant features 
extracted in a nonlinear procedure,

•	 Proposing the multi-task loss function composed of both 
classification and regression terms. The regression term 
refers to accurately mapping the input MFCC features in 
the parallel autoencoders in an ensembled manner,

•	 Suggesting a transformer to take into account the long-
term dependencies between speech samples parallel with 
the PCAEs. Their self-attention mechanism is effective 
here.

We have shown the loss curves of training and validation 
data for two CAEs and the whole proposed PCAENet model 
in Fig. 8. According to this figure, our proposed model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Confusion-matrixes of the proposed SER model using RAVDESS 
emotional speech data set with 85.27% average recognition rate among 

actual and predicted emotions. 

Fig. 6. Confusion-matrixes of the proposed SER model using RAVDESS emotional speech data 
set with 85.27% average recognition rate among actual and predicted emotions.
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Fig. 7. a) Parallel Autoencoders input, b) output of the decoder of the first CAE, c) output of the decoder of the 
second CAE 

Fig. 7. a) Parallel Autoencoders input, b) output of the decoder of the first CAE, c) output of the de-
coder of the second CAE

Table 3. The classification-report of the proposed SER systemTable 3. The classification-report of the proposed SER system 

  
  
  
  
 precision 

 

recall 
 

f1-score 
 

 
0.9216 

 
0.8246 

 
0.8704 

 
surprised 

 
0.8148 

 
0.7857 

 
0.8000 

 
neutral 

 
0.8644 

 
0.8644 

 
0.8644 

 
calm 

 
0.8696 

 
0.7692 

 
0.8163 

 
happy 

 
0.7200 

 
0.8780 

 
0.7912 

 
sad 

 
0.9730 

 
0.8182 

 
0.8889 

 
angry 

 
0.8621 

 
0.8929 

 
0.8772 

 
fearful 

 
0.8136 

 
0.9600 

 
0.8807 

 
disgust 

 
0.8549 0.8491 0.8486 Un-weighted Accuracy 

0.8601 0.8527 0.8532 weighted Accuracy 
0.8527 

 
Accuracy 
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Fig. 8. Loss curves. a) First autoencoder loss, curve b) second autoencoder loss curve, c) The 
proposed model loss curve 

Fig. 8. Loss curves. a) First autoencoder loss, curve b) second autoencoder loss curve, c) The proposed 
model loss curve

Table 4. Performance comparison between the proposed

Table 4. Performance comparison between the proposed 

models Accuracy 

Att-Net[40] 80 

BE-SVM[41] 75.69 

1D-CNN[42] 71.61 

Deep-BLSTM[43] 77.02 

CNN-CBAM[45] 82.38 

VQ-MAE-S-12[44] 84.1 

PCAENet 85.27 
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behaves is learned well and no overfitting problem has been 
seen. 

To assess the model’s noise robustness, we also tested the 
network on noisy test data, achieving an accuracy of 83.29%. 
This small difference of less than 2% compared to clean test 
data (85.27%) proves the model’s robustness to noise. The 
reason for this noise robustness is that the proposed parallel 
autoencoders have denoising properties, and the training data 
includes both noisy and clean data.

The proposed PCAENet  model demonstrated improved 
generalization during the experiments and evaluations for the 
RAVDESS dataset, and it obtained better emotion recognition 
accuracy. 

5- Conclusion
In this paper, we proposed a novel model for SER 

including new multi-task parallel convolutional autoencoder 
(PCAE) and transformer networks. We proposed the PCAEs 
to generate informative harmonic sparse and high-level 
features from the input in a non-linear manner. In other 
words, we extracted nonlinear sparse features from the 
bottleneck layer of each convolutional AE having much 
fewer dimensions compared to the input. These lower-
dimension features extracted from the MFCC input in two 
parallel networks in an ensemble manner can be considered 
as informative nonlinear sparse features that are almost free of 
irrelevant information. Thus, they can be helpful for the final 
classification purpose. The proposed PCAEs designed taking 
into account the ensemble learning procedure could improve 
the accuracy and the generalization of the model because 
they solve the problem of initial sequential information loss 
during convolution operations. In order to acquire long-term 
dependencies between speech samples, we also proposed 
using a transformer in parallel with PCAEs making use of its 
self-attention mechanism. Finally, we proposed a multi-task 
loss function composed of two terms of classifications and 
regression which works as AE mapper. This multi-task loss 
makes a new model that not only reduces the classification 
error but also decreases the regression error caused by the 
PCAEs which are also considered as mappers between the 
input and output MFCCs. Therefore, the proposed model is 
capable of finding appropriate features with PCAEs leading 
to improved classification results. We used RAVDESS SER 
dataset including eight emotions in this paper to evaluate our 
proposed model. Our model outperformed all previous SER 
methods in terms of average accuracy. 

To further enhance the performance of the proposed SER 
model, the use of autoencoders with more sophisticated 
architectures such as variational and adversarial autoencoders 
could be explored. 
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