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ABSTRACT: In the electricity market, generation company attempts to maximize their profit in a
bidding strategy approach. As the transactions of power and spinning reserve are done in a transmission
network, consideration of transmission constraints and spinning reserve uncertainties becomes
necessary. In the bidding strategy problem, there are various demand uncertainties. Usually, electricity
markets consider a fixed spinning reserve with fixed request probability to ensure that demand is met.
However, the actual spinning reserve is stochastic in quantity and requests hours that should be modeled
and simulated. Another demand uncertainty is demand response programs include various stochastic
types. One of the most famous demand response programs is electric vehicle parking with stochastic
charging/discharging amounts and hours. The objection of this study is solving the bidding strategy
problem considering transmission constraints, spinning reserve uncertainty, and electric vehicle parking
as a demand response program based on a heuristic approach. An actual spinning reserve model using
normal distribution is proposed and three case studies are presented. In the first case, improvement in
profit of the generation company by 4.15-47.95% and 20.84-31.30% under single and double-sided
auctions are reached, respectively. Where transmission constraints and spinning reserve uncertainty are
considered, the optimal bidding strategy problem is solved in the energy and spinning reserve market
for three-generation companies in the IEEE 6-bus network where transmission constraints are satisfied
at all scenarios of spinning reserve requests. When electric vehicle parking is considered, it is shown
that demand response programs have direct effects of bidding parameters such as market clearing price,
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generation companies power awarded and profits.

1- Introduction

In an electricity market for energy and spinning reserves,
generation companies (GENCOs) attempt to maximize their
profits by competing with other opponents [1]. Usually,
GENCOs participate in a transmission network and therefore,
transmission constraints should be considered in the bidding
strategy problem.

For market participants, it is very important to know
forecasted hourly demand that is naturally uncertain due
to unwanted hourly increases/decreases and should be
considered in bidding strategy problems. Usually, a fixed
spinning reserve is considered equal to a certain percent of
demand. However, that is not an actual model, and spinning
reserve uncertainty in quantity and request probability should
be studied.

The demand may be uncertain in another form that is
demand response (DR) programs when demand is changed
or shifted suddenly or with scheduling. One of the most
important types of DR is electric vehicle (EV) parking. The

*Corresponding author’s email: menazari@aut.ac.ir

EV parking benefits from charging/discharging EVs and
therefore a huge demand uncertainty is forced to market.

There are studies on bidding strategy problems under
transmission networks considering DR, as summarized in
Table 1 and outlined next.

1- 1- Literature review

The bidding strategy for energy and spinning reserve
markets is solved in [1] when evolutionary programming
(EP) and sequential quadratic programming (SQP) are used
without spinning reserve uncertainty, DR, and transmission
constraints.

A genetic algorithm (GA) is used to solve the bidding
strategy problem in [2] without considerations for
transmission constraints and DR programs.

Optimal bidding strategy with considerations for market
power and transmission constraints is examined based on
GA by Badri [3, 4]. In that study, the impacts of the energy
market clearing process on GENCOs characteristic and final
marginal cost price (MCP) are discussed.

Li and Shahidehpour solved a transmission-constrained
bidding strategy [5] where DR programs and spinning reserve
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Table 1. Summary of studies on optimal bidding strategy problem in the literature.

Market participation Consideration
Ref. Spinning Transmission Spinning reserve .
Energy reserve constrainers uncertainty DR EV parking
[1] [ o
[2] [ o
[3] [ o o
[4] [ ) ° o
[5] [ J [ [ J
[6] ° ° °
[7] [ J [ [ J
[8] ° ° °
[9] [ ] o °
[10] [ [ ) o
[11] [ ] °
[12] [ ] o o
[13] ® o ]
[14] [ o o
[15] [ ) [ ) o ]
[16] [ [ ) o
[17] ® o ]
[18] [ [ ) o
[19] [ ) o
[20] [ ) o
[21] [ o
[22] [ )
[23] ® °
[24] [ o [ )
[25] ® o
[26] [ o
[27] [ o
[28] [ )
[29] ® °
[30] [ o
[31] ® °
[32] L4 °
[33] ® o
[34] L] ) )
[35] [ )
[36] o °
[37] ® ® °
[38] ® [ )
[39] ® o
[40] ® [ )
. Case (a) [ ) [ ) ()
Thas Case (b) (] o ® [ )
study Case (¢) [ [ ) [ [

uncertainty are not considered.

Bidding strategy of thermal generation units (TGUs) is
solved for the six-bus network [6], IEEE 39-bus network
[7], and IEEE thirty-bus network [8]. Similar studies are
presented by Kardakos et al. [9, 10] using GAMS.

Nazari and Ardehali [11] have solved the bidding strategy
for the coordinated power system in day-ahead energy and
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spinning reserve markets considering wind uncertainty and
pollution emission. However, transmission constraints and
spinning reserve uncertainties are not considered.

Zolfaghari Moghaddam and Akbari [12] have presented
a bidding strategy for several price-taker plug-in electric
vehicle aggregators.

A stochastic bi-level bidding strategy is proposed by
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Rayati et al. [13] for integrated wind and gas turbines in the
real-time market. The bidding strategy is formulated by Liu
et al. [14] for microgrids and the Nash Equilibrium of the
market is achieved.

Distributed energy resources aggregators bidding strategy
in a non-cooperative electricity market has been developed
by Li et al. [15]. However, spinning reserve uncertainties are
not considered.

Moiseeva and Hesamzadeh [16] have proposed a
stochastic bi-level program for the bidding strategy problem
of hydropower. A self-generation scheduling method for
power GENCOs with renewable generation units has been
presented by Renani et al. [17].

Karimi et al. [18] have made use of a model to involve the
GENCOs in transmission investment through a joint venture
agreement. However, spinning reserve uncertainties are not
considered.

The optimal bidding strategy problem for GENCOs in
energy and spinning reserve markets is examined by Nazari
and Ardehali [19, 20]. However, transmission constraints and
spinning reserve uncertainties are not considered.

It is noted that in the above papers [1-20], DR programs
are not considered. Next, a literature review of references
about bidding strategy considering DR is done.

In[21],the bidding and purchasing strategy simultaneously
employing the smart meter data and functions are determined.
However, EV parking, spinning reserve uncertainty, and
transmission constraints are not considered.

Reference [22] presents a mathematical model for the
energy bidding problem of a virtual power plant participating
in the electricity and DR markets without considerations for
EV parking, spinning reserve uncertainty, and transmission
constraints.

The bidding strategy for the aggregator considering the
bottom-up responsiveness of residential customers is solved
in [23].

Operation models of multiple virtual power plants under
bidding strategy problem is examined in [24]. However,
EV parking, spinning reserve uncertainty, and transmission
constraints are not considered.

Day-ahead market bidding strategy for load aggregators
engaging DR is presented in [25] without considerations for
EV parking, spinning reserve uncertainty, and transmission
constraints.

Reference [26] proposes an approach to solve the bidding
strategy of DR aggregators. However, EV parking, spinning
reserve uncertainty, and transmission constraints are not
considered.

The optimal bidding strategy of electricity retailers
considering time-of-use rate DR programs under market price
uncertainties is presented in [27] without considerations for
EV parking, spinning reserve uncertainty, and transmission
constraints.

The market bidding strategy of the microgrids considering
DR and energy storage potential flexibilities is studied in
[28]. However, EV parking, spinning reserve uncertainty, and
transmission constraints are not considered.

Reference [29] proposes a novel scheme for optimizing
the operation and bidding strategy of virtual power plants
without considerations for EV parking, spinning reserve
uncertainty, and transmission constraints.

A comprehensive stochastic decision-making model for
the coordinated operation of wind power producers and DR
aggregators participating in the day-ahead market is done in
[30] without considerations for EV parking, spinning reserve
uncertainty, and transmission constraints.

In [31], the authors focus on determining the optimal
bidding strategy in the day-ahead energy and spinning reserve
markets for an aluminum smelter. However, EV parking,
spinning reserve uncertainty, and transmission constraints are
not considered.

Ref. [32] contributes a strategic bidding model for
planning with short-term energy storage while considering
the uncertainty of consumer DR and load response programs,
simultaneously.

Ref. [33] formulates the operation mechanism and a
day-ahead robust bidding model for a virtual power plant
in the peak-regulation market. Case studies reveal that the
mechanism can integrate various resources of electricity,
cooling energy, thermal energy, and natural gas in energy
demand and supply sides to participate in the peak-regulation
market and improve the economy of the system.

A convex bidding model is formulated in [34] for wind,
pumped storage, and DR in both day-ahead energy and
ancillary service markets by considering upward spinning
reserve and downward spinning reserve. Also, fixed, shiftable,
curtailable, and incremental loads are considered for DR.

The main goal of [35] and [36] is to propose a novel multi-
objective bidding strategy framework for a wind-thermal-
photovoltaic system in the deregulated electricity market for
the first time.

In Ref. [37], strategic bidding of an energy storage
agent in a joint energy and reserve market under stochastic
generation is solved.

Aiming at the problem of insufficient research on the
interactions of various participants in the energy and frequency
regulation market that takes into account the participation of
wind power and large-scale EV, a bidding strategy for wind
power and large-scale EVs in the day-ahead energy market is
proposed in [38].

In[39], the bidding and purchasing strategy simultaneously
employing the smart meter data and functions are determined.
A two-agent deep deterministic policy gradient method
is developed to optimize the decisions through learning
historical bidding experiences.

Ref. [40] concentrates on the optimal bidding strategy
of a plug-in EV aggregator using indirect load control in the
day-ahead energy market, which is generally formulated as
bi-level programming.

As shown in Table 1, the studies that consider spinning
reserve in the optimal bidding strategy problem with
considerations for transmission constraints are limited and
the probability of spinning reserve request is assumed to be
fixed throughout the day in the day-ahead electricity markets.
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Fig. 1. Normal distribution of spinning reserve request probability

However, in competitive electricity markets, the probability
associated with the spinning reserve and the spinning reserve
request is variable due to the volatile market prices and
demand uncertainty [41]. Also, consideration for different
types of DR programs is necessary because of their natural
uncertainty.

1- 2- Contributions

Based on the literature review, the uncertainty of
spinning reserves is not considered in the optimal bidding
strategy problem. It is expected that considerations for DR
and spinning reserve uncertainty would influence bidding
parameters, spinning reserve prices, and GENCOs profits.
Accordingly, the novelties of this study are

1. Modelling the spinning reserve uncertainty

2. Investigation of the effects of spinning reserve
uncertainty on optimal bidding strategy problem

3. Investigation of the effects of EV parking as DR on
optimal bidding strategy problem

4. Solving the transmission-constrained optimal bidding
strategy problem using a heuristic optimization algorithm

The objection of this study is solving the bidding strategy
problem considering transmission constraints, DR, and
spinning reserve uncertainty based on a heuristic approach.
An actual spinning reserve model using normal distribution
is proposed and three case studies are presented.

Next, in section 2, the formulation is presented and the
optimization algorithm is discussed in section 3. Section 4
presents the results and finally, in section 5, the conclusion
is discussed.
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2- Problem formulation

To arrive the objection, three cases are considered:

Case (a): Bidding strategy of one GENCO with and
without spinning reserve uncertainty

Case (b): Bidding strategy of three GENCO with
considerations for transmission constraints

Case (c): Bidding strategy of one GENCO with
considerations for EV parking as DR programs

2- 1- Spinning reserve uncertainty modeling

Normally, the spinning reserve commitment probability
is based on a lower probability for higher values of spinning
reserve request and a normal distribution function is used
[41], as shown in Fig. 1, where the spinning reserve request is
changed from zero to 10% of demand at different probabilities.
Accordingly, three conditions may occur for the treatment of
spinning reserve:

1. Fixed spinning reserve request (10% of demand) and
fixed probability (5%) [1-10].

2. Fixed spinning reserve request (10% of demand) and
variable probability [41].

3. Variable spinning reserve request (zero to 10% of
demand) and variable probability, as proposed in this study.

2- 2- Day-ahead energy market
The case function of a GENCO with thermal units is:

f(P@,1))=a,P(i,t)+bP(i,t) +c, (1)
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Then using derivation of Eq (1), MCP is calculated [42,
43]

of (P(i,t))/ OP(i,t) = pli,t) = 2a,P(i,t) +b, @)

where p(i,t) is the initial bidding point of TGU i
owner.

As (a, , ﬂjt) are bidding parameters of GENCO, the
bidding price is [44, 45]

Py=0;+ ﬂjtTPft )

As the profit of TGU i ™ in energy market is

PF(i,0)=p, P(i.0)=f (P(i.1))=

4
_aiPZ(i,t)-i-(pjt —bi)P(i,t)—Ci @

and to achieve positive profit of TGU i th
Py >b %)

2- 2- 1- Single-sided auction
Under the single-sided auction, MCP, and T sz are [1,
16]

MCE =a,+B,TP, j=1,..,N, (6)
NS
PD,=Y"TP, ™
Jj=1
then,

N, N,

MCP, = [Zaﬁ /B, +PDtj />1/ B, 8)
Jj=1 J=1

TP, =(MCR-a,)/ B, ©)

TP, <TP, <TP, .. (10)

2- 2-2- Double-sided auction

Under double-sided auctions, large customers bid a curve
(¢ —@.ITL,,) to the ISO [1] and market parameters are
calculated as

N, N,
[Zaﬂ /ﬂjt +Z¢kl /(Dkt +PD1J
MCP, == - an
t N, N,
[Zl/ﬁjt +Zl/¢ktj
j=1 k=1
TL, = (¢, —MCP)/ g, (12)
TL,.. <TL <TL (13)

2- 3- Spinning reserve auction
In this section, the spinning reserve bidding strategy is
modeled with and without considerations for uncertainty.
Non-negative parameters ( ¥ Ry ) are bid for spinning
reserve by a GENCO j at hour t and,

Py =y, tren, (14)

If the probability of spinning reserve request is variable
throughout the day,

p./r't =Vt re(t)njt (15)

where re(f) must be predicated using artificial neural
network (ANN) as discussed in [43].
From ISO view, the objective function is:

NS‘
min ) RPTR, (16)
Jj=1
subject to
N
D> TR, > R(1) (17)
j=1
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TR, <TR, .. (18)
N

TR, = 21(1', 0P, () - TP, (19)
i=1

The spinning reserve price is then equal to the highest
( +re(t)n, ) of the successful bidders.

"When both re(t)and spinning reserve requests are
variable, RP, modeling is changed as noted in Ref. [47].
Then, m scenarios are defined for 7e(¢) and R (i ,¢) and the
cost function of spinning reserve is

C(RG,t) :Z_(l re, ) (P@i,t))+

re, (O(f ( P(z,_t)+R(m,z,t)))
— (P(i.1))

=Zrem O[f (PG.O+R(m,i,0)~f (PG.1))]

(20)

where

R(m,i,t)=mR(i,t)/100 (21)

The RP, is determined by the derivative of cost function

oC (R(i,t))/@R(m,i,t)zp/’.t =
M

Z2rem )a,P(it)+re, ()b, + (22)
m=l1

2re, (t)a,R (m,i,t)

Then, non-negative parameters ( Ry ) are used by
GENCO j™ at hour t and, the spinning reserve bidding price is

pjr‘t = 7jt +njoRjt (23)

As the profit of TGU i " in spinning reserve market is

PFf(i,t):f:p;,R(m,i,z)—C (R(m,i,t))

m=1

M
=Z—rem )a,R*(m,it)+ (24)
m=1

(), —re,, ©)(2a,P(i t)+b, ) )R (m.i 1)
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to achieve positive profit of TGU i h

M
>(2a,P(i,)+b,) D mre, (t)/100

P 25)
m=1
Next, RP, and T’ R, are calculated for N GENCOs [2]
RE=y,+n, IR, j=1,..,N, (26)
NS
R()=2 TR, @7)
j=1
then
N, N,
RP, :(Z}/ﬁ/ﬂjt+R(t)]/ZI/77ﬂ (28)
Jj=1 J=1
TR, =(RR~7,)/m, (29)

2- 4- The objective function of GENCO

Obviously, according to forecasted bidding parameters
of other opponents, a GENCO tries to maximize its profit
when the price-based unit commitment (PBUC) problem is
solved along with the determination of «,, , Ysi o Vi
The objective function for PBUC problem is [48]

max {PF =RV —TC} (30)
RV = ZMCPTP +RPTR, 31)
t=1
I N
TC =YY (I-ret) (P(i.t))+
t=1 i=l
(32)

re(t)(f (PG,t)+R(i,1)))+
SU GO t)(1-1(,t 1))

When both re(f)and spinning reserve request are
variable, the total cost is changed as
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TC=Y3 Y (f (PG0)+ROn0)) ¢

t=1 m=1i=1 (33)
SU @O0 (1-1( ot 1))

N
ZR(Z‘,I) =1R, (34)
i=1

and

HSC(@) TY(i,t) < CST(i)+MDT(i) ;

CSCG) TY (i,t) > CST(i)+MDT(i) Y

SUG,t) = {

1,0) = IS()) (36)

The following constraints must be met by GENCO j©[49]

Zzlp(i’t) =TP, (37)
P ()I(i,n) < Pi,t)< P, (i) (38)
gR(i’ 1) =IR, (39)
T (i,t) = MUT (i) (40)
T (i,t) > MDT (i) (41)

2- 5- Transmission constraint
According to transmission constraint, power flow between
buses u and v must be limited

b, <B,O<P, . (42)
where
P, =1/X,(5,()—56,01) 43)

and demand constraint described by Eq. (5) must be

satisfied.
In DC load flow equation,

Ry (& [t b by |8
l)ufin/' = [B] 51,4 = bul buNb 514 (44)
_PNrfnj ] _5N» ] _bNb] . . . bN,,N,, | _5Nh _

where buu is sum of susceptances magnitude connected
to bus u and buv is the negative of susceptance magnitude
between buses uand v. Also, P, j is injected power of bus u.

It is noted that DC load flow equations are formulated as
discussed in the Appendix.

Based on the assumption that 6, =0, then, Eq. (44) is
revised as

PH”_[ b, . b, . bZN,, 6,
El'mj = b;lz b;w 514 (45)
_PNb—irg/‘_ _bsz : : : bNbNb N _5Nb
then,
I 6, | I szmj |
é.‘u - [Z ] Rt.inj (46)
_5Nb | N, —inj |
[z 2 Z oy Zon, ]
2]=] ., 2 |2
ZN,2 NyN,

(47)

by - - - by |
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2- 6- Demand response modelling

In this study, an EV parking is proposed to investigate
the effects of DR programs on bidding strategy problem. As
noted earlier, EV parking could affect bidding parameters due
to significant demand uncertainty. PEV owners profits are
gained from buying energy (charging) at lower energy prices
and selling (discharging) at higher energy prices.

After receiving the required parameters from EVs,
charging/discharging scheduling is calculated where EVs
limitations should be satisfied [50] as listed below:

1. SOC limits:

qt = max,q

s0C,,,, <SOC,, <SOC 48)

2. Charging/discharging rate limits:

PC,qt - I)C—max,q (49)

PD,qt S PDfmax,q (50)
3. Parking presence:

TP,q S Tmeax,q (51)

I,,=t,—t, (52)
4. Charging/discharging switching number

SWy < Wi g (53)

3- Optimization algorithm

In this section, the heuristic optimization algorithm is
presented. It is noted that for Cases (a) and (c) the heuristic
optimization algorithm examined in [11] is modified to solve
the bidding strategy problem with considerations for spinning
reserve uncertainty. However, a heuristic approach is
developed for the transmission-constrained optimal bidding
strategy problem (Case(b)).
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3- 1- Case (a): Optimal bidding strategy of a GENCO with
and without spinning reserve uncertainty.

As the optimization algorithm is applied to GENCO
1, a,,,p, and a,,f; remain constants and a set of 96
parameters must be determined for GENCO 1.

a B o n

(04
5= % ﬂf 7:2 77:2 s

Uy P Vo T
3- 1- 1- Without spinning reserve uncertainty

In this section, the probability of requesting reserve is
assumed fixed. The procedure of optimization is detailed in
our previous paper [11] and summarized below:

The output power of EV parking is scheduled by parking
owner and therefore, 7P is changed. It is noted that, parking
owners schedule output power of EVs according to forecasted
MCP.

Maximizing revenue as Max {M CPTP, }

To maximize the above equation, GA is used [51-54].

Solving PBUC for GENCO 1 according to determined
MCP and TP. It is noted that the details of PBUC algorithm
are discussed in our previous papers [55, 56].

TR is calculated according to output power of units. Then,
bidding parameters for the reserve market are submitted by
GENCO 1 [11].

The PBUC problem is solved for GENCO j®. To do this,
the heuristic optimization algorithm discussed in Section
3.1 is used to maximize profit. In this step, GENCO j* may
change its bidding parameters.

If the bidding parameters of GENCO j" are changed, it

submits new bidding parameters to ISO, and clearing market
is done. Then, go to step 4.

3.1.1.1 Single-sided auction [11]
I. The initial bidding parameters of GENCO 1 must be
determined while the revenue is maximized. It means that

GENCO j" attempts to maximize its 7P at the maximum
possible MCP.

max { MCPTF, } (55)

Ns Ns

MCP =[Zaﬁ /B, +PD,J/Zl/ﬂﬂ =
j=1 j=l
(alt +Atﬂlt)/(1+Btﬁh‘)

(56)
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TPlt :(MCPt _alt)/ﬂlt =

(4, -a,B,)/(1+B,5,) 7)
where
Ns

A =>a,lp,+PD, (58)
j=2
Ns

B=>1/8, (59)
j=2

To find ¢, ,p, , the GA is used [51-54], where initial
population=20 and crossover rate is at 80% and, convergence
is reached when fitness function (FF) tolerance is lower than
107°.

II. After determining¢,,, 3, , other parameters such as
TP,,TP, TP, ,and MCP, are calculated.

III. The PBUC problem of GENCO 1 with considerations
for calculated MCP, and TP, is solved using the heuristic
optimization algorithm developed [55, 56]. Note that the
spinning reserve constraint is not considered because TR,
is not determined yet.

IV. Due to shutting down some TGUs in step 3, TP, will
reduce to 7P, . So, the following optimization problem

1t —new

is solved using GA to find new ,, 3, [11]

max {MCP, = (e, + 43,)/ (1+BS,)} (60)
subject to
TR, =(4-a,B,)/ (1+Bp,)=1R,_,, (61)

After determining ,, , ﬂlt , other parameters such as
TP,, TP,, TP, ,and MCP, are calculated.

V. Steps 3 and 4 are repeated until the bidding strategy of
GENCO 1 is not changed. Then, the profit of GENCO 1 is
calculated and other parameters of GENCOs are determined.

3.1.1.2 Double-sided auction

The procedure of optimal bidding strategy for double-
sided auction is similar to single-sided auction (Section
3.1.1(1)), but,

(62)

Ns Nc
Az = Z(lﬂ /ﬂj, +PDt +Z¢mt /¢mt
j=2

m=1

(63)

Ns Nc
Bt :zl/ﬂjt +zl/¢mt
j=2 m=1

3- 1- 2- With spinning reserve uncertainty

Similar to Section 3.1.1 (I), 7P, and MCP, are determined,
but RP, and TR,, must be calculated as discussed next.

I. The initial bidding parameters of GENCO 1 for the
spinning reserve market must be determined while the
revenue is maximized. It means that GENCO j™ attempts to
maximize its TR at the maximum possible RP.

max {RPTR, } (64)
NS NS
RF, =(R(t)+27j, /nﬁj/zl/nﬂ =
= I (65)
(71z +A4/n, )/(1 +B/7, )
TR, :(sz _Vlt)/ﬁlr = (Az’_?/lzB;)/(l"'Bz’nlz) (66)
where
Ns
A=y, I, +R@) (67)
=
Ns
B =>1/n, (68)
=

The GAisusedtofind },,,7,, whereinitial population=20
and crossover rate is at 80% and, convergence is reached
when fitness function (FF) tolerance is lower than10-°.

II. After determining ), ,7],, , other parameters such as
TR, ., TR, TR, ,and RP, are calculated.

As spinning reserve uncertainty is considered, the FF of
R (i,t) is modified as

FF/(R(i 1)) =PF" (i 1) =

RP()R(i,t)-C(R(i.1)) ©

C(RG.1))=

f_:rem O (PG.O+Rm.i0)~f (PG.0))] 7
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The GAisusedtofind R " (i ,¢ ) where initial population=20
and crossover rate is at 80% and, convergence is reached
when fitness function (FF) tolerance is lower than107°.

3- 2- Case (b): Optimal bidding strategy of three GENCOs
with considerations for transmission constraints

In this case, three GENCOs compete in energy and
spinning reserve markets with considerations for transmission
constraints and spinning reserve uncertainty. The optimal
bidding strategy of three GENCOs is conducted, based on the
flowchart shown in Fig. 2,

I. Initial bidding parameters of GENCOs are determined.

1. j=1

III. GENCO j" is chosen and bidding parameters are
submitted to ISO. Then, TP, MCP, RP ,and TR are calculated.

IV. The PBUC problem is solved for GENCO j*. To do
this, the heuristic optimization algorithm discussed in Section
3.1 is used to maximize profit. In this step, GENCO j™ may
change its bidding parameters.

V. If the bidding parameters of GENCO j" are changed,
it submits new bidding parameters to ISO, and the clearing
market is done. Then, go to step 4.

If bidding parameters of GENCO j" are not changed,
j=j+1 and go to step III.

VI. Steps III to V are continued until all GENCOs are
selected.

VII. After the first iteration of the bidding strategy of all
GENCOs, ISO checks transmission, demand, and spinning
reserve requirement constraints. To satisfy transmission
constraints, ISO forces GENCOs to change their output
power, but it is better for GENCOs to change their output
power as less as possible. Therefore, the objective function
for ISO is defined as

Min {%(Pn(u,t)—P(u,t))z} (71)

u=l1

subject to

P,(O|SP, (72)

where ( P (u,t)-P(u ,1)2 is the difference between
power produced by TGU u™ at hour t (P (u,t)) and new
power produced by TGU u® due to transmission constraints (
P,(u.1)).

To solve optimization problem described by Eq. (71), GA
is used (Initial population=20, crossover 80%, convergence is
reached when FF tolerance is lower than107). It means that
transmission constraints are satisfied with minimum changes
in energy awarded to GENCOs.

The variable of optimization of this step is P, (u,t) and,
therefore using Eqs. (45)-(47), Eq. (72) is rewritten as
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9,9,

<P__ X (73)

uv—max uv

or

det([(z2,.22) - Gy zny)]

[P, (2,0) PN,

[Caz) o Cypzy,)]

[P, (2.0) PD(Nb,t)]T)SP X

uy —max uv

(74)

VIII. According to transmission constraints, GENCOs
may change their bidding strategies. If the bidding parameters
of any GENCO are changed, go to step 2, otherwise, the
optimal bidding strategy of all GENCOs is reached.

3- 3- Case (c): Optimal bidding strategy of one GENCO with
DR programs

In this study, an EV parking is considered to model DR
program where this variable demand could not be participated
in the bidding strategy because of its natural uncertainty.
However, according to EVs behaviours, bidding parameters
of GENCOs are changed that should be determined by EV
owner or forecasted by GENCOs.

The algorithm of forecasting EV parking scheduling is
detailed as follows:

I. Initial bidding strategy is solved by GENCO 1 as
discussed in section 3.1 and market price and other bidding
parameters are determined.

II. According to calculated market price and statistics EVs
data, the scheduling of EV parking is done as detailed in [50].

III. After determining the output power of EV parking,
the bidding strategy of GENCO 1 is done as discussed in 3.1
and 3.2.

4- Parametric values and data
The following parametric values and input data are used
for the simulation of Case (a)-(c) in this study.

4-1- TGUs
The TGUs characteristics data are based on Ref. [1] for
Cases (a) and (c) and Ref. [57] for Case (b) (Table 2).

4- 2- Power system demand

The needed data for power system demand are based on
Ref. [1] for Cases (a) and (c) and Ref. [57] for Case (b) (Table
3).

4- 3- Competitors characteristics
Forecasted GENCOs and large consumers’ bidding
parameters and other needed data are based on Ref. [1].
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Optimal bidding strategies of all GENCOs are reached
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Fig. 2. Flowchart of bidding strategy algorithm of GENCOs in Case (b)
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Table 2. Six-TGU power system characteristics [57] for studying Case (b).

GENCO TGU B P P a; b, ¢ MUT MDT HSC CSC IS
S

MW MW)  ($(MWh))  (SMWh)  ($) D ) ($)  (§) ()

| Gl 1 20 260 0.00463 10.69 142.73 4 3 200 200 4

G2 3 20 220 0.00612 18.10 218.34 2 2 100 100 2

5 G3 2 20 260 0.00463 10.69 142.73 4 3 200 200 4

G4 5 5 80 0.01433 37.89 118.82 1 1 70 70 2

3 G5 4 20 220 0.00612 18.10 218.34 2 2 100 100 2

G6 6 5 80 001433  37.89 11882 |1 1 70 70 2

Table 3. Demand characteristics of IEEE six-bus network [57] for studying Case (b).

PD, (MW) PD, (MW)
Hr hr
Dy D, 1D} Total D, D, D3 Total
1 464 155 155 774 13 536 179 179 893
2 428 143 143 714 14 524 175 175 873
3 405 135 135 674 15 518 173 173 863
4 393 131 131 655 16 518 173 173 863
5 381 127 127 635 17 542 181 181 903
6 387 129 129 645 18 488 198 198 885
7 393 131 131 655 19 527 190 190 908
8 417 139 139 694 20 539 188 188 916
9 476 159 159 793 21 550 186 186 923
10 524 175 175 873 22 547 182 182 912
11 536 179 179 893 23 518 173 173 863
12 542 181 181 903 24 482 161 161 804

4- 4- EV parking data

The EV parking data are completely available in [50]
for studying Case (c) including the number of EVs, initial
charge, arrival and departure times, etc. It is noted that several
parameters such as arrival/departure times, age of battery, and
initial charge of EVs are random resulting in major demand
uncertainty.

5- Simulation results

In this section, simulation results are presented to show
the effects of spinning reserve uncertainty and DR programs
on bidding strategy. Three cases are studied: (a) the Optimal
bidding strategy of one GENCO with and without spinning
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reserve uncertainty, (b) the optimal bidding strategy of three
GENCOs with considerations for transmission constraints
and spinning reserve uncertainty, and (c) the optimal bidding
strategy of one GENCO with and without DR programs.

5- 1- Case (a): Optimal bidding strategy of a GENCO with
and without considerations for spinning reserve uncertainty

5- 1- 1- Without spinning reserve uncertainty

In this case, only GENCOs with the thermal unit are
participated in energy and reserve markets. The modified
heuristic and deterministic optimization algorithm is applied
to the bidding strategy problem and the comparison of profit
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Table 4. Case (a) results: Profits comparison for GENCO 1 as compared with other Refs. [1] and [11].

Profit ($)
Condition This study He[ulrlijtic Imprz)oz)e)ment SQP [1] Imprz)oze)ment EP [1] Imprz)(;sment
Single-sided 226,430 226,330 0.04 217,317 4.20 152,976 48.02
Double-sided 374,210 374,110 0.02 309,597 20.10 284,922 31.30

—
e}
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Fig. 3. Predicted spinning reserve request probability curves using ANN [41] for studying Case (a).

in single and double-sided auctions is presented in Table 4.

It shows that GENCO profit is increased by 0.04-48.02
and 0.02-31.30%. For single-sided and double-sided auctions,
respectively as compared with Refs. [1] and [11].

To verify the simulation results and for better comparison,
output power, MCP , and TP of GENCO under single-sided
auction are presented in Tables 5 and 6.

As shown in Table 5, TGU 2 has been ON at hr 24 with
150 MW, whereas it is OFF in Ref. [11]. Also, according to
Table 6, MCP and TP are increased as compared with [1] and
[11].

5- 1- 2- With spinning reserve uncertainty
In this case, spinning reserve uncertainty is considered
and simulation results are presented under two conditions:

I. Fixed spinning reserve request and variable probability
To show the effects of re(t) on bidding strategy of

one GENCO, re(t) varies during a 24-hr period when the
spinning reserve requirement is fixed at 10% of demand. In
this study, the prediction re(¢) is utilized using ANN [41] as
shown in Fig. 3.

The effects of variables re(z) on profit and spinning
reserve prices are presented in Table 7. It is determined that
with considerations for variable re(t):

1. re(t) increase results in higher RP(¢)

2. re(t) increase results in higher C (R (i ,1))

3. In a single-sided auction, when the average of re(t) is
7.25% (more than 5% of the base case), the profit of GENCO
1 is improved by 0.10% and the profit of spinning reserve is
increased. In comparison, in the double-sided auction, when
the average of re(t) is 7.25%, the profit of GENCO 1 is
decreased as compared with the base case, and the profit of
the spinning reserve is decreased. This occurrence is due to
the fact that RP(¢) is zero (re(t)=0) at 4 and 24 hr based
on Fig. 3 and therefore TR, is reduced from 546 to 408 MW.
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Table 5. Case (a) results: output powers for 10-thermal units under single-sided auction.

Hour Output power (MW) MCP T8 (MW)
2 3 4 5 6 7 8 9 10 OMW
1 43 0 0 0 0 0 0 0 0 0 2013 413
2 431 0 0 0 0 0 0 0 0 0 2030 430
332 0 0 0 0 0 0 0 0 0 1991 391
4 447 15 0 0 0 0 0 0 0 0 2197 597
5 455 24 0 0 0 0 0O 0 0 o0 2278 678
6 455 221 0 O O O O O 0 0 2276 676
7 455 287 0 O O O O O O 0 2341 741
8 455 449 0 0 25 0 0O 0 O 0 2528 928
9 455 455 0 0 48 0 0O 0 O 0 2557 957
10 455 455 0 130 146 0 0 O 0 0 27.86 1186
11 455 455 130 130 155 20 0 O O 0  29.45 1345
12 455 455 130 130 156 20 0 O O 0 2946 1346
13 455 455 130 130 162 0 25 0 0 0 3012 1412
14 455 455 130 130 116 0 0 0 0 0 2885 1285
15 455 455 130 105 25 0 0 O O 0 2824 1224
16 455 455 130 130 162 58 25 0 0 0 3014 1414
17 455 455 130 130 162 80 85 55 55 49  32.56 1656
18 455 455 130 130 162 80 0 55 55 55  33.60 1662
19 455 455 130 130 162 80 0 55 55 55 3507 1662
20 455 455 130 130 162 80 85 55 55 55  33.17 1662
21 455 455 130 130 162 80 36 55 0 0  31.02 1502
20 455 455 130 130 87 0 0O O O O 2857 1257
23455 321 0 0 0O 0O O O O 0 2375 775
24 446 15 0 0 0O 0O O 0O O 0 2285 595

II. Variable spinning reserve request and variable
probability

When the spinning reserve request is changed from zero
to 10% of demand at different probabilities, the effects of
spinning reserve uncertainty on profit and spinning reserve
bidding parameters are presented in Table 8. It is determined
that with considerations for spinning reserve uncertainty:

1. The costs of the spinning reserve are increased because
the spinning reserve is changed from zero to 10% of demand
at different probabilities. It is noted that in other studies,
the spinning reserve request is fixed at 10% of demand and
fixed probability at 5% [1, 2] which leads to lower spinning
reserve costs, but in actual electricity markets, the probability
associated with spinning reserves is variable, as considered
in this study.

2. The average of RP is increased. This occurrence is due
to the fact that spinning reserve market bidding parameters
are determined based on Eq. (28) instead of Eq. (15).

3. Although, the average of RP is increased, but due to
increasing the costs of spinning reserve, the profit of GENCO
is decreased, as compared with the case with fixed spinning
reserve probability.
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5-2- Case (b): Optimal bidding strategy of three GENCOs
with considerations for transmission constraints and spinning
reserve uncertainty

Three GENCOs with 6 TGUs (Table 2) are considered
in Case (b). It is noted that every GENCO has two TGUs
(G1 and G2 for GENCO 1, G3 and G4 for GENCO 2, and
G5 and G6 for GENCO 3) in an IEEE six-bus network with
P, =100 MW and flow limit of 1800 MW (Table 3 and Fig.
4) [57] that is not used in the literature.

The probable spinning reserve is up to 10% of the power
system demands under normal distribution. In this study, it is
assumed thatD,, D, , and D, may increase by 10% uniformly,
as the spinning reserve requirement to be met by GENCOs.

After 10 iterations, maximum possible profits for GENCO
1 (PF=$112,298), GENCO 2 (PF=$89,627), and GENCO 3
(PF=$34,927)with considerations for transmission constraints
are reached, as shown in Fig. 5-a. To verify the simulation
results, the optimal bidding parameters of GENCOs and other
related parameters of energy and spinning reserve markets
are shown in Table 9. In Fig. 5-b, the power flow of lines in
24 hours is shown when it is observed that line capacities are
not violated and transmission constraints are met.
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Table 6. Case (a) results: Bidding parameters of GENCO 1, energy and spinning reserve market prices, and power
awarded to GENCO 1 in single-sided auction without spinning reserve uncertainty.

. a B 4 n McpP RP TP, TR,
($/MWh) ($/(MWh)?*) ($/MWh) ($/MWh) ($/MWh) ($MWh)  (MW) (MW)
1 16.00 0.0100 1.31 89 20.13 5.76 413 81
2 16.00 0.0100 1.89 93 20.30 6.54 430 79
3 16.00 0.0100 2.87 93 19.91 7.52 391 71
4 16.00 0.0170 2.87 81 23.62 6.92 448 100
5 16.00 0.0100 278 93 2278 7.43 678 112
6 16.00 0.0100 1.99 87 22.76 6.34 676 114
7 16.00 0.0100 3.65 87 23.41 8.00 741 128
8 16.00 0.0105 4.78 7 25.50 10.00 905 6
9 16.00 0.0110 5.65 7 26.00 10.00 909 0
10 16.00 0.0100 5.89 73 27.86 9.70 1186 16
11 16.00 0.0103 6.53 69 29.64 10.29 1324
12 16.00 0.0103 7.29 83 29.65 11.70 1325
13 16.00 0.0111 7.29 7 30.81 11.70 1334 0
14 16.00 0.0100 7.99 65 28.85 11.60 1285 46
15 16.00 0.0108 7.19 65 28.65 10.70 1172 152
16 16.00 0.0103 8.39 59 30.33 11.94 1391 22
17 16.00 0.0130 8.99 65 34.39 12.40 1415 0
18 16.00 0.0141 8.99 65 35.94 12.70 1414 0
19 16.00 0.0160 8.99 65 38.57 13.60 1411 0
20 16.00 0.0137 9.67 67 35.33 14.03 1411 0
21 16.00 0.0110 7.89 69 31.58 11.65 1416 0
22 16.00 0.0100 6.63 73 28.57 10.70 1257 75
23 16.00 0.0100 5.09 7 23.75 9.04 775 132
24 16.00 0.0188 4.44 79 24.57 9.10 456 0
Table 7. Case (a) results: The effects of variable on profit and spinning reserve prices.
' Variable Average TR TR, Average Profit . Profit
Auction re(1) re(t) (MVIV) cost RP ) improvement
(%) (%) ($/MWh) (%)
No 5.00 1,147 1,045 9.97 226,330 :
, , Yes 2.42 915 428 7.79 223,920 -
Single-sided Yes 4.83 915 856 9.69 225,250 -
Yes 7.25 915 1,285 1157 226,560 0.10
No 5.00 546 518 10.15 374,110 -
Double - Yes 2.42 408 130 7.85 372,570 ;
sided Yes 4.83 408 259 9.80 373,080 -
Yes 7.25 408 388 1171 373,580 ;
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Table 8. Case (a) results: The effects of variable and variable spinning reserve requests on profit and spinning
reserve bidding parameters.

Auction Spinning reserve uncertainty TR, cost Average RP Proft
() ($/MWh) 3
No 1,045 9.973 226,330
Single-sided Yes 3,176 10.661 225,290
No 684 10.335 374,110
Double -sided Yes 2,013 11.051 373,880
bus 2 bus 3

. o)
Q— bus 6 {)

ot
o b“] (O 3

2
‘—, bus 5

Clk

Di pus4

Fig. 4. Schematic of IEEE six-bus network [57] for studying Case (b). GENCO 1: G1 and G2,
GENCO 2: G3 and G4, GENCO 3: G5 and G6
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Table 9. Case (b) results: Final optimal bidding parameters of GENCOs in energy and spinning reserve markets.

. GENCO 1 GENCO 2 GENCO 3 MCP  mp
TP(MW) TR(MW) 7P (MW) TR(MW) 7P (MW) 7MWy CKWh) - ($kWh)
[ 2% 77 294 0 294 0 2499 838
5 247 13 247 13 247 0 247 810
;227 33 227 33 227 0 227 821
4 218 ) 218 4 218 0 218 825
s 211 49 211 49 211 7 012 827
s 215 45 215 45 215 5 215 824
. 218 # 218 # 218 0 218 825
e 237 23 237 23 237 0 237 815
o 313 79 313 0 313 0 2509 838
0 393 87 393 0 393 0 2462 843
11 413 67 413 0 413 0 2498 833
1 423 57 423 0 423 0 2523 828
3 413 67 413 0 413 0 2498 833
39 87 393 0 393 0 2462 843
5 383 86 383 0 383 0 2444 843
6 383 86 383 0 383 0 2444 843
17 4 57 423 0 423 0 2518 8.8
18 340 89 340 68 340 28 3968 848
o 349 91 349 0 349 0 495 847
5o 356 92 356 0 356 0 8315 847
5 363 92 363 0 363 0 4333 847
5y 402 78 402 50 402 0 2622 841
5y 383 86 383 0 383 0 2444 843
q 383 80 383 0 383 0 2411 842

5- 3- Case (c¢): Optimal bidding strategy of one GENCO with
considerations for EV parking as DR programs

In this case, it is assumed that an EV parking is considered
as variable load and, the effects of DR programs on the bidding
strategy problem are investigated. The number of EVs is
20,000 and the capacity of each battery and rated charging/
discharging power are 16 kWh and 2 kW, respectively [50].

EV parking is a generator/consumer that affect directly

GENCOs decisions. It is because the generator/consumer
hours are stochastic. For simulation, the MATLAB code run is
occurred and the average charging/discharging scheduling of
EV parking is presented in Table 10. It is noted that GENCOs
should forecast EVs behaviors and parking owner decisions.

In Table 10, a forecasted output power of EV parking
is shown. The output power of EV parking is forecasted
according to several factors such as market price, arrival/
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Fig. 5. Case (b) results: a) Convergence of profits for GENCO 1, GENCO 2, and GENCO 3. b) Power
flow of lines of IEEE six-bus network in a 24-hr period, when transmission constraints and spinning
reserve uncertainty are considered
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Table 6. Case (a) results: Bidding parameters of GENCO 1, energy and spinning reserve market prices, and power
awarded to GENCO 1 in single-sided auction without spinning reserve uncertainty.

Price (single-sided auction) Output power (MW)
hr ($/MWh) SOC of Ez(;f)mple EV Sample EV (No. 22) Total EVs
MCP  Charging  Discharging Charge  Discharge = Charge Discharge
1 20.13 18.12 19.35 60 - - - -
2 2030 18.27 18.85 60 - - - -
3 1991 17.92 37.00 60 - - - -
4 23.62 21.26 37.12 60 - - - -
5 2278 20.50 26.37 60 - - - -
6 2276 20.48 22.38 60 - - - -
7 2341 21.07 32.03 40 - 0.40 - 6.60
8 2550 22.95 21.55 40 - - - 6.10
9 26.00 23.40 34.86 60 0.40 - 24.68 -
10 27.86 25.07 33.70 60 - - 14.43 -
11 29.64 26.68 30.33 60 - - 6.60 -
12 29.65 26.69 38.79 80 0.40 - - 2.00
13 30.81 27.73 29.30 80 - - 31.19 -
14 28.85 25.97 41.49 90 0.40 - 12.67 -
15  28.65 25.79 48.44 90 - - 17.07 -
16 30.33 27.30 33.44 90 - - 4.00 -
17 3439 30.95 30.70 90 - - 5.00 -
18 3594 32.35 47.59 90 - - 36.26 -
19 38.57 34.71 39.87 90 - - 39.60 -
20 3533 31.80 40.08 90 - - 1.99 -
21  31.58 28.42 62.63 90 - - - -
22 28.57 25.71 45.20 90 - - - -
23 2375 21.38 22.84 90 - - - 1.56
24 2457 22.11 31.64 90 - - - -

departure times of EVs, initial SOC of EV batteries, and so
on. It is shown from Table 10 that,

1. The final SOC of each EV should be 90%. The SOC of
a sample EV is shown and the SOC limits are satisfied. It is
noted that the initial SOC of EVs is random [50].

2. According to forecasted MCP, charging/discharging
prices determined by EV parking owner [50], initial SOC of
EVs, and arrival/departure hours of EVs, the output powers of
a sample EV and all EVs are shown. Naturally, the charging
hours are more than the discharging hours. However, EV
parking owner benefits from its charging/discharging pattern

that is based on EVs parameters and selling power to EVs and
forecasted MCP.

3. The EV parking not only affects the demand curve
but also the bidding parameters of GENCOs. It should be
noted that some EV parameters are random and therefore,
the bidding strategy problem should be solved by GENCOs
accordingly.

A comparison of bidding strategy results with and without
EV parking is presented in Table 11 where it is concluded
that:

1. Obviously, EV parking owners benefit from selling
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Table 11. Case (c) results: Bidding strategy results comparison with and without DR under single and double-
sided auctions.

Conditions Total TPy  Average MCP G}i)ljo(f:i(t) ! Total TRy  Average RP POaVer::rg
Auction DR (MW) ($/MWh) 3 (MW) ($/MWh) revenue ($)
. . No 24,163 27.62 226,430 1147 9.97 0
Single-sided
Yes 24,205 27.63 227,881 1085 9.96 2,804
) No 29,901 31.83 374,210 546 10.34 0
Double-sided
Yes 30,002 31.84 376,012 521 10.32 3,385

power to EVs, and profits of $2,804 and $3,385 are reached.
2. As total demand is increased, 7P, and MCP are
increased due to changing bidding parameters of GENCO 1.
3. Considering DR programs, the output powers of TGUs
are increased, and therefore, their spinning reserve capacities
are decreased and then, 7R and RP are decreased.

6- Conclusion

In this study, the optimal bidding strategy problem
for GENCOs in energy and spinning reserve markets with
considerations for transmission constraints, DR programs,
and spinning reserve uncertainty is solved when a heuristic
optimization algorithm is developed.

In this study, two demand uncertainties are modeled
and simulated: (1) Spinning reserve uncertainty in request
probability and quantity. (2) EV parking as a DR program
with stochastic output power. From the results, it is concluded
that:

Due to variable probability associated with spinning
reserve and variable spinning reserve request, the spinning
reserve uncertainty is considered is this study and, it is
concluded that three types of spinning reserve uncertainty
result in different results (bidding power, market price, and
GENCO profit) that could not be reached in other studies.

It is proposed that to solve the bidding strategy problem in
a particular network, providing the required spinning reserve
is necessary and, the heuristic optimization algorithm is
successfully examined for optimal bidding strategy problem
in energy and spinning reserve markets for three GENCOs
with considerations for transmission constraints.

When EV parking is added to the bidding strategy
problem, it is concluded that DR program forecasting is very
important for GENCOs. Specially, in the case of EV parking,
both demand quantity and hours are stochastic and also
generation/consumption hours. Unappropriated forecasting
and decisions result in decreasing GENCOs profits.

For future works, renewable energy resources and
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combined heat and power units could be added to the optimal
bidding strategy problem. Also, the local heat market could
be added to the bidding strategy problem when the heat
network may be considered.

Nomenclature
a b, c Cost function coefficients
B Susceptance
b Susceptance between buses
C Cost
cSc Cold start cost
CST Cold start time
Det Determinant
FF Fitness function
f Fuel cost
G Conductance
HSC Hot start cost
i TGU index
1 Initial Index
J GENCO Index
k Consumer index
m Scenario index
M Total number of scenarios
MCP Margined cost price
MDT Minimum down time
MUT Minimum up time
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TGUs number

Buses number
Consumers number
GENCOs number

Power demand
Profit

Charge power
Discharge power

EV index

Reserve

Revenue

Reserve probability

Reserve price

State of charge

Start-up cost

Switching number of EV battery
Time index

Total time

Total cost

Power awarded to GENCO
Power awarded to consumer
Reserve awarded to GENCO

Arrival time
Departure time
Time in parking

Bus index
Reactance
Inverse of B matrix

Bidding parameters

Angle of voltage

Marginal price
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