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ABSTRACT: Tumors refer to abnormal growth of cells in the body. Early diagnosis of tumors plays 
a crucial role in improving treatment conditions , quality of life and patient survival. Deep learning 
methods are effective for medical image segmentation, but they struggle with tumors in magnetic 
resonance images (MRI) due to variations in intensity and appearance. Existing models like U-Net face 
challenges due to the integration of high-level and low-level features, leading to confusion. Our proposed 
model addresses the above issues by utilizing two techniques and fewer parameters compared to the 
existing methods, achieving higher accuracy. In the first technique, dilated convolution (DC) blocks with 
proportional rates are used to integrate high-level and low-level features. The second technique involves 
selecting dilated spatial pyramid (DSP) blocks, which increase the receptive field of features while 
maintaining their resolution, contributing to the network’s generalization. The proposed model improves 
training, network depth, and feature extraction by incorporating a residual block. It outperforms the 
traditional U-Net model in terms of segmentation accuracy and network stability. We evaluated the 
model using the BraTS 2018 dataset, obtaining Dice coefficients of 0.906, 0.817, and 0.839 for the 
whole tumor (WT), the enhancing tumor (ET), and the tumor core (TC), respectively.
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1- Introduction
Brain tumors are known to be one of the most dangerous 

types of tumors all around the world. Glioma,  which is the 
most common primary brain tumor, arises from the cancerous 
growth of glial cells in the  spinal cord and brain. Different 
degrees of tissue and malignancy exist in gliomas, and the 
average  survival time for glioblastoma patients has been 
determined to be less than 14 months after diagnosis [1]. 
Magnetic Resonance Imaging (MRI) is a non-invasive and 
popular method for diagnosing brain  tumors. This method 
helps medical professionals in the detection, sizing, and 
positioning of brain tumors  by producing high-quality images 
and using various tissue contrasts [2]. Although MRI images 
are very useful as a diagnostic strategy for brain tumors, 
manual  segmentation and structural analysis of brain tumors 
on MRI are difficult and time-consuming and can  only be 
performed by experienced radiologists [3]. 

Despite its existence for several decades, artificial 
intelligence (AI) has recently gained significant  attention, 
particularly in the field of medical imaging, due to the 
introduction of deep learning algorithms  and a focus on 
multi-modality imaging [4]. Ronneberger et al. [5] presented 
a paper on medical image  segmentation titled “U-Net” 
network   in 2015. The paper introduced a new architecture for 
medical image  segmentation, which could provide accurate 

segmentation of images using a small number of training 
 images. The purpose of this architecture was to design a 
multi-layer neural network that could perform  medical 
image segmentation with high accuracy and without the 
need for a large number of training  images   . In 2016, Pereira 
et al. [6] successfully increased the accuracy of brain tumor 
segmentation by  designing a fully convolutional architecture 
using three stages: data normalization, data augmentation, 
 and N4ITK filter for correcting MRI bias field.

Milletari et al. [7] introduced the V-Net  architecture in 
2016, based on a three-dimensional structure and U-Net for 
architecture design. In this  article, a number of steps were used 
to reduce the dimensions using three-dimensional kernels to 
slide  over the input tensors. In 2017, Mohammad Havaei et al. 
[8] presented a  paper titled “Cascade Architecture with Two 
Pathways” based on a two-dimensional structure for feature 
 extraction. In this method, local features are extracted using 
7x7 kernels, and global features are  extracted using 13x13 
kernels. By combining all features, the desired output is 
obtained. In 2020, Yang and colleagues [9] introduced a new 
architecture for neural networks  that combines U-Net and 
Residual block. This article addressed the problem of gradient 
disappearance  in deep networks using the Residual block. It 
proposed a network with improved performance by  extracting 
more features in the deeper layers. In 2019, Nouri et al. [10] 
combined the U- Net architecture with the Attention-Guide 
for brain tumor segmentation. This architecture, using the 
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 attention mechanism block in the two-dimensional network, 
resolved the model’s confusion for high- grade (HGG) and 
low-grade (LGG) data. In this article, the BraTS 2017-2018 
dataset was used for the  network’s training. 

 Another architecture called DRAU-Net (Double Residual 
Attention U-Net) has also been proposed with a new structure 
in [11]. In this  article, a combination of U-Net structures, 
Residual Double blocks, and attention mechanisms have 
been  used to address the issues associated with the above 
networks. In convolutional networks, the use of Max-Pooling 
layers leads to a reduction in the resolution of extracted 
 features. This can limit the accuracy of the model, and as the 
network depth increases for feature extraction, the  learning 
process of the model becomes more complex. In 2015, the 
dilated convolutional structure was  introduced by Yu et al. 
Their studies indicate that the dilated convolutional operator 
is suitable due to its ability  to expand the receptive field while 
preserving the resolution of features     [12]. Then a hypothesis 
was proposed  that by changing the network structures to 
Dilated Residual Networks (DRNs), the effects of altering the 
 receptive field could be reduced, leading to an improvement 
in model accuracy.    These changes, including  increasing the 
receptive field through the application of dilated convolutions 
along with preserving skip  connections in deep networks, can 
lead to a remarkable improvement in generalization and the 
output of deep  networks. 

This network has been able to prevent model confusion 
without reducing resolution in deeper layers,  and in the task 
of image segmentation, it has shown better performance 
compared to regular convolutional  networks [13]. By making 
minor changes to the structure of the DRNs network, Luper 
et al. were able to evaluate  the network for the first time 
using the Brats 2017 dataset. They believed that increasing 
the Receptive Field  through dilated convolutions, as well 
as preserving residual connections, could enhance the 
generalization of  deep network outputs for volumetric 
medical images [14]. Chen et al. managed to reduce 
computational costs  using 3D multi-fiber units with fewer 
parameters. They employed dilated 3D convolutions with 
a stride of 2 and  achieved results by performing dimension 
reduction of extracted features without utilizing Max-
Pooling layers.  In the end, they utilized dilated convolutions 
to enlarge the relevant field and understand the multi-scale 
spatial  correlations of brain tumor lesions in 3D [15]. In 
2020, a new architecture named DCU-Net was introduced by 
 Yang et al. In this study, the method of dilated convolution 
residual block (RD-Skip) was employed to expand  the 
receptive field of extracted features in the down-sampling 
path. This approach had the capability to enhance  the fusion 
of high-level and low-level features in both down-sampling 
and up-sampling paths. Additionally, in  another approach, 
Dilated Spatial Pyramid Pooling (DSPP) blocks were used 
as substitutes for Max-Pooling to  preserve image clarity 
and extracted features. These modifications led to increased 
accuracy in target detection,  particularly in identifying 
smaller tumors [16] . We propose a new architecture called 
 RDCU-Net (Residual Dilated Convolution U-Net) for brain 

tumor segmentation using expanded convolution structures 
and Residual blocks.  DC (Dilated Convolution) and DSP 
(Dilated Spatial Pyramid) blocks are used to integrate features 
and  increase the resolution of the extracted features. The 
main contribution of our study compared to existing methods 
based on U-Net networks and dilated convolutions is the use 
of residual blocks. The use of residual blocks is employed to 
increase the network depth and extract meaningful features 
relevant to tumor detection. This method facilitates network 
training and enhances model accuracy with increasing depth. 
This results in the transfer of meaningful features from the 
input blocks to deeper layers of the network, enabling better 
generalization from the network’s output . With residual 
learning, these blocks experience an improvement in the 
gradient vanishing  problem, which means a more optimal 
transfer of gradients and information from one layer to the 
next. This leads to improved conclusions during training and 
an increase in model accuracy. Additionally, increasing the 
network depth, due to the absence of the vanishing gradient 
problem, enables the extraction of more complex and abstract 
features from tumor images. In conclusion, focusing on 
increasing the generalizability of the model is very important 
for the accurate diagnosis of tumors and allows the model to 
segment tumor regions accurately.  

2- Materials and Methods
2- 1- BraTS 2018 Dataset

Considering the importance of brain tumors and their 
potential unavoidable consequences, providing open-source 
datasets to facilitate research in this area is very important. 
In this regard, the BraTS 2018 dataset is known as a valuable 
dataset. This dataset includes 210 three-dimensional MRI of 
patients with high-grade gliomas (HGG) and 75 MRI of low-
grade gliomas (LGG).  Clinical MRI of patients with varying 
degrees of tissue heterogeneity are included in this database. 
These data include four types of imaging sequences, FLAIR, 
T1, T1-contrast with gadolinium, and T2. Each three-
dimensional MRI has dimensions of 155×240×240 and can 
be viewed from three planes: axial, coronal, and sagittal. All 
labels in this segmentation, including background, necrotic 
tissue, non-enhancing tumor, edema around the tumor, 
and enhancing tumor, have been classified by experienced 
radiologists. In this study, the Brats 2018 database (https://
www.med.upenn.edu/sbia/brats2018/data.html) has been 
used for network training and evaluation. Additionally, for 
quantitative evaluation of results (such as Dice score and 
Hausdorff), it is necessary to upload the proposed network 
results to the BraTS 2018 platform online and evaluate 
them, as the validation set labels in the BraTS dataset are not 
available.

2- 2- Pre-Processing
Intensity inhomogeneity in MRI has a negative impact 

on the results of image analysis. In this study, the N4ITK 
algorithm [17] has been used to correct image inhomogeneity, 
which uses a multi-scale optimization method. In the first 
layer of the network, the data is normalized and the outliers 
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are removed to improve the learning process.  Since a three-
dimensional human brain volume includes 155 × 240 × 240 
voxels, to reduce the computational load of the network, the 
input data is divided into sections. Furthermore, the lack of 
valuable information in the margins of the images allows its 
dimensions to be reduced to 192 × 192 pixels. Ultimately, 
70% of the 2D images are used for the training process, 20% 
for validation, and 10% for testing.

2- 3- Proposed Network
Our proposed network is based on the U-Net architecture 

[5], Residual blocks, and some changes in layer connections, 
as shown in Fig. 1. Like the original U-Net, the proposed 
network has two main parts: 1- Encoding part: input images 
are encoded using convolutional layers. 2- Decoding part: 
the output image is recovered using deconvolutional layers. 
In the encoding path, four convolutional layers with stride 2 
are responsible for reducing the dimension of the extracted 
features. The original U-Net used Max-Pooling layers are 
used for this purpose. In addition, Residual blocks [18] are 
used after each convolutional layer in the encoding path to 
help accelerate the training and convergence of the network 
in deeper layers. Each Residual block consists of BN layers, 
a PReLU activation function, and a 3×3 convolution, as 
shown in Fig. 2. Deepening the network by adding repeated 
convolutional layers is not recommended, as this operation 
can cause the problem of gradient vanishing in the layers, 
leading to saturation of accuracy and its decrease. Therefore, 

it is necessary to use residual blocks to solve these problems. 
Additionally, after each block, a dropout layer is added to 
prevent overfitting. In the decoding path, we include four 
residual blocks with the same structure. This path also 
has four Up-Sampling layers, each of which doubles the 
dimensions of the extracted features. In the last layer of the 
network, the softmax non-linear activation function is used 
to convert the features to the probability value of predicting 
the tumor class. Each path connection in the original U-Net is 
formed by a skip connection   .[19]  In our proposed network, 
this is connected by DC blocks shown in Fig. 1. The DC block 
represents the use of dilated convolutions, which combine the 
extracted features in the previous layers and combine them 
with the Up-Sampling output. In the Bottleneck path, the 
DSP block is used to express more accurate features for the 
presence of extracted features in the previous layers. Finally, 
this block can identify more brain tumor features. DC and 
DSP blocks will be described in detail below. The advantages 
and disadvantages of these methods are described as follows:

• Advantages: Increasing detection accuracy, multi-
scale receptive field enhancement, preservation of resolution 
clarity, parameter reduction, improved detail resolution, and 
capability to understand complex patterns and features.

• Disadvantages: Sensitivity to selected rates and 
significant time cost in network design for selecting rates.

In the forward path, a combination of binary cross-
entropy loss and Dice loss functions are used to increase 
network convergence, while in the backward path, the Adam 
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optimizer with a learning rate of 1e-5 is adopted. Finally, the 
last output layer (Softmax) is responsible for transforming the 
features into the probability values for predicting the classes 
[11].

2- 3- 1- Dilated Convolution (DC) Block
In the past, dilated convolution was referred to as 

“convolution with dilated filter”. This operator played a crucial 
role in the a’trous algorithm for wavelet decomposition and 
analysis [20]. In deep neural networks, Max-Pooling layers 
and stride-in filters are commonly used for subsampling 
the input images and reducing the dimensionality of the 
extracted features. However, this operation is not suitable for 
accurately expressing the features, and it leads to a decrease 
in the resolution of the features in each layer. Ultimately, 
by subsampling the same features, the dimensions of 
the original image are restored, which results in reduced 
accuracy in output segmentation. For this reason, in 2015, 
this problem was resolved using dilated convolution [12]. 
The fundamental difference between dilated convolution and 
regular convolution is the use of an additional parameter for 
determining the spacing of the kernel in dilated convolution, 
as shown in Fig. 2. Unlike Max-Pooling layers and stride 
in regular convolution that reduce the dimensions of the 
features, dilated convolution expands over the input image 
by selecting a dilation rate. In this operation, empty positions 
are always filled with zeros. Finally, a sliding operation is 
performed, and the extracted features are obtained. The size 
of the features is determined based on the input tensors using: 

𝐿𝐿𝑙𝑙+1 = 𝐿𝐿1 + 2𝑝𝑝 − 𝑘𝑘 − (𝑘𝑘 − 1)(𝑟𝑟 − 1)
𝑆𝑆∗ + 1     (1)  
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D(X, Y) = max{supx∈XD(x, Y), supy∈YD(X, y)}              (6) 

 

 (1)

where 1lL +  represents the output of the extracted features, 
1L  is the input tensor, p  is the padding, k  is the kernel 

size, r  is the dilation rate, and *S  is the stride in dilated 
convolution.

In the original U-Net network, all convolutions are 
performed in the usual way. The high-level and low-level 
features are combined in a classic way, which confuses 
the model during the training process. This also leads to 
neglecting details in the extracted features, which can reduce 
the accuracy of tumor segmentation. In this paper, instead of 
using the direct method in the U-Net network, DC blocks with 
Skip Connections are used to eliminate the problem of direct 
integration of high-level and low-level features. These blocks 
preserve the meaningful feature information to a very large 
extent and help to generalize the network more accurately for 
segmentation output. The details of the convolution layers, 
along with the expansion rate and the number of filters in the 
DC blocks, are presented in Table 1.

After applying the first filter with dimensions of 64, the 
extracted features are generated with the largest dimensions. 
However, in dilated convolutions, we will use a Dilated Rate 
with a maximum value equal to 16. To explain further, the 
higher the number of dimensionality reduction layers in the 
encoder path, the higher the rate naturally is, and this increase 
is determined by the ratio of 2 to the power of n. For example, 
if we reduce the dimension three times in the encoder path, 
its maximum value is equal to 8. Another reason is to get 
meaningful information and wider features from the input 
image after the first filter. In the second step, as the number 
of filters increases from 64 to 128, there is another dimension 
reduction step. For this reason, a dilation rate of 8 is also 
used for this stage. When we reach a lower level of extracted 
features, the selection of the rate will become 2 [12]. Previous 
work  [12]-[16] has shown  that the dilation rate is adaptable 
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and compatible. Moreover, repeated experiments during the 
training phase also validate this choice.

2- 3- 2- Dilated Spatial Pyramid (DSP) Block 
In the classic U-Net model, Max-pooling layers serve two 

main purposes. In the first stage, by reducing the computations, 
the increase in the complexity of the network is prevented, 
and in the second stage, by enlarging the receptive field, the 
ability to detect features is increased. However, after each use 
of these

layers, the resolution of the extracted features decreases, 
resulting in the loss of Surface features. In this paper, we 
use the DSP block to simultaneously preserve the resolution 
of the extracted features and increase the feature receptive 
field. Fig. 3 shows the DSP block. Firstly, the previously 
extracted features are processed using the BN operation. 
Then, we slide over the previously extracted features using 
four convolutional blocks with expanded rates of 2, 4, 8, and 
16, and finally, the information on the features is combined. 
By using the DSP block in the bottleneck, we can evaluate 
the significant feature information with higher accuracy than 
the classic U-Net and increase the accuracy of brain tumor 
segmentation. The specifications of the DSP block layers are 
listed in Table 2. 

As explained in section 2-3-1, the use of DC blocks in the 
network is one of its strengths. In 2015, the U-Net network 
was introduced for the purpose of segmenting medical 

images. One of the weaknesses of the classic U-Net network 
is its direct connections for fusing high-level and low-level 
features, which can confuse the model. To address this issue, 
we can employ two techniques: 1. Attention Mechanism; and 
2. DC blocks.

Attention Mechanism: The attention mechanism allows 
neural networks to focus on specific features of the data at 
each processing stage. This focus can be achieved by assigning 
different weights to features, reflecting their significance. In 
other words, by assigning larger weights to more important 
features, attention to detail becomes evident. For this reason, 
by integrating these features at different levels and using the 
focus of weights on each feature at each level, the problem of 
direct integration and confusion in the model is solved.

DC Blocks: These blocks not only prevent the direct 
integration of features between different levels but also 
enable the detection and understanding of broader patterns 
and features within the data. Here, dilation increases the size 
of the receptive field. By increasing the size of the receptive 
field, the network becomes capable of understanding larger 
and more complex patterns within the data. This feature 
is especially useful in tasks such as recognizing complex 
patterns in medical images that require understanding of 
the information at different levels. Finally, in addition to the 
superiority of this block over the attention mechanism, the 
use of residual learning can be added to it, which is done by 
skip connection.

Table 1. DC block specifications.
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Dilation rate Number of Kernel Kernel size  Operation Name of Block 

16 64 1 × 1 Conv + PReLU  DC 1 

8 128 1 × 1 Conv + PReLU DC 2 

4 256 1 × 1 Conv + PReLU DC 3 

 2 512 1 × 1 Conv + PReLU DC 4 

Table 2. Specifications of the layers in a DSP block.
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Dilation rate Number of Kernel Kernel size Operation Layer Name 
-- -- -- Batch 

Normalization 
BN 

2 1024 3 × 3 Conv 2D Conv1 
4 1024 3 × 3 Conv 2D Conv2 
 8 1024 3 × 3 Conv 2D Conv3 
16 1024 3 × 3 Conv 2D Conv4 
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Dilated Spatial Pyramid (DSP) Blocks: The two main 
features of these blocks are increasing the receptive field 
and reducing the calculations in the designed network. These 
blocks with different rates are good alternatives to Max-
Pooling layers, which reduce the resolution of the extracted 
features and are not suitable for representing detailed features . 
By utilizing DSP blocks, it is possible to simultaneously 
increase the receptive field and preserve the clarity and 
resolution of the extracted features.

2- 3- 3- Residual Block
The main task of residual blocks is to solve the problem 

of the vanishing gradient and the reduction of depth in deep 
neural networks during the training process. Usually, in 
convolutional neural networks, increasing the number of 
layers leads to the vanishing gradient problem, where the 
gradient values become very small towards the initial layers, 
which results in less effect in the training process. Residual 
blocks, with their specific architecture, solve this problem 
and allow the network to achieve greater depth. To improve 
the performance of the network, Batch Normalization and 
PReLU layers are placed inside the block. First, the Batch 
Normalization layer is applied to the extracted features, 
and then the PReLU activation function with its trainable 
parameters transfers the extracted features to the next layer. 
Finally, a convolution layer with pre-defined initial values 
performs the processing. This operation is repeated once again 
inside each Residual block to improve the extracted features. 
Residual blocks can increase the network’s generalization 
power and stability in the training process, and help with the 
network’s learning. These blocks allow networks to extract 

complex and abstract features from the input data. These blocks 
extract details and complex patterns that play important roles 
in the diagnosis of brain tumors. This is particularly evident 
in complex tasks such as the segmentation of tumor regions. 
By deepening the network and enabling the extraction of 
more meaningful features, the model gains a better ability to 
differentiate between various regions and objects in the input 
image. This leads to a significant improvement in detection 
accuracy and enables better recognition of different objects 
and regions.  These blocks have skip  connections that act 
as direct paths for transferring gradients through network 
layers. This feature helps to reduce the vanishing gradient 
problem, which may cause instability in the training process. 
By effectively transferring gradient information, these blocks 
generally contribute to the robustness and stability of the 
network during the learning stages.

2- 3- 4- Loss Function
In order to perform pixel-wise segmentation in the 

proposed network, a combined loss function has been used. 
The use of an optimal loss function is crucial, as an incorrect 
choice can have negative effects on the output segmentation. 
In this regard, the combination of the Dice and binary cross-
entropy loss functions has been employed to obtain accurate 
results. The Dice loss function [21] has the adaptive ability 
to balance classes, and the binary cross entropy loss function 
[22] improves convergence speed.

𝐿𝐿𝑙𝑙+1 = 𝐿𝐿1 + 2𝑝𝑝 − 𝑘𝑘 − (𝑘𝑘 − 1)(𝑟𝑟 − 1)
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Fig. 3.  Illustration of a DSP block. 
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Rate =16

Fig. 3. Illustration of a DSP block.
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N and M respectively correspond to the number of 
samples (pixels) and the number of classes in each image. 

( ),t n my  represents the actual label value, while ( ),p n my   
indicates the predicted value by the model for sample n and 
class m. To prevent issues of undefined in the denominator 
of the equation, a small positive value is considered with a 
variable named ε. Basically, the formula of the Dice Loss cost 
function measures the model’s error by comparing the actual 
and predicted values for each class in each sample. This cost 
function aims to measure the similarity between the actual 
image and the predicted one and encourages the model to 
correctly identify different regions of the image. The goal is 
to minimize the cost function so that the model improves. 
To this end, using formulas (2)-(3), the final loss function is 
obtained. To prevent the denominator from becoming zero, 
ε is used, and the constant value α is determined to be 0.5 
through empirical calculation and multiple attempts. Finally, 
the total loss is calculated as: 
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2- 3- 5- Evaluation Metrics
According to brain tumor segmentation papers, two 

standard criteria, namely Dice Score and Harsdorf95, have 
been used. The results related to the Dice Score, based on 
the model evaluation process using the training data with 
available labels, are presented in Table 3 (Note: these data 
were not used during the training phase). Also, the results of 
both Dice Score and Harsdorf 95 criteria are calculated in 
the online platform using validation data whose labels were 
not available to us. Then, after comparing with the original 
labels, the results were announced to us and we reported them 
in Table 4.

Dice score: as shown in formula (5), it evaluates the 
degree of similarity between the model’s outputs and the true 
labels. The Dice score indicates how well the brain tumor 
segmentation results match the true tumor mask.

2 | |
| | | |

X YDSC
X Y

=
+


 (5)

where |X| and |Y| are the cardinalities of X and Y, 
respectively.

Hausdorff Distance: Formula (6) describes how close 
the boundary of a segmented region is to the boundary of the 
ground truth region. 

𝐿𝐿𝑙𝑙+1 = 𝐿𝐿1 + 2𝑝𝑝 − 𝑘𝑘 − (𝑘𝑘 − 1)(𝑟𝑟 − 1)
𝑆𝑆∗ + 1     (1)  

 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 1 − 1
𝑁𝑁 ∑ ∑

2𝑦𝑦𝑡𝑡(𝑛𝑛,𝑚𝑚)𝑦𝑦𝑝𝑝(𝑛𝑛,𝑚𝑚)
𝑦𝑦𝑡𝑡(𝑛𝑛,𝑚𝑚) +  𝑦𝑦𝑝𝑝(𝑛𝑛,𝑚𝑚) + 𝜀𝜀

𝑀𝑀

𝑚𝑚=1

𝑁𝑁

𝑛𝑛=1
               (2) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐵𝐵𝐵𝐵𝐵𝐵 = − 1
𝑁𝑁 ∑ ∑ 𝑦𝑦𝑡𝑡(𝑛𝑛,𝑚𝑚)

𝑀𝑀

𝑚𝑚=1

𝑁𝑁

𝑛𝑛=1
log(𝑦𝑦𝑝𝑝(𝑛𝑛,𝑚𝑚))             (3) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑇𝑇 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐵𝐵𝐵𝐵𝐵𝐵 +  𝛼𝛼 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷            (4) 

 

 

 

𝐷𝐷𝑆𝑆𝐷𝐷 =  2|𝑋𝑋 ∪ 𝑌𝑌|
|𝑋𝑋| + |𝑌𝑌|             (5) 

 

D(X, Y) = max{supx∈XD(x, Y), supy∈YD(X, y)}              (6) 

 

 (6)

where ( ) ( )y Y,  , , D x Y inf D x y∈= sup is the supremum, and 
inf is the infimum. Also, it is notable that D is the Euclidian 
distance between a point x ∈ X and a subset Y.

3- Results
In this study, all experiments and results were implemented 

on Google Colaboratory. In the proposed network, 147 HGG 
and 52 LGG data (which are equivalent to 70% of the Brats 
2018 dataset) were assigned to the training phase, and the 
remaining data were used in the validation phase. It should 
be noted that during the training phase, the model evaluation 
process was achieved based on 5-fold cross-validation. The 
results of our proposed model evaluation are presented in the 
tables and images below. As seen in Table 3, DC blocks, DSP 
blocks, and residual connections have significantly improved 
the network’s generalization compared to the classic U-Net. 
The segmentation results in Table 3 have been calculated 
using 10% of the training data, which has been separated for 
evaluation.

To evaluate the quality and visual performance of the 
network, we show an axial image with all four modalities 
(Flair, T1, T1ce, and T2). These images are presented in the 
first to fourth columns. The fifth column in Fig. 4 is dedicated 
to the masks, and the sixth column displays the predicted 
images by the network. 

We evaluate our model using the BraTS 2018 evaluation 
dataset, which consists of 66 volumetric brain images 
(without access to labels). After performing label predictions, 
we consider them as a complete brain volume. This complete 
volume includes all three types of labels. The dimensions 

Table 3. Comparison of the proposed model with the U-net Model using training data.
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0.846  0.913 0.824  Propose Network 
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of this volume should match the original label dimensions. 
Finally, the 66 predicted labels are uploaded to the online 
platform of the University of Pennsylvania at the address 
(https://ipp.cbica.upenn.edu/). After performing a comparison 
with the ground truth labels, the final results are announced. 
The evaluation results are shown in the form of a box plot 
in Fig. 5. Furthermore, these results demonstrate that the 

network performs successfully in segmenting input MRI with 
high accuracy.

3- 1- Comparison with Existing Methods
In this section, our model is evaluated using the test dataset 

of Brats 2018 and is compared with metrics such as Dice and 
Hausdorff distance. In Table 4, a comparison between our 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The 5-fold cross-validation results for axial views on a multi-model MRI dataset. 
 Fig. 4. The 5-fold cross-validation results for axial views on a multi-model MRI dataset.

 

 

 

 

 

Fig. 5. Box plots of the 5-fold cross-validation results on axial views. ET is the enhancing tumor, WT is the whole tumor, 
and TC is the tumor core. 

Fig. 5. Box plots of the 5-fold cross-validation results on axial views. ET is the enhancing 
tumor, WT is the whole tumor, and TC is the tumor core.
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study and existing research and advanced methods is provided. 
This table illustrates the evaluation of the predicted labels 
which have been computed by the online platform. In this 
comparison, our study exhibits its maximum and minimum 
values according to the Dice Score and Hausdorff95 metrics 
for the WT (Whole Tumor) category. The minimum value 
is based on the maximum distance between the predicted 
label and the ground truth label, while the maximum value 
indicates their highest similarity. 

4- Conclusion
In this article, a deep learning-based method called 

RDCU-Net is proposed for segmenting three regions of brain 
tumors. We believe that this method can overcome issues 
such as direct feature fusion, low accuracy of segmentation 
at region boundaries, and reduced resolution compared to 
classic U-Net. The high-level and low-level feature fusion 
in this method is done by the DC block. Additionally, due 
to the presence of dilated convolutions in each pathway, the 
receptive field is expanded, and the network’s confusion 
problem is resolved. The DSP block is a suitable replacement 
for Max-pooling, despite having dilated convolutions with 
different rates. The DSP block has two important features. 
First, it can expand the feature receptive fields, and second, it 
can preserve the resolution (clarity) of extracted features to a 
great extent. This is why 

it leads to more accurate detection of smaller targets 
Finally, to deepen the network for extracting meaningful 
features and transferring them to the network’s depth for ease 
of training and network stability, Residual blocks have also 
been used.
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