
AUT Journal of Electrical Engineering

AUT J. Elec. Eng., 55(3) (Special Issue) (2023) 323-332
DOI: 10.22060/eej.2022.21404.5474

Using a Tuning Parameter to Compromise Computation Time and Shipping Cost in 
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ABSTRACT: Vehicle routing in last-mile delivery plays a decisive role in the new world of people’s 
lifestyles. At present, a growing number of people order their needs online, and this forces companies 
to employ innovative delivery logistics to reduce their last-mile shipping costs. The goal is to minimize 
the cost of travel that depends on the Euclidean distance between customers. Companies require solving 
vehicle routing problems (VRP) in a reasonable time. In this paper, a new approach is introduced that 
solves the multi-depot vehicle routing problem (MDVRP) in real-time. We propose a new method by 
clustering and decomposing the main problem into smaller ones using a tuning parameter α . This 
approach could reduce the solution time noticeably (up to 95%) while the shipping cost is still reasonable.
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1- Introduction
Nowadays, most people prefer to save their time and energy 

by ordering their daily stuff online and are reluctant to shop in 
traditional ways. In conformity, many companies have been 
developed to respond to this tendency with on-site delivery, 
where shipping is the primary determinant [1]. Statistics 
show that the final cost in this business is mostly influenced 
by transportation and logistics processes [2]. Therefore, 
companies’ attention to routing problems, can help them to 
become more cost-effective and increase their revenue. VRP 
is classified into multiple categories [3]. Fig. 1 shows these 
categories, their relation, and a short description. The type of 
VRP is determined by the considered circumstances, some 
of which are listed in Table 1. According to the scenarios 
considered, different types of VRP are defined (Table 2) [4, 
5].

One of the most practical types of VRP is the MDVRP, 
where any customer is serviced only once with a set of vehicles 
that belongs to non-identical depots and eventually returns to 
their depots. Considering the demand of the customers, the 
number of vehicles in each depot, and their capacity, each 
customer is assigned a vehicle.

The main idea is to minimize the shipping cost of the 
vehicles during the servicing. So far, different algorithms 
have been suggested to solve an MDVRP [6]. With an 

increase in the number of customers and/or depots, the 
complexity of MDVRP, which itself is an NP-hard problem, 
increases as well. In many companies, the solution time is an 
essential factor for online servicing. Therefore, the employed 
algorithms should be able to solve the problem in real-time. 
Available solutions for high dimensional MDVRP are mostly 
obtained via heuristic or meta-heuristic approaches where 
many decisive parameters should be appropriately selected. 
Otherwise, the solution would not be reasonable, and the 
answer would be very different from the best answer so far, 
in addition to the answer error, it may take a long time to 
solve. Genetic algorithm [7], particle swarm optimization 
[8], bat algorithm [9], grey wolf optimization [10], ant colony 
optimization [11], flower pollination algorithm [12], and 
multi-verse optimization [13] can be mentioned as the main 
and widely used methods. On the other hand, exact solution-
based approaches are inefficient solve problems with large 
dimensions.

To use the exact solution, the problem decomposes into 
sub-problems (first stage of decomposition) by a capacitated 
clustering approach [14]. In other words, each sub-problem 
considers a single depot that identifies its customers and 
serves them. According to this method, the main problem 
decomposes into many sub-problems with a single depot 
that serves its allocated customers. However, the number 
of vehicles and customers in each sub-problem may still 
cause more complexity than the exact solution method could 
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Fig. 1. The important types of VRP and their relation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The important types of VRP and their relation.

Table 1. A number of the taxonomy of VRP.Table 1. A number of the taxonomy of VRP. 

Services Single depot or multi-depots. 
Number of vehicles Exactly 𝑣𝑣 vehicles, up to 𝑣𝑣, or unlimited vehicles. 

Time of Windows type Restriction on customers, roads, etc. 
Capacity consideration Capacitated vehicles or incapacitated vehicles. 

Vehicle homogeneity (capacity) Similar vehicles, load-specific vehicles, heterogeneous vehicles, or 
customer-specific vehicles 

Number of stops on route Known or partially known. 
Load splitting constraint Splitting allowed or splitting not allowed 

Customer service demands quantity Deterministic, stochastic, or unknown 
Request time of the new customer Deterministic, stochastic, or unknown 

On-site service/waiting times Deterministic, time-dependent, vehicle time-dependent, stochastic, or 
unknown 

Time window structure Soft time window, strict time window, or a mix of both 
Time horizon Single-period or multi-period 

Backhauls Nodes request simultaneous pickup and deliveries, or nodes request 
either line haul or backhauls service, but not both. 
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handle in real-time. In this case, the mentioned sub-problems 
are decomposed again into a subdivided problem (second 
phase of decomposition). These problems contain one or 
more vehicles with their allocated customers. At the end of 
the method, each subdivided problem is solved by the exact 
method [15] using binary linear programming [16]. This 
way, the proposed method could find a reasonable solution 
in admissible time; of course, it should be added that the 
answer may have a little more error than other methods, but 
the solution time will be much less.

Another contribution of this paper is to define a tuning 
parameter α  in the second phase of decomposition to 
compromise between the computation time and shipping 
cost. This parameter takes values between 0 and 1. When the 
computation time is crucial, this parameter should be large, 
and when the shipping cost is more important, it should be 
small. Each depot has its α , and the operator has the freedom 
to decide according to the situation. For example, the problem 
will be less complicated when the number of customers in a 
subdivided problem is low. In this case, the solution time will 
not be as important as the total shipping cost.

The rest of this paper is arranged as follows. The 
description and formulation of the MDVRP are presented in 
Section 2. The proposed approach and its details are provided 
in Section 3. The optimization procedure performed to solve 
the defined subdivided problems is described in Section 4. 
Simulation results are presented in Section 5. Eventually, 
conclusions and future works are given in Section 6.

2- MDVRP
The problem statement and formulation are presented in 

the two following subsections.

2- 1- Problem statement
The main idea of the MDVRP is to minimize the total 

shipping costs due to fuel consumption, travel time, and 
covered distance. Every customer should be serviced by one 
vehicle considering the demand and capacity of vehicles. 
Each vehicle starts servicing from a depot and returns to the 
same depot after completing the servicing. To minimize the 
shipping cost, the MDVRP designs a set of vehicle routes 
serving all customers, considering the maximum number 
of vehicles per depot and vehicle capacity. The following 
notations are used to define an MDVRP [17].

Let ( )  ,G V E=  be a graph where { }1 2  , , , nV v v v= 
 is 

the set of vertices and ( )  , :  , ,i j i jE v v v v V i j= ∀ ∈ ≠  is 
the set of edges. The vertices’ set V  is the union of two sets, 

 DEPV and CSTV , where { }1 2 , , ,DEP
dV v v v= 

 represents 
the set of depots, and CSTV  is the set of customers. Thus, 

{ }1 2 1 , , ,  , , , .d d nV v v v v v+=  
 For each depot  DEP

iv V∈  
a subset of customers  CST

iv V∈  is assigned. Each vertex 
 CST

jv V∈  is characterized by a nonnegative demand 
jc  (demand of customer j ), and each edge ( ),i jv v  is 

associated with a cost ijf . In each depot  DEP
iv V∈ , there 

are m  vehicles with capacity C . By considering Euclidean 
distance between nodes i  and j  as ijf , representing 
the real cost of air and traffic pollution, we formulate the 

Table 2. Important types of VRP.Table 2. Important types of VRP. 

VRP type Abbreviation Description 

Capacitated VRP CVRP VRP with the additional constraint that every vehicle must have a 
uniform capacity of a single commodity. 

Multiple Depot VRP MDVRP Several depots from which it can serve its customers. 
Periodic VRP PVRP VRP is generalized by extending the planning period to M days. 

Split delivery VRP SDVRP It is allowed that a customer can be served by different vehicles. 
Stochastic VRP SVRP One or several components of the problem are random. 

VRP with Backhauls VRPB Customers can demand or return some commodities. 

VRP with Pickup and 
Delivery VRPPD It is a VRP in which the possibility that customers return some 

commodities is contemplated. 

VRP with Satellite 
Facilities VRPSF 

Satellite replenishment allows the drivers to continue making 
deliveries until the close of their shift without necessarily returning to 

the central depot. 

VRP with Time Window VRPTW Every customer must be serviced in a special time range. 

Dynamic VRP DVRP One or several components of the problem are dynamic. 

Distance-constrained 
Capacitated VRP DCVRP It's a kind of CVRP addition to distance-constrained. 

VRP with Simultaneous 
Pickup and Delivery VRPSPD Both pickup and delivery tasks simultaneously occur at various 

customer locations, and the depot is the source and destination. 
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MDVRP in the next section.

2- 2- Integer-based model
We present an integer-based model for MDVRP. If k

ijb  
equals 1, then vehicle k  visits node j  immediately after 
node i . J  is the total cost, which should be minimized.

min 𝐽𝐽 = ∑ ∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘 𝑓𝑓𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖 , subject to (1) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘 𝑐𝑐𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖 , ∀𝑘𝑘 ∈ 𝑉𝑉 (2) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 1𝑘𝑘 , ∀𝑖𝑖 ∈ {2,3, ⋯ , 𝑁𝑁} (3) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 1𝑘𝑘 , ∀𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (4) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 0𝑘𝑘  (5) 

∑ ∑ 𝑏𝑏𝑖𝑖1
𝑘𝑘

𝑖𝑖 = ∑ ∑ 𝑏𝑏1𝑖𝑖
𝑘𝑘

𝑖𝑖𝑘𝑘𝑘𝑘  (6) 

∑ ∑ 𝑏𝑏1𝑖𝑖
𝑘𝑘

𝑖𝑖𝑘𝑘 ≥ 1 (7) 

 

cost𝑖𝑖𝑗𝑗 = √(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)
2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)

2
. 

 

𝑧𝑧𝑖𝑖𝑗𝑗 = {1 if customer 𝑖𝑖 is assigned to cluster 𝑗𝑗
0 otherwise . 

 

𝑍𝑍𝑇𝑇 = [1 1 0 1 0 1
0 0 1 0 1 0] 

 

∑ ∑ cost𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑘𝑘
𝑖𝑖=1 , subject to (8) 

∑ 𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘
𝑖𝑖=1 = 1, 𝑖𝑖 = 1,2,3, ⋯ , 𝑛𝑛, (9) 

∑ 𝑑𝑑𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ≤ 𝐶𝐶, 𝑗𝑗 = 1,2,3, ⋯ , 𝑘𝑘, (10) 

 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘𝑣𝑣

𝑘𝑘=1 + 𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘 ≤ 1,    ∀𝑖𝑖, 𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (11) 

 

𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖

𝑘𝑘 +𝑣𝑣≠𝑘𝑘
ℎ=1 ≤ 1,     ∀𝑘𝑘 ∈ 𝑉𝑉,     ∀𝑖𝑖, 𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (12) 

 

 

 

 (1)

min 𝐽𝐽 = ∑ ∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘 𝑓𝑓𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖 , subject to (1) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘 𝑐𝑐𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖 , ∀𝑘𝑘 ∈ 𝑉𝑉 (2) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 1𝑘𝑘 , ∀𝑖𝑖 ∈ {2,3, ⋯ , 𝑁𝑁} (3) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 1𝑘𝑘 , ∀𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (4) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 0𝑘𝑘  (5) 

∑ ∑ 𝑏𝑏𝑖𝑖1
𝑘𝑘

𝑖𝑖 = ∑ ∑ 𝑏𝑏1𝑖𝑖
𝑘𝑘

𝑖𝑖𝑘𝑘𝑘𝑘  (6) 

∑ ∑ 𝑏𝑏1𝑖𝑖
𝑘𝑘

𝑖𝑖𝑘𝑘 ≥ 1 (7) 

 

cost𝑖𝑖𝑗𝑗 = √(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)
2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)

2
. 

 

𝑧𝑧𝑖𝑖𝑗𝑗 = {1 if customer 𝑖𝑖 is assigned to cluster 𝑗𝑗
0 otherwise . 

 

𝑍𝑍𝑇𝑇 = [1 1 0 1 0 1
0 0 1 0 1 0] 

 

∑ ∑ cost𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑘𝑘
𝑖𝑖=1 , subject to (8) 

∑ 𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘
𝑖𝑖=1 = 1, 𝑖𝑖 = 1,2,3, ⋯ , 𝑛𝑛, (9) 

∑ 𝑑𝑑𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ≤ 𝐶𝐶, 𝑗𝑗 = 1,2,3, ⋯ , 𝑘𝑘, (10) 

 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘𝑣𝑣

𝑘𝑘=1 + 𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘 ≤ 1,    ∀𝑖𝑖, 𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (11) 

 

𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖

𝑘𝑘 +𝑣𝑣≠𝑘𝑘
ℎ=1 ≤ 1,     ∀𝑘𝑘 ∈ 𝑉𝑉,     ∀𝑖𝑖, 𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (12) 

 

 

 

 (2)min 𝐽𝐽 = ∑ ∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘 𝑓𝑓𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖 , subject to (1) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘 𝑐𝑐𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖 , ∀𝑘𝑘 ∈ 𝑉𝑉 (2) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 1𝑘𝑘 , ∀𝑖𝑖 ∈ {2,3, ⋯ , 𝑁𝑁} (3) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 1𝑘𝑘 , ∀𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (4) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 0𝑘𝑘  (5) 

∑ ∑ 𝑏𝑏𝑖𝑖1
𝑘𝑘

𝑖𝑖 = ∑ ∑ 𝑏𝑏1𝑖𝑖
𝑘𝑘

𝑖𝑖𝑘𝑘𝑘𝑘  (6) 

∑ ∑ 𝑏𝑏1𝑖𝑖
𝑘𝑘

𝑖𝑖𝑘𝑘 ≥ 1 (7) 

 

cost𝑖𝑖𝑗𝑗 = √(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)
2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)

2
. 

 

𝑧𝑧𝑖𝑖𝑗𝑗 = {1 if customer 𝑖𝑖 is assigned to cluster 𝑗𝑗
0 otherwise . 

 

𝑍𝑍𝑇𝑇 = [1 1 0 1 0 1
0 0 1 0 1 0] 

 

∑ ∑ cost𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑘𝑘
𝑖𝑖=1 , subject to (8) 

∑ 𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘
𝑖𝑖=1 = 1, 𝑖𝑖 = 1,2,3, ⋯ , 𝑛𝑛, (9) 

∑ 𝑑𝑑𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ≤ 𝐶𝐶, 𝑗𝑗 = 1,2,3, ⋯ , 𝑘𝑘, (10) 

 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘𝑣𝑣

𝑘𝑘=1 + 𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘 ≤ 1,    ∀𝑖𝑖, 𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (11) 

 

𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖

𝑘𝑘 +𝑣𝑣≠𝑘𝑘
ℎ=1 ≤ 1,     ∀𝑘𝑘 ∈ 𝑉𝑉,     ∀𝑖𝑖, 𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (12) 

 

 

 

 (3)

min 𝐽𝐽 = ∑ ∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘 𝑓𝑓𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖 , subject to (1) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘 𝑐𝑐𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖 , ∀𝑘𝑘 ∈ 𝑉𝑉 (2) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 1𝑘𝑘 , ∀𝑖𝑖 ∈ {2,3, ⋯ , 𝑁𝑁} (3) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 1𝑘𝑘 , ∀𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (4) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 0𝑘𝑘  (5) 

∑ ∑ 𝑏𝑏𝑖𝑖1
𝑘𝑘

𝑖𝑖 = ∑ ∑ 𝑏𝑏1𝑖𝑖
𝑘𝑘

𝑖𝑖𝑘𝑘𝑘𝑘  (6) 

∑ ∑ 𝑏𝑏1𝑖𝑖
𝑘𝑘

𝑖𝑖𝑘𝑘 ≥ 1 (7) 

 

cost𝑖𝑖𝑗𝑗 = √(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)
2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)

2
. 

 

𝑧𝑧𝑖𝑖𝑗𝑗 = {1 if customer 𝑖𝑖 is assigned to cluster 𝑗𝑗
0 otherwise . 

 

𝑍𝑍𝑇𝑇 = [1 1 0 1 0 1
0 0 1 0 1 0] 

 

∑ ∑ cost𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑘𝑘
𝑖𝑖=1 , subject to (8) 

∑ 𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘
𝑖𝑖=1 = 1, 𝑖𝑖 = 1,2,3, ⋯ , 𝑛𝑛, (9) 

∑ 𝑑𝑑𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ≤ 𝐶𝐶, 𝑗𝑗 = 1,2,3, ⋯ , 𝑘𝑘, (10) 

 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘𝑣𝑣

𝑘𝑘=1 + 𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘 ≤ 1,    ∀𝑖𝑖, 𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (11) 

 

𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖

𝑘𝑘 +𝑣𝑣≠𝑘𝑘
ℎ=1 ≤ 1,     ∀𝑘𝑘 ∈ 𝑉𝑉,     ∀𝑖𝑖, 𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (12) 

 

 

 

 (4)

min 𝐽𝐽 = ∑ ∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘 𝑓𝑓𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖 , subject to (1) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘 𝑐𝑐𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖 , ∀𝑘𝑘 ∈ 𝑉𝑉 (2) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 1𝑘𝑘 , ∀𝑖𝑖 ∈ {2,3, ⋯ , 𝑁𝑁} (3) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 1𝑘𝑘 , ∀𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (4) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 0𝑘𝑘  (5) 

∑ ∑ 𝑏𝑏𝑖𝑖1
𝑘𝑘

𝑖𝑖 = ∑ ∑ 𝑏𝑏1𝑖𝑖
𝑘𝑘

𝑖𝑖𝑘𝑘𝑘𝑘  (6) 

∑ ∑ 𝑏𝑏1𝑖𝑖
𝑘𝑘

𝑖𝑖𝑘𝑘 ≥ 1 (7) 

 

cost𝑖𝑖𝑗𝑗 = √(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)
2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)

2
. 

 

𝑧𝑧𝑖𝑖𝑗𝑗 = {1 if customer 𝑖𝑖 is assigned to cluster 𝑗𝑗
0 otherwise . 

 

𝑍𝑍𝑇𝑇 = [1 1 0 1 0 1
0 0 1 0 1 0] 

 

∑ ∑ cost𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑘𝑘
𝑖𝑖=1 , subject to (8) 

∑ 𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘
𝑖𝑖=1 = 1, 𝑖𝑖 = 1,2,3, ⋯ , 𝑛𝑛, (9) 

∑ 𝑑𝑑𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ≤ 𝐶𝐶, 𝑗𝑗 = 1,2,3, ⋯ , 𝑘𝑘, (10) 

 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘𝑣𝑣

𝑘𝑘=1 + 𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘 ≤ 1,    ∀𝑖𝑖, 𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (11) 

 

𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖

𝑘𝑘 +𝑣𝑣≠𝑘𝑘
ℎ=1 ≤ 1,     ∀𝑘𝑘 ∈ 𝑉𝑉,     ∀𝑖𝑖, 𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (12) 

 

 

 

 (5)

min 𝐽𝐽 = ∑ ∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘 𝑓𝑓𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖 , subject to (1) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘 𝑐𝑐𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖 , ∀𝑘𝑘 ∈ 𝑉𝑉 (2) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 1𝑘𝑘 , ∀𝑖𝑖 ∈ {2,3, ⋯ , 𝑁𝑁} (3) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 1𝑘𝑘 , ∀𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (4) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 0𝑘𝑘  (5) 

∑ ∑ 𝑏𝑏𝑖𝑖1
𝑘𝑘

𝑖𝑖 = ∑ ∑ 𝑏𝑏1𝑖𝑖
𝑘𝑘

𝑖𝑖𝑘𝑘𝑘𝑘  (6) 

∑ ∑ 𝑏𝑏1𝑖𝑖
𝑘𝑘

𝑖𝑖𝑘𝑘 ≥ 1 (7) 

 

cost𝑖𝑖𝑗𝑗 = √(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)
2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)

2
. 

 

𝑧𝑧𝑖𝑖𝑗𝑗 = {1 if customer 𝑖𝑖 is assigned to cluster 𝑗𝑗
0 otherwise . 

 

𝑍𝑍𝑇𝑇 = [1 1 0 1 0 1
0 0 1 0 1 0] 

 

∑ ∑ cost𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑘𝑘
𝑖𝑖=1 , subject to (8) 

∑ 𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘
𝑖𝑖=1 = 1, 𝑖𝑖 = 1,2,3, ⋯ , 𝑛𝑛, (9) 

∑ 𝑑𝑑𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ≤ 𝐶𝐶, 𝑗𝑗 = 1,2,3, ⋯ , 𝑘𝑘, (10) 

 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘𝑣𝑣

𝑘𝑘=1 + 𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘 ≤ 1,    ∀𝑖𝑖, 𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (11) 

 

𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖

𝑘𝑘 +𝑣𝑣≠𝑘𝑘
ℎ=1 ≤ 1,     ∀𝑘𝑘 ∈ 𝑉𝑉,     ∀𝑖𝑖, 𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (12) 

 

 

 

 (6)

min 𝐽𝐽 = ∑ ∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘 𝑓𝑓𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖 , subject to (1) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘 𝑐𝑐𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖 , ∀𝑘𝑘 ∈ 𝑉𝑉 (2) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 1𝑘𝑘 , ∀𝑖𝑖 ∈ {2,3, ⋯ , 𝑁𝑁} (3) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 1𝑘𝑘 , ∀𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (4) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 0𝑘𝑘  (5) 

∑ ∑ 𝑏𝑏𝑖𝑖1
𝑘𝑘

𝑖𝑖 = ∑ ∑ 𝑏𝑏1𝑖𝑖
𝑘𝑘

𝑖𝑖𝑘𝑘𝑘𝑘  (6) 

∑ ∑ 𝑏𝑏1𝑖𝑖
𝑘𝑘

𝑖𝑖𝑘𝑘 ≥ 1 (7) 

 

cost𝑖𝑖𝑗𝑗 = √(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)
2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)

2
. 

 

𝑧𝑧𝑖𝑖𝑗𝑗 = {1 if customer 𝑖𝑖 is assigned to cluster 𝑗𝑗
0 otherwise . 

 

𝑍𝑍𝑇𝑇 = [1 1 0 1 0 1
0 0 1 0 1 0] 

 

∑ ∑ cost𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑘𝑘
𝑖𝑖=1 , subject to (8) 

∑ 𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘
𝑖𝑖=1 = 1, 𝑖𝑖 = 1,2,3, ⋯ , 𝑛𝑛, (9) 

∑ 𝑑𝑑𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ≤ 𝐶𝐶, 𝑗𝑗 = 1,2,3, ⋯ , 𝑘𝑘, (10) 

 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘𝑣𝑣

𝑘𝑘=1 + 𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘 ≤ 1,    ∀𝑖𝑖, 𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (11) 

 

𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖

𝑘𝑘 +𝑣𝑣≠𝑘𝑘
ℎ=1 ≤ 1,     ∀𝑘𝑘 ∈ 𝑉𝑉,     ∀𝑖𝑖, 𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (12) 

 

 

 

 (7)

 
The cost function is given in (1). Constraint (2) explains 

that the total load of each vehicle should not exceed its 
capacity. Constraint (3) implies that every customer must 
be serviced by a vehicle. Constraint (4) states that there is 
only one path for each node, except CST

jv V∈ . Constraint 
(5) prevents one node return to itself (5). Constraint (6) states 
that each vehicle that exits any depot must finally return to 

the same depot and finally (7) expresses that at least one 
vehicle is used by each depot.

3- Decomposition methods
To reduce the complexity of MDVRP and, therefore, 

its solution time, two consecutive decompositions are 
implemented. In the first step, the problem is clustered 
into sub-problems, each including only one depot. In the 
second step, these sub-problems are further decomposed into 
subdivided problems using the tuning parameter to influence 
the complexity. The second step of decomposition causes 
a reduction in vehicle and customer numbers in the last 
routing problem. The subdivided problems are solved by the 
exact linear integer programming defined in Section 4. The 
proposed approach is shown in Fig. 2.

3- 1- Capacitated clustering algorithm (first step)
In the first step of decomposition, a capacitated clustering 

problem (CCP) is solved to allocate each customer to one 
depot by considering the demand of the customer, the number 
of vehicles, the capacity of the vehicle, and the shipping cost 
between nodes. In this problem, there are n  customers with 
their known demands distributed in ( ),x y  coordinates. These 
customers are grouped to form k  clusters. Each cluster has 

1 2,  ,  ,  kn n n  number of customers such that 
1

k

j
j

n n
=

=∑ . The 
problem is given with a set of customers 1 2 3( ,  ,  ,  ,  )nr r r r

, coordinates ( ) ( ) ( ) ( )1 1 2 2 3 3( ,  ,  ,  ,  ,  ,  ,  ,  n nx y x y x y x y

), demands ( )1 2 3,  ,  ,  ,  nd d d d

, and capacity ( )C  where 
ir R∈  is the set of customers who are distributed in the 

Euclidean plane ( ),i ix y . Demand id  and capacity ( )C  
of the cluster are positive integers. Euclidean distance 
matrix cost cost ij =    is determined based on the number of 
customers ( )i  and depots ( )j  as

min 𝐽𝐽 = ∑ ∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘 𝑓𝑓𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖 , subject to (1) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘 𝑐𝑐𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖 , ∀𝑘𝑘 ∈ 𝑉𝑉 (2) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 1𝑘𝑘 , ∀𝑖𝑖 ∈ {2,3, ⋯ , 𝑁𝑁} (3) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 1𝑘𝑘 , ∀𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (4) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 0𝑘𝑘  (5) 

∑ ∑ 𝑏𝑏𝑖𝑖1
𝑘𝑘

𝑖𝑖 = ∑ ∑ 𝑏𝑏1𝑖𝑖
𝑘𝑘

𝑖𝑖𝑘𝑘𝑘𝑘  (6) 

∑ ∑ 𝑏𝑏1𝑖𝑖
𝑘𝑘

𝑖𝑖𝑘𝑘 ≥ 1 (7) 

 

cost𝑖𝑖𝑗𝑗 = √(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)
2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)

2
. 

 

𝑧𝑧𝑖𝑖𝑗𝑗 = {1 if customer 𝑖𝑖 is assigned to cluster 𝑗𝑗
0 otherwise . 

 

𝑍𝑍𝑇𝑇 = [1 1 0 1 0 1
0 0 1 0 1 0] 

 

∑ ∑ cost𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑘𝑘
𝑖𝑖=1 , subject to (8) 

∑ 𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘
𝑖𝑖=1 = 1, 𝑖𝑖 = 1,2,3, ⋯ , 𝑛𝑛, (9) 

∑ 𝑑𝑑𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ≤ 𝐶𝐶, 𝑗𝑗 = 1,2,3, ⋯ , 𝑘𝑘, (10) 

 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘𝑣𝑣

𝑘𝑘=1 + 𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘 ≤ 1,    ∀𝑖𝑖, 𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (11) 

 

𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖

𝑘𝑘 +𝑣𝑣≠𝑘𝑘
ℎ=1 ≤ 1,     ∀𝑘𝑘 ∈ 𝑉𝑉,     ∀𝑖𝑖, 𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (12) 

 

 

 

  
Cost is an m n×  matrix, where m  is the number of 

customers, and n  is the number of depots. Let ijZ z =    

Prerequisites

Second phase of decomposition: Decompose the sub-
problems to subdivided problems.

First phase of decomposition: Determine the 
sub-problems.

 
Fig. 2. The main steps of the proposed approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The main steps of the proposed approach.
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be a binary matrix such that

min 𝐽𝐽 = ∑ ∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘 𝑓𝑓𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖 , subject to (1) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘 𝑐𝑐𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖 , ∀𝑘𝑘 ∈ 𝑉𝑉 (2) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 1𝑘𝑘 , ∀𝑖𝑖 ∈ {2,3, ⋯ , 𝑁𝑁} (3) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 1𝑘𝑘 , ∀𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (4) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 0𝑘𝑘  (5) 

∑ ∑ 𝑏𝑏𝑖𝑖1
𝑘𝑘
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 (10)

where cost ij  represents the cost of the closeness of 
customer i  to cluster j  (i.e., the cost or time of travel of 
customer i  in cluster j ). Minimizing the objective function 
in (8) reduces the customers’ total assignment cost to the 
clusters. Constraint (9) assures that customer i  is assigned 
only to a single cluster. Constraint (10) assures that the total 
demand of customers in a cluster does not exceed the cluster 
capacity C .

The standard deviation of each row of the cost matrix 
is calculated, and its value is assigned to the same row of a 
newly constructed vector P . Thus, P  is an 1m ×  vector. By 
sorting the rows of P  in descending values, each customer’s 
priority will be determined. Customers with smaller standard 
deviations will have higher priority. By starting from the 
customer with the lowest priority, each customer will be 
allocated to the nearest depot based on constraint (10). If 
constraint (10) is not satisfied, the selected customer will be 
assigned to the next nearest depot based on constraint (10). 
This method has been applied to example P01 of [18], where 

50n =  customers are going to be allocated to 4k =  depots. 
In this way, the original problem of MDVRP is divided into 
4 sub-problems. Fig. 3 shows the results of this clustering.

3- 2- Second level of clustering by integrating the tuning 
parameter

If the resulting sub-problems are still complex to be 
solved in real-time, they can be further decomposed into 
more minor problems. For this step, we use the extended k
-means approach [19].

Customers of Depot 1 are clustered using the k -means 
approach, and results are shown in Figs. 4-6 for three values 
of tuning parameter α  (0, 0.33, 1). In this step, the number 

 
Fig. 3. The first clustering for every depot in P01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The first clustering for every depot in P01.
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Fig. 4. Clustering with 𝛼𝛼 = 0 (single cluster and single optimization problem). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Clustering with α=0 (single cluster and single optimization problem).

 

Fig. 5. Clustering with 𝛼𝛼 = 0.33 (2 clusters and 2 optimization problems). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Clustering with α=0.33 (2 clusters and 2 optimization problems).
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of required vehicles for each depot is determined. As an 
example, for the second depot in P01, the algorithm declares 
the need for 3 vehicles. Then, α  could assume three values 
of 0, 0.5, and 1, so vehicles could be clustered in 3 ways. For 

0α = , we have a single cluster with three vehicles, 0.5.α =  
We have two clusters, one with a single vehicle and another 
with two vehicles; and 1α = , we have three clusters, each 
including one vehicle. Acceptable values for α  depend on 
the number of vehicles and operator definition.

4- Solving the optimization problems
After transforming the main problem into subdivided 

problems, these problems are solved by linear integer 
programming, discussed in Section 2. There are several 
approaches to solving the defined optimization problems. 
Due to the complexity and NP-hardness of the MDVRP, 
the exact methods could not be relied on when the original 
problem has to be solved, especially when the solutions are 
required in real-time. In this paper, as mentioned before, 
linear programming as an exact method is used, which could 
provide suitable and real-time solutions for low-dimensional 
problems such as those defined in the second level of 
decompositions. The main novelty of the present work is to 
break the original problem into small ones so that the exact 
methods can be implemented in real-time.

Solving the linear programming discussed before could 
end up with an improper route loop where vehicles’ route 
passes a depot aside from the beginning and end of the service 
time. There is no linear constraint to avoid these unsuitable 
solutions. Adding the following constraint to the problem (1), 

however, could efficiently reduce the probability of obtaining 
these solutions.

min 𝐽𝐽 = ∑ ∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘 𝑓𝑓𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖 , subject to (1) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘 𝑐𝑐𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖 , ∀𝑘𝑘 ∈ 𝑉𝑉 (2) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 1𝑘𝑘 , ∀𝑖𝑖 ∈ {2,3, ⋯ , 𝑁𝑁} (3) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 1𝑘𝑘 , ∀𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (4) 

∑ ∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑘𝑘

𝑖𝑖 = 0𝑘𝑘  (5) 

∑ ∑ 𝑏𝑏𝑖𝑖1
𝑘𝑘

𝑖𝑖 = ∑ ∑ 𝑏𝑏1𝑖𝑖
𝑘𝑘

𝑖𝑖𝑘𝑘𝑘𝑘  (6) 

∑ ∑ 𝑏𝑏1𝑖𝑖
𝑘𝑘

𝑖𝑖𝑘𝑘 ≥ 1 (7) 

 

cost𝑖𝑖𝑗𝑗 = √(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)
2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)

2
. 

 

𝑧𝑧𝑖𝑖𝑗𝑗 = {1 if customer 𝑖𝑖 is assigned to cluster 𝑗𝑗
0 otherwise . 

 

𝑍𝑍𝑇𝑇 = [1 1 0 1 0 1
0 0 1 0 1 0] 

 

∑ ∑ cost𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑘𝑘
𝑖𝑖=1 , subject to (8) 

∑ 𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘
𝑖𝑖=1 = 1, 𝑖𝑖 = 1,2,3, ⋯ , 𝑛𝑛, (9) 

∑ 𝑑𝑑𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ≤ 𝐶𝐶, 𝑗𝑗 = 1,2,3, ⋯ , 𝑘𝑘, (10) 

 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘𝑣𝑣

𝑘𝑘=1 + 𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘 ≤ 1,    ∀𝑖𝑖, 𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (11) 

 

𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖

𝑘𝑘 +𝑣𝑣≠𝑘𝑘
ℎ=1 ≤ 1,     ∀𝑘𝑘 ∈ 𝑉𝑉,     ∀𝑖𝑖, 𝑗𝑗 ∈ {2,3, ⋯ , 𝑁𝑁} (12) 

 

 

 

 (11)

 
Meanwhile, the obtained solutions are checked for 

improper loops, and in this case, the problem is solved again 
with an additional constraint that leads to the elimination of 
these loops. The following lemma is provided to back this 
claim.

Lemma 1. Let the vertices of G  be labeled 1 2,  , , nv v v
 

and the adjacency matrix of G  be A  with row/column i  of 
A  corresponding to iv . To have a purely linear algebraic 
approach, consider L D A= − , where D  is the diagonal 
matrix with ( ) ( )deg iij

D v= . This matrix is called 
the Laplacian matrix of G . G  is acyclic if and only if 

( ) ( )trace 2rankL L= .
Proof: G  is acyclic if and only if it is a forest, i.e., 

G  has c components and exactly ( )rankn c L− =  edges. 
On the other hand, by the handshaking lemma, we have

( ) ( ) 0.5 traceE G L= .
Another issue that could be observed in the solution of 

the linear optimization problem is the interference of vehicles 
when performing a similar task. It is possible to have solutions 
such that while the vehicle iv  moves from customer i  to 
customer 1i + , vehicle jv  moves from customer 1i +  to 
the next one. The following constraint is added to the problem 
(1) to prevent vehicles from doing such service interference.

 

Fig. 6. Clustering with 𝛼𝛼 = 1 (4 clusters and 4 optimization problems). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Clustering with α=1 (4 clusters and 4 optimization problems).
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The total cost is the sum of all costs in each subdivided 

problem. One can use the tuning parameter α  to adjust the 
complexity of the related linear integer programming. The 
choice of lower values for α  implies that customers of a 
depot are divided into fewer groups. This results in lower total 
cost compared to the case where the customers are divided 
into more groups. Table 3 describes the results of tuning 
parameter α  in problem P01 from [11]. As can be seen, by 
enlarging the value of α , the solution time decreases while 
the total cost increases. Table 4 indicates the vehicle routes in 
problem P01. This problem includes 54 nodes where nodes 
1-50 are customers and 51-54 are depots.

5- Simulation results
Simulation results of the proposed algorithm 

implementation are presented and discussed in this section. 
Results were obtained by performing the algorithm in the 
MATLAB environment in a computer system with Core 
i7-7700HQ, 2.80 GHz, and 4GB RAM characteristics. To 
compare the results, 11 different and standard scenarios were 
picked up from Courdeau’s instances [18]. In these examples, 
we have 50n =  to 360  customers, 2d =  to 9  depots, and 

2m =  to 6  vehicles. We have also implemented GVNS [20] 
and Sadati’s [21] methods for comparison.

Table 5 presents the results found by GVNS and Sadati’s 
methods and our proposed approach with 1α =  in each depot. 
The averaged values and the execution time in each instance, 
are presented for 3 approaches. For the GVNS method, each 
instance was solved 30 times with the following parameter 
values: 100iterMax =  and 30maxTime =  minutes. The 
GVNS algorithm was coded in C++ and tested on a computer 

Table 3. Solution time and cost for P01.Table 3. Solution time and cost for P01. 

𝛼𝛼 for depot 1 𝛼𝛼 for depot 2 𝛼𝛼 for depot 3 𝛼𝛼 for depot 4 Cost 𝑇𝑇 (sec) 

1 1 1 1 634.55 17.7 
1 1 1 0 623 59.57 

0.66 0.5 0.5 1 632.83 35.65 
0.33 0.5 0.5 1 631.03 40.87 
0.33 0.5 0.5 0 620.56 66.5 
0.33 0.5 0 0 603.74 146.91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Vehicle routes in P01 for α=1.Table 4. Vehicle routes in P01 for 𝜶𝜶 = 𝟏𝟏. 

Depot 1 

Vehicle 1 51 19 40 41 13 51 
Vehicle 2 51 18 25 51 
Vehicle 3 51 42 44 45 15 37 51 
Vehicle 4 51 17 12 47 4 51 

Depot 2 
Vehicle 1 52 6 24 14 52 
Vehicle 2 52 8 26 7 43 23 52 
Vehicle 3 52 27 48 1 32 46 52 

Depot 3 
Vehicle 1 53 9 50 16 21 34 53 
Vehicle 2 53 10 33 39 30 53 
Vehicle 3 53 49 5 11 38 53 

Depot 4 
Vehicle 1 54 29 20 36 35 54 
Vehicle 2 54 3 28 31 22 2 54 
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with Intel Core i3-2370M, 2.40 GHz, and 4GB RAM [20]. 
Sadati’s algorithm was coded in C# and tested on a Dell 
Precision T7810 with Intel Xeon E5-2690, 2.40 GHz, and 
32GB RAM [21]. For our proposed approach, the algorithm 
is implemented just once.

BKS is the best-known solution cost found so far [21]. A 
comparison between the computer system used to solve the 
problem in this article and the computer systems used in the 
other methods has been made on the site www.cpubenchmark.
net. A comparison between the program execution time in 
[22] shows that the speed of C++ and C# is about ten and six 
times faster than MATLAB, respectively. Table 5 shows that 
the new approach solution time is far less than the GVNS 
and Sadati’s algorithms. Although the GVNS and Sadati’s 
algorithm costs are less than our solution, they are unable to 
solve the problems in real-time due to the long computation 
time.

6- Conclusion
The main findings can be summarized as follows. The 

results discussed in Section 5 show that the new algorithm’s 
computation time could be far less than those of the existing 
algorithms. In this regard, we introduced tuning parameter α  
that could further help one to compromise between solution 
time and total shipping cost. Our direction in future research 
is to solve a DVRP where the number of customers, traffic 
congestion, and so forth could be changed unknowingly. 
Thus, we need a fast algorithm to make the decision and solve 
the problem in real-time.
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