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 Power System State Estimation through Optimal PMU Placement and Neural Network 
using Whale Algorithm
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ABSTRACT: The efficient operation and planning along with the security of power systems have 
always occupied an important position. The power system becomes increasingly complex due to the 
rapid growth in energy demand. Such a system requires a real-time approach to monitoring and control. 
Therefore, State Estimation (SE) tools are necessary, especially for nonlinear power grids. Most network 
applications use the real-time data provided by the state estimator. Therefore, an optimal performance 
of state estimation output is the ultimate concern for the system operator. This need is particularly more 
in focus today due to deregulated and congested systems and smart grid initiatives. The output of the 
state estimator nearly represents the true state of the system. The present paper describes the general 
framework of state estimation in power networks. Also, in the present study linear state estimation method 
accompanied by optimal placement for Phasor Measurement Unit (PMU) for complete observability and 
artificial neural network (ANN) trained by Whale Optimization Algorithm (WOA) is employed. The 
trained model can be used to estimate voltage magnitudes and phase angles as the power system states. 
The proposed method increases accuracy and execution speed while the complication in the formulation 
will be reduced considerably. A seasonal load profile is considered to measure the accuracy of the state 
estimation and make the simulation more realistic. Finally, the minimum estimation error will be shown 
for IEEE 14 and 30 buses benchmarks.
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1- Introduction
The power grid has developed over time and around 

the world it has become a complex system that combines 
conventional and renewable energy sources, various 
consumers, and an extensive transmission system. A failure 
in such a system can lead to severe consequences. Therefore, 
some errors should be predicted and prevented from 
occurring. Therefore, the ability to monitor such a complex 
system is an essential prerequisite for the stable and reliable 
operation of today’s network. 

When the issue of grid stability is addressed, one of the 
most critical issues is determining the states of the power 
system (State Variables) at any point of the grid and at a 
given moment. State variables include voltage magnitudes 
and relative phase angles of system buses. State estimation in 
a system is the determination of the unknown state variables 
of the system, which is based on the necessary measurements 
and according to specific criteria. Of course, it must be 
acknowledged that some measurements are incomplete and 
redundant. 

State estimation is based on statistical criteria in which 
absolute values for state variables are estimated by minimizing 

or maximizing specific criteria. Then the estimated output 
data are used in the system control centers or the dispatching 
center with security restrictions. The best estimate helps to 
maintain power system monitoring, security, reliability, and 
proper control of the system [1].

The common acceptance criterion in this matter is to 
minimize the Sum of the Square of Differences between the 
estimated and measured values. The idea of state estimation 
by the least square method was proposed in the 19th century 
in aerospace applications [2]. Later, Static State Estimator and 
Dynamic State Estimator were developed for power systems. 
The initial state estimation algorithms used the measurement 
of the power flow in the lines to calculate the best estimate of 
the system state [3]. However, they cannot measure the state 
of the system directly. 

Although the concept of using phasors to describe power 
system operational quantities was introduced in 1893, the 
first application of phasor measurement units was presented 
in the early 1980s by Dr. A.G. Phadke. The first commercially 
available PMUs were developed in the early 1990s [3]. 

The PMU prototype used Global Positioning System 
(GPS) technology to achieve time synchronization between 
remote measurements. Implementing such equipment not 
only provided the possibility of direct measurement of 
system state variables but also provided the possibility of *Corresponding author’s email: abedi@aut.ac.ir
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re-evolution of the state estimation method. Using PMU, the 
repetitive and time-consuming process of state estimation 
can be replaced with a set of linear equations, reducing the 
number of calculations and increasing the refresh rate. The 
continuous development and integration of PMU technology 
worldwide can give system operators a better picture of the 
grid and improve the quality of power grid monitoring.

Therefore, power systems require a comprehensive and 
accurate monitoring system to guarantee observability of 
the power system. However, additional measurements cause 
problems in control, management, and cost. The problem of 
optimal placement of phasor measurement units (Optimal 
PMU Placement) is said to minimize the number and choose 
the best place to install them in a power system and, at the 
same time to maintain complete visibility of the system. This 
article introduces how to analyze the observability of the 
power system based on PMUs and examines the problem of 
optimal PMU placement. 

Nowadays, with the help of a state estimator based on an 
artificial neural network, given the measurements as input, we 
get direct estimates of state variables. Therefore, there is no 
need to store the complex admittance matrix of the network 
and include the learning data according to the load changes 
and different states of the network to obtain better and faster 
results than the linear state estimator used in load distribution 
centers as well as smart networks.

Finally, in this research, an online PMU-based state 
estimation method in the observable state of the system using 
Multi-Layer Perceptron Neural Networks trained using the 
Whale Optimization Algorithm to reduce errors and increase 
speed and accuracy is suggested. This paper is organized 
as follows. Section 2, formulation of the problem such as 
linear state estimation, optimal PMU placement, and WOA-
MLP optimized for SE are discussed; Section 3, results of 
simulation for two test systems have been analyzed, while the 
conclusion presented in Section 4. 

2- Formulation of the Problem
2- 1- Linear State Estimation using PMU

Conventional measurements are generally asynchronous. 
Also, these meters, also called SCADA meters, have a 
slow sampling rate (typically 4-5 seconds), and due to the 
asynchronous nature of the measurements, it isn’t easy 
to obtain a broad, real-time view of the power system 
[4]. Currently, most measurements in power systems are 
conventional asynchronous measurements. Although phasor 
measurement units are increasingly installed in different parts 
of the world, a measurement system with only PMUs is not 
yet possible due to economic and technical reasons. The state 
estimation problem becomes a nonlinear estimation problem 
only in the presence of conventional measurements or a 
combination of conventional measurements and PMU [5,6]. 
Typically, estimators based on the weighted least square 
method (WLS) are used to find the optimal states of the system 
based on such a set of measurements. However, processing 
the measurements in a time window and performing the state 
estimation process with several iterations takes considerable 

time (3-5 minutes). Therefore, this method is not suitable for 
real-time decision-making.

With the ability of PMUs to directly measure system state, 
using phasor measurements for state estimation increases the 
speed and accuracy of the process. Unlike the classical state 
estimation method that deals with the iterative solution of 
nonlinear equations, PMU measurements are linear functions 
of the state variables. Therefore, the calculation process can 
be significantly simplified.

The linear estimator can be described as an efficient tool 
that uses only PMU measurements to estimate system states. 
The measurements are formulated as equation (1):

𝑧𝑧 =  ℎ(𝑥𝑥) +  𝜀𝜀       

 

𝐽𝐽(𝑥𝑥) =  ∑ (𝑧𝑧𝑖𝑖− ℎ𝑖𝑖(𝑥𝑥))2

𝑅𝑅𝑖𝑖𝑖𝑖
𝑚𝑚
𝑖𝑖=1        

 

𝐽𝐽(𝑥𝑥) =  [𝑧𝑧 − ℎ(𝑥𝑥)]𝑇𝑇𝑅𝑅−1[𝑧𝑧 − ℎ(𝑥𝑥)]     3

 

𝑧𝑧 =  ℎ(𝑥𝑥) +  𝜀𝜀 = 𝐵𝐵𝑥𝑥 +  𝜀𝜀       

 

𝑥𝑥 =  [𝐵𝐵𝑇𝑇𝑅𝑅−1𝐵𝐵]−1𝐵𝐵𝑇𝑇𝑅𝑅−1𝑧𝑧 = 𝑀𝑀𝑧𝑧      

 

𝑅𝑅 = [
𝛿𝛿1

2   
 ⋱  
  𝛿𝛿𝑚𝑚

2
]      

 

𝑥𝑥 =  [𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗

]       

 

𝑧𝑧 =  
[
 
 
 𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗
𝐼𝐼𝑖𝑖𝑗𝑗
𝐼𝐼𝑗𝑗𝑖𝑖 ]

 
 
 
       

 

[
 
 
 𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗
𝐼𝐼𝑖𝑖𝑗𝑗
𝐼𝐼𝑗𝑗𝑖𝑖 ]

 
 
 
= [

1
0

𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖
−𝑦𝑦𝑖𝑖𝑗𝑗

  
0
1

−𝑦𝑦𝑖𝑖𝑗𝑗
𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖

] [𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗

]       

 

𝐵𝐵 =  [ 𝐼𝐼𝐼𝐼
𝑦𝑦𝑦𝑦 + 𝑦𝑦𝑠𝑠

] = [
1
0

𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖
−𝑦𝑦𝑖𝑖𝑗𝑗

  
0
1

−𝑦𝑦𝑖𝑖𝑗𝑗
𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖

]      

 (1)

Where z  is the vector of measurements, ( )h x  is 
the vector of nonlinear functions (relationship between 
measurement and state vector x ), and ε  is the measurement 
error vector. The objective function to be minimized, 
according to equation (2), is:

𝑧𝑧 =  ℎ(𝑥𝑥) +  𝜀𝜀       

 

𝐽𝐽(𝑥𝑥) =  ∑ (𝑧𝑧𝑖𝑖− ℎ𝑖𝑖(𝑥𝑥))2

𝑅𝑅𝑖𝑖𝑖𝑖
𝑚𝑚
𝑖𝑖=1        

 

𝐽𝐽(𝑥𝑥) =  [𝑧𝑧 − ℎ(𝑥𝑥)]𝑇𝑇𝑅𝑅−1[𝑧𝑧 − ℎ(𝑥𝑥)]     3

 

𝑧𝑧 =  ℎ(𝑥𝑥) +  𝜀𝜀 = 𝐵𝐵𝑥𝑥 +  𝜀𝜀       

 

𝑥𝑥 =  [𝐵𝐵𝑇𝑇𝑅𝑅−1𝐵𝐵]−1𝐵𝐵𝑇𝑇𝑅𝑅−1𝑧𝑧 = 𝑀𝑀𝑧𝑧      

 

𝑅𝑅 = [
𝛿𝛿1

2   
 ⋱  
  𝛿𝛿𝑚𝑚

2
]      

 

𝑥𝑥 =  [𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗

]       

 

𝑧𝑧 =  
[
 
 
 𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗
𝐼𝐼𝑖𝑖𝑗𝑗
𝐼𝐼𝑗𝑗𝑖𝑖 ]

 
 
 
       

 

[
 
 
 𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗
𝐼𝐼𝑖𝑖𝑗𝑗
𝐼𝐼𝑗𝑗𝑖𝑖 ]

 
 
 
= [

1
0

𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖
−𝑦𝑦𝑖𝑖𝑗𝑗

  
0
1

−𝑦𝑦𝑖𝑖𝑗𝑗
𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖

] [𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗

]       

 

𝐵𝐵 =  [ 𝐼𝐼𝐼𝐼
𝑦𝑦𝑦𝑦 + 𝑦𝑦𝑠𝑠

] = [
1
0

𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖
−𝑦𝑦𝑖𝑖𝑗𝑗

  
0
1

−𝑦𝑦𝑖𝑖𝑗𝑗
𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖

]      

 (2)

Or in matrix form in equation (3):

𝑧𝑧 =  ℎ(𝑥𝑥) +  𝜀𝜀       

 

𝐽𝐽(𝑥𝑥) =  ∑ (𝑧𝑧𝑖𝑖− ℎ𝑖𝑖(𝑥𝑥))2

𝑅𝑅𝑖𝑖𝑖𝑖
𝑚𝑚
𝑖𝑖=1        

 

𝐽𝐽(𝑥𝑥) =  [𝑧𝑧 − ℎ(𝑥𝑥)]𝑇𝑇𝑅𝑅−1[𝑧𝑧 − ℎ(𝑥𝑥)]     3

 

𝑧𝑧 =  ℎ(𝑥𝑥) +  𝜀𝜀 = 𝐵𝐵𝑥𝑥 +  𝜀𝜀       

 

𝑥𝑥 =  [𝐵𝐵𝑇𝑇𝑅𝑅−1𝐵𝐵]−1𝐵𝐵𝑇𝑇𝑅𝑅−1𝑧𝑧 = 𝑀𝑀𝑧𝑧      

 

𝑅𝑅 = [
𝛿𝛿1

2   
 ⋱  
  𝛿𝛿𝑚𝑚

2
]      

 

𝑥𝑥 =  [𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗

]       

 

𝑧𝑧 =  
[
 
 
 𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗
𝐼𝐼𝑖𝑖𝑗𝑗
𝐼𝐼𝑗𝑗𝑖𝑖 ]

 
 
 
       

 

[
 
 
 𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗
𝐼𝐼𝑖𝑖𝑗𝑗
𝐼𝐼𝑗𝑗𝑖𝑖 ]

 
 
 
= [

1
0

𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖
−𝑦𝑦𝑖𝑖𝑗𝑗

  
0
1

−𝑦𝑦𝑖𝑖𝑗𝑗
𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖

] [𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗

]       

 

𝐵𝐵 =  [ 𝐼𝐼𝐼𝐼
𝑦𝑦𝑦𝑦 + 𝑦𝑦𝑠𝑠

] = [
1
0

𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖
−𝑦𝑦𝑖𝑖𝑗𝑗

  
0
1

−𝑦𝑦𝑖𝑖𝑗𝑗
𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖

]      

 (3)

The only difference is that the measurement functions 
( )h x  are linear. Therefore, equation (1) can be expressed 

as equation (4):

𝑧𝑧 =  ℎ(𝑥𝑥) +  𝜀𝜀       

 

𝐽𝐽(𝑥𝑥) =  ∑ (𝑧𝑧𝑖𝑖− ℎ𝑖𝑖(𝑥𝑥))2

𝑅𝑅𝑖𝑖𝑖𝑖
𝑚𝑚
𝑖𝑖=1        

 

𝐽𝐽(𝑥𝑥) =  [𝑧𝑧 − ℎ(𝑥𝑥)]𝑇𝑇𝑅𝑅−1[𝑧𝑧 − ℎ(𝑥𝑥)]     3

 

𝑧𝑧 =  ℎ(𝑥𝑥) +  𝜀𝜀 = 𝐵𝐵𝑥𝑥 +  𝜀𝜀       

 

𝑥𝑥 =  [𝐵𝐵𝑇𝑇𝑅𝑅−1𝐵𝐵]−1𝐵𝐵𝑇𝑇𝑅𝑅−1𝑧𝑧 = 𝑀𝑀𝑧𝑧      

 

𝑅𝑅 = [
𝛿𝛿1

2   
 ⋱  
  𝛿𝛿𝑚𝑚

2
]      

 

𝑥𝑥 =  [𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗

]       

 

𝑧𝑧 =  
[
 
 
 𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗
𝐼𝐼𝑖𝑖𝑗𝑗
𝐼𝐼𝑗𝑗𝑖𝑖 ]

 
 
 
       

 

[
 
 
 𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗
𝐼𝐼𝑖𝑖𝑗𝑗
𝐼𝐼𝑗𝑗𝑖𝑖 ]

 
 
 
= [

1
0

𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖
−𝑦𝑦𝑖𝑖𝑗𝑗

  
0
1

−𝑦𝑦𝑖𝑖𝑗𝑗
𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖

] [𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗

]       

 

𝐵𝐵 =  [ 𝐼𝐼𝐼𝐼
𝑦𝑦𝑦𝑦 + 𝑦𝑦𝑠𝑠

] = [
1
0

𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖
−𝑦𝑦𝑖𝑖𝑗𝑗

  
0
1

−𝑦𝑦𝑖𝑖𝑗𝑗
𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖

]      

 (4)

Where B  is the system matrix.
Therefore, the state vector x  can be calculated by having 

the equation (5):

𝑧𝑧 =  ℎ(𝑥𝑥) +  𝜀𝜀       

 

𝐽𝐽(𝑥𝑥) =  ∑ (𝑧𝑧𝑖𝑖− ℎ𝑖𝑖(𝑥𝑥))2

𝑅𝑅𝑖𝑖𝑖𝑖
𝑚𝑚
𝑖𝑖=1        

 

𝐽𝐽(𝑥𝑥) =  [𝑧𝑧 − ℎ(𝑥𝑥)]𝑇𝑇𝑅𝑅−1[𝑧𝑧 − ℎ(𝑥𝑥)]     3

 

𝑧𝑧 =  ℎ(𝑥𝑥) +  𝜀𝜀 = 𝐵𝐵𝑥𝑥 +  𝜀𝜀       

 

𝑥𝑥 =  [𝐵𝐵𝑇𝑇𝑅𝑅−1𝐵𝐵]−1𝐵𝐵𝑇𝑇𝑅𝑅−1𝑧𝑧 = 𝑀𝑀𝑧𝑧      

 

𝑅𝑅 = [
𝛿𝛿1

2   
 ⋱  
  𝛿𝛿𝑚𝑚

2
]      

 

𝑥𝑥 =  [𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗

]       

 

𝑧𝑧 =  
[
 
 
 𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗
𝐼𝐼𝑖𝑖𝑗𝑗
𝐼𝐼𝑗𝑗𝑖𝑖 ]

 
 
 
       

 

[
 
 
 𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗
𝐼𝐼𝑖𝑖𝑗𝑗
𝐼𝐼𝑗𝑗𝑖𝑖 ]

 
 
 
= [

1
0

𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖
−𝑦𝑦𝑖𝑖𝑗𝑗

  
0
1

−𝑦𝑦𝑖𝑖𝑗𝑗
𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖

] [𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗

]       

 

𝐵𝐵 =  [ 𝐼𝐼𝐼𝐼
𝑦𝑦𝑦𝑦 + 𝑦𝑦𝑠𝑠

] = [
1
0

𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖
−𝑦𝑦𝑖𝑖𝑗𝑗

  
0
1

−𝑦𝑦𝑖𝑖𝑗𝑗
𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖

]      

 (5)

Where R , according to equation (6), is the diagonal 
covariance matrix related to the errors of the measuring 
devices.

𝑧𝑧 =  ℎ(𝑥𝑥) +  𝜀𝜀       

 

𝐽𝐽(𝑥𝑥) =  ∑ (𝑧𝑧𝑖𝑖− ℎ𝑖𝑖(𝑥𝑥))2

𝑅𝑅𝑖𝑖𝑖𝑖
𝑚𝑚
𝑖𝑖=1        

 

𝐽𝐽(𝑥𝑥) =  [𝑧𝑧 − ℎ(𝑥𝑥)]𝑇𝑇𝑅𝑅−1[𝑧𝑧 − ℎ(𝑥𝑥)]     3

 

𝑧𝑧 =  ℎ(𝑥𝑥) +  𝜀𝜀 = 𝐵𝐵𝑥𝑥 +  𝜀𝜀       

 

𝑥𝑥 =  [𝐵𝐵𝑇𝑇𝑅𝑅−1𝐵𝐵]−1𝐵𝐵𝑇𝑇𝑅𝑅−1𝑧𝑧 = 𝑀𝑀𝑧𝑧      

 

𝑅𝑅 = [
𝛿𝛿1

2   
 ⋱  
  𝛿𝛿𝑚𝑚

2
]      

 

𝑥𝑥 =  [𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗

]       

 

𝑧𝑧 =  
[
 
 
 𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗
𝐼𝐼𝑖𝑖𝑗𝑗
𝐼𝐼𝑗𝑗𝑖𝑖 ]

 
 
 
       

 

[
 
 
 𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗
𝐼𝐼𝑖𝑖𝑗𝑗
𝐼𝐼𝑗𝑗𝑖𝑖 ]

 
 
 
= [

1
0

𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖
−𝑦𝑦𝑖𝑖𝑗𝑗

  
0
1

−𝑦𝑦𝑖𝑖𝑗𝑗
𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖

] [𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗

]       

 

𝐵𝐵 =  [ 𝐼𝐼𝐼𝐼
𝑦𝑦𝑦𝑦 + 𝑦𝑦𝑠𝑠

] = [
1
0

𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖
−𝑦𝑦𝑖𝑖𝑗𝑗

  
0
1

−𝑦𝑦𝑖𝑖𝑗𝑗
𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖

]      

 (6)
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Where m  is the total number of measurements.
The matrix M  is constant as long as the structure and 

parameters of the system do not change. It can be calculated 
offline once and stored for use at another time.

To implement state estimation in a network, the π 
equivalent circuit of a transmission line is shown in Figure 
(1).

According to Figure 1, iV   and jV   are the measured 
complex voltages in bus i  and j , respectively. Current 
flows from bus i  to bus j  and vice versa are ijI  and jiI , 
respectively. Assuming the state vector according to equation 
(7), we have:

𝑧𝑧 =  ℎ(𝑥𝑥) +  𝜀𝜀      

 

𝐽𝐽(𝑥𝑥) =  ∑ (𝑧𝑧𝑖𝑖− ℎ𝑖𝑖(𝑥𝑥))2

𝑅𝑅𝑖𝑖𝑖𝑖
𝑚𝑚
𝑖𝑖=1        

 

𝐽𝐽(𝑥𝑥) =  [𝑧𝑧 − ℎ(𝑥𝑥)]𝑇𝑇𝑅𝑅−1[𝑧𝑧 − ℎ(𝑥𝑥)]     3

 

𝑧𝑧 =  ℎ(𝑥𝑥) +  𝜀𝜀 = 𝐵𝐵𝑥𝑥 +  𝜀𝜀       

 

𝑥𝑥 =  [𝐵𝐵𝑇𝑇𝑅𝑅−1𝐵𝐵]−1𝐵𝐵𝑇𝑇𝑅𝑅−1𝑧𝑧 = 𝑀𝑀𝑧𝑧      

 

𝑅𝑅 = [
𝛿𝛿1

2   
 ⋱  
  𝛿𝛿𝑚𝑚

2
]      

 

𝑥𝑥 =  [𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗

]       

 

𝑧𝑧 =  
[
 
 
 𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗
𝐼𝐼𝑖𝑖𝑗𝑗
𝐼𝐼𝑗𝑗𝑖𝑖 ]

 
 
 
       

 

[
 
 
 𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗
𝐼𝐼𝑖𝑖𝑗𝑗
𝐼𝐼𝑗𝑗𝑖𝑖 ]

 
 
 
= [

1
0

𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖
−𝑦𝑦𝑖𝑖𝑗𝑗

  
0
1

−𝑦𝑦𝑖𝑖𝑗𝑗
𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖

] [𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗

]       

 

𝐵𝐵 =  [ 𝐼𝐼𝐼𝐼
𝑦𝑦𝑦𝑦 + 𝑦𝑦𝑠𝑠

] = [
1
0

𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖
−𝑦𝑦𝑖𝑖𝑗𝑗

  
0
1

−𝑦𝑦𝑖𝑖𝑗𝑗
𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖

]      

 (7)

equation (8) is the measurement vector:

𝑧𝑧 =  ℎ(𝑥𝑥) +  𝜀𝜀      

 

𝐽𝐽(𝑥𝑥) =  ∑ (𝑧𝑧𝑖𝑖− ℎ𝑖𝑖(𝑥𝑥))2

𝑅𝑅𝑖𝑖𝑖𝑖
𝑚𝑚
𝑖𝑖=1        

 

𝐽𝐽(𝑥𝑥) =  [𝑧𝑧 − ℎ(𝑥𝑥)]𝑇𝑇𝑅𝑅−1[𝑧𝑧 − ℎ(𝑥𝑥)]     3

 

𝑧𝑧 =  ℎ(𝑥𝑥) +  𝜀𝜀 = 𝐵𝐵𝑥𝑥 +  𝜀𝜀       

 

𝑥𝑥 =  [𝐵𝐵𝑇𝑇𝑅𝑅−1𝐵𝐵]−1𝐵𝐵𝑇𝑇𝑅𝑅−1𝑧𝑧 = 𝑀𝑀𝑧𝑧      

 

𝑅𝑅 = [
𝛿𝛿1

2   
 ⋱  
  𝛿𝛿𝑚𝑚

2
]      

 

𝑥𝑥 =  [𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗

]       

 

𝑧𝑧 =  
[
 
 
 𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗
𝐼𝐼𝑖𝑖𝑗𝑗
𝐼𝐼𝑗𝑗𝑖𝑖 ]

 
 
 
       

 

[
 
 
 𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗
𝐼𝐼𝑖𝑖𝑗𝑗
𝐼𝐼𝑗𝑗𝑖𝑖 ]

 
 
 
= [

1
0

𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖
−𝑦𝑦𝑖𝑖𝑗𝑗

  
0
1

−𝑦𝑦𝑖𝑖𝑗𝑗
𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖

] [𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗

]       

 

𝐵𝐵 =  [ 𝐼𝐼𝐼𝐼
𝑦𝑦𝑦𝑦 + 𝑦𝑦𝑠𝑠

] = [
1
0

𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖
−𝑦𝑦𝑖𝑖𝑗𝑗

  
0
1

−𝑦𝑦𝑖𝑖𝑗𝑗
𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖

]      

 (8)

Then equation (4) is expressed as equation (9) [3]:

𝑧𝑧 =  ℎ(𝑥𝑥) +  𝜀𝜀      

 

𝐽𝐽(𝑥𝑥) =  ∑ (𝑧𝑧𝑖𝑖− ℎ𝑖𝑖(𝑥𝑥))2

𝑅𝑅𝑖𝑖𝑖𝑖
𝑚𝑚
𝑖𝑖=1        

 

𝐽𝐽(𝑥𝑥) =  [𝑧𝑧 − ℎ(𝑥𝑥)]𝑇𝑇𝑅𝑅−1[𝑧𝑧 − ℎ(𝑥𝑥)]     3

 

𝑧𝑧 =  ℎ(𝑥𝑥) +  𝜀𝜀 = 𝐵𝐵𝑥𝑥 +  𝜀𝜀       

 

𝑥𝑥 =  [𝐵𝐵𝑇𝑇𝑅𝑅−1𝐵𝐵]−1𝐵𝐵𝑇𝑇𝑅𝑅−1𝑧𝑧 = 𝑀𝑀𝑧𝑧      

 

𝑅𝑅 = [
𝛿𝛿1

2   
 ⋱  
  𝛿𝛿𝑚𝑚

2
]      

 

𝑥𝑥 =  [𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗

]       

 

𝑧𝑧 =  
[
 
 
 𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗
𝐼𝐼𝑖𝑖𝑗𝑗
𝐼𝐼𝑗𝑗𝑖𝑖 ]

 
 
 
       

 

[
 
 
 𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗
𝐼𝐼𝑖𝑖𝑗𝑗
𝐼𝐼𝑗𝑗𝑖𝑖 ]

 
 
 
= [

1
0

𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖
−𝑦𝑦𝑖𝑖𝑗𝑗

  
0
1

−𝑦𝑦𝑖𝑖𝑗𝑗
𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖

] [𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗

]       

 

𝐵𝐵 =  [ 𝐼𝐼𝐼𝐼
𝑦𝑦𝑦𝑦 + 𝑦𝑦𝑠𝑠

] = [
1
0

𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖
−𝑦𝑦𝑖𝑖𝑗𝑗

  
0
1

−𝑦𝑦𝑖𝑖𝑗𝑗
𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖

]      

 (9)

𝑧𝑧 =  ℎ(𝑥𝑥) +  𝜀𝜀       

 

𝐽𝐽(𝑥𝑥) =  ∑ (𝑧𝑧𝑖𝑖− ℎ𝑖𝑖(𝑥𝑥))2

𝑅𝑅𝑖𝑖𝑖𝑖
𝑚𝑚
𝑖𝑖=1        

 

𝐽𝐽(𝑥𝑥) =  [𝑧𝑧 − ℎ(𝑥𝑥)]𝑇𝑇𝑅𝑅−1[𝑧𝑧 − ℎ(𝑥𝑥)]     3

 

𝑧𝑧 =  ℎ(𝑥𝑥) +  𝜀𝜀 = 𝐵𝐵𝑥𝑥 +  𝜀𝜀       

 

𝑥𝑥 =  [𝐵𝐵𝑇𝑇𝑅𝑅−1𝐵𝐵]−1𝐵𝐵𝑇𝑇𝑅𝑅−1𝑧𝑧 = 𝑀𝑀𝑧𝑧      

 

𝑅𝑅 = [
𝛿𝛿1

2   
 ⋱  
  𝛿𝛿𝑚𝑚

2
]      

 

𝑥𝑥 =  [𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗

]       

 

𝑧𝑧 =  
[
 
 
 𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗
𝐼𝐼𝑖𝑖𝑗𝑗
𝐼𝐼𝑗𝑗𝑖𝑖 ]

 
 
 
       

 

[
 
 
 𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗
𝐼𝐼𝑖𝑖𝑗𝑗
𝐼𝐼𝑗𝑗𝑖𝑖 ]

 
 
 
= [

1
0

𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖
−𝑦𝑦𝑖𝑖𝑗𝑗

  
0
1

−𝑦𝑦𝑖𝑖𝑗𝑗
𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖

] [𝑉𝑉𝑖𝑖
𝑉𝑉𝑗𝑗

]       

 

𝐵𝐵 =  [ 𝐼𝐼𝐼𝐼
𝑦𝑦𝑦𝑦 + 𝑦𝑦𝑠𝑠

] = [
1
0

𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖
−𝑦𝑦𝑖𝑖𝑗𝑗

  
0
1

−𝑦𝑦𝑖𝑖𝑗𝑗
𝑦𝑦𝑖𝑖𝑗𝑗 + 𝑦𝑦𝑖𝑖

]       (10)

In equation (10), we have: 
y  is the branch series admittance diagonal matrix, A  is 

the junction matrix of the measuring currents unit, and sy  is 
the parallel admittance matrix, whose rows and columns refer 
to the meters and buses, respectively.

Finally, the measurement function is expressed according 
to equation (11):

 

[𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 ] =  [
𝐼𝐼𝐼𝐼

𝑦𝑦𝑦𝑦 + 𝑦𝑦𝑠𝑠] 𝑉𝑉       

 

{
 

 min               ∑ 𝑥𝑥𝑘𝑘𝑁𝑁
𝑘𝑘=1                                        

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡    𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑋𝑋 ≥  𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃                       
𝑋𝑋 =  [𝑥𝑥1 … 𝑥𝑥𝑁𝑁]𝑇𝑇                                         
𝑥𝑥𝑖𝑖𝜖𝜖 {0,1}                                                             

      



𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖.𝑗𝑗 =  {
1, 𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑠𝑠                                  
1, 𝑖𝑖𝑖𝑖 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 𝑎𝑎𝑎𝑎𝑠𝑠 𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎
0, 𝑡𝑡. 𝑤𝑤.                                          

      3



𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃 =  [ 1 … 1]1×𝑁𝑁𝑇𝑇        

 

𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  ∑ 𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖 + 𝑠𝑠𝑛𝑛
𝑖𝑖=1        

 

𝑤𝑤𝑛𝑛𝑝𝑝𝑛𝑛 =  𝑤𝑤𝑜𝑜𝑜𝑜𝑝𝑝 +  𝛼𝛼(𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜 − 𝑦𝑦𝑚𝑚𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝)      

 

�⃗⃗�𝐷 =  |𝐶𝐶 𝑋𝑋 ∗(𝑠𝑠) − 𝑋𝑋 ∗(𝑠𝑠)|       



𝑋𝑋 (𝑠𝑠 + 1) =  𝑋𝑋 ∗(𝑠𝑠) −  𝑦𝑦 × �⃗⃗�𝐷        

 

𝑦𝑦 =  2𝑎𝑎 × 𝑎𝑎 − 𝑎𝑎        



𝐶𝐶 =  2𝑎𝑎       

 

 

 (11)

Where PMUV  and PMUI  are the vectors of the measured 
complex voltages and currents, and V  is the state vector of 
the system’s complex voltages.

2- 2- Formulation of Optimal PMU Placement
The observability analysis of the power system is 

performed before performing the state estimation. If a system 
is determined to be unobservable, additional gauges must 
be placed in specific locations to make the system visible. 
System observability analysis identifies visible islands and 
unobservable bifurcations, and gauges placement locations to 
make informed decisions.

Placing PMUs on all buses of a power system measures 
the system states directly, so state estimation is no longer 
needed. However, such a solution can be pretty expensive. 

On the other hand, the measurement of line currents can 

 
 

Fig. 1. π equivalent circuit of a transmission line 
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extend the voltage measurement to buses where the PMU 
is not installed. Therefore, a minimum number of PMUs 
can be installed to measure all bus voltages in the system 
indirectly. Finding this number of PMUs and their location 
in the network has brought optimization algorithms to this 
topic. An overview of the methods to solve this problem is 
discussed in [7].

As mentioned above, a PMU can indirectly view the lines 
connected to the installed bus and all the buses connected to 
the lines. Figure 2 describes a system that is fully observed by 
two PMUs marked with large circles. Smaller circles indicate 
buses that are indirectly visible by the line connected to the 
bus having the PMU [3].

The placement problem for complete power system 
observability starts with finding a minimal set of PMUs such 
that each bus is observed at least once by a PMU [8]. The 
formulation of the optimal placement problem for the N-bus 
system is described by equations (12) to (14):

 

[𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 ] =  [
𝐼𝐼𝐼𝐼

𝑦𝑦𝑦𝑦 + 𝑦𝑦𝑠𝑠] 𝑉𝑉       

 

{
 

 min               ∑ 𝑥𝑥𝑘𝑘𝑁𝑁
𝑘𝑘=1                                        

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡    𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑋𝑋 ≥  𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃                       
𝑋𝑋 =  [𝑥𝑥1 … 𝑥𝑥𝑁𝑁]𝑇𝑇                                         
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By using optimization algorithms, the topological 
observability of the network can be fully assured. Moreover, 
some optimization methods do not guarantee that they can 
always find the optimal solution for OPP problems. The 
reasons that lead to incorrect results are also different. Some 
algorithms may get stuck in local minima and thus not reach 
the global optimal solution. In this research, Integer Linear 
Programming (ILP) implemented in MATLAB software 
using the CPLEX toolbox is used for the optimal placement 
of PMU.

2- 3- Artificial Neural Network
An artificial neural network is an information processing 

system that tries to imitate the characteristics of the human 
nervous system and create a computer model through which 
patterns in data can be found, and correlations between 
variables can be obtained. Practically, the neural network is 
used in state estimation due to its high efficiency in signal 
processing and fast and accurate prediction of the output. A 
neural network model often consists of two layers (the first 
layer for input data and another layer for output results) or 
multiple layers. There are many algorithms for training 
neural networks. One of the common methods is the Back 
Propagation (BP) learning method, which can model 
nonlinear data if the network structure is chosen correctly. 
Figure 3 shows a neural network with one neuron. 

The connecting lines w  and b  represent weights and 
biases. The output of a neuron can be expressed as equation 
(15):
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In which the sum of inputs ix  is multiplied by the weights 

 
Fig. 2. An example of a complete observable 9-bus system [3] 
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iw  and finally added to the bias b  [9]. In BP learning using 
equation (16), the weights are updated in each iteration until 
the errors reach a level equal to or less than the specified 
minimum value.
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where α  is the learning rate which is set to a small 
value. Reducing the amount of network error and achieving a 
network with minimum error is the goal of a training process 
that is achieved by an optimization algorithm and by adjusting 
the weights and biases of the network.

The error backpropagation algorithm may converge to 
local minimum points in the parameter space. However, 
when this algorithm converges, it cannot be sure that it has 
reached an optimal solution. Therefore, for better learning 
performance, the best output can be predicted by optimizing 
the weights and biases of the neural network.

2- 3- 1- Optimization of Neural Network using Whale 
Algorithm

The whale meta-heuristic algorithm was proposed as 
one of the newest population-based optimization algorithms 
in 2016 by Mirjalili and Lewis [10]. Inspired by the nature 
and social behavior of whales, this algorithm uses the bubble 
network hunting strategy for exploration and exploitation. 
By avoiding local optimal points, it can achieve the optimal 
solution with less computational time wasted with an 
integrated adaptive technique. The most exciting thing about 
hunting whales is their unique method of hunting prey, which 
is known as a bubble net. In the bubble net method, the 
whales circle around a group of fish and produce distinctive 
bubbles that trap the fish and cause the fish to escape to the 
sea’s surface. Then they approach the fishe and hunt them.

Bait encirclement is the first stage of prey hunting in the 
best situation. Whales look at prey for the correct position 
and choose their positions based on an optimal solution for 
hunting fish. This solution can be expressed by equations (17) 
and (18):
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Where X


 and *X


 are two position vectors and *X


 
represents the optimal solution obtained at each moment and 
t  represents the current iteration. In addition, A



 and D


 are 
coefficient vectors defined by equations (19) and (20):
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 (20)

Where a  is a linear decreasing variable and r  is a vector 
containing random values   between 0 and 1.

In the next step, the whales attack the prey, and in this 
phase, the encirclement of the prey becomes smaller, and 
based on this mechanism, a  and A



 in the previous two 
relationships are reduced. The vector A



 contains random 
values   in the interval [ ],a a−  and decreases from the value 
of 2 to 0. The new position can be obtained using the optimal 
and current positions. Next, the spiral position is updated.

 
 

 

Fig. 3. Neural network architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Neural network architecture
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In the process of multi-layer perceptron neural network 
training by the Whale algorithm, tried to adjust the weights 
in each iteration of the learning algorithm so that the 
approximation error is minimized. Accordingly, first, the 
population of the algorithm is randomly initialized, and the 
error rate is calculated using the training data. 

Next, the constants of the model or the regulatory 
characteristics affecting the mapping of the input data are 
updated, and this process continues until the termination 
conditions are reached, or the minimum allowable error is 
obtained. Therefore, it is necessary to determine appropriate 
values   for these parameters based on the complexity and 
dimensions of the problem so that the algorithm finds the 
optimal answer to the problem efficiently. The general steps 
of the WOA-MLP and SE approach are depicted in Figure 4.

3- Simulation Results
All the implementation steps and conclusions in this 

section have been done using a system with the specifications 
of  Intel® Xeon® Silver 4214 CPU@2.2GHz, 16GB RAM. 

To analyze the data with the help of an artificial neural 
network first, the data obtained from the linear state estimation 
with PMU by changing the local load in each bus, taking into 
account the characteristics of the summer seasonal load, was 
done hypothetically for a period of 24 hours with two peaks, 
day and night. Here, a conventionally distributed swing with 
standard mean power of IEEE network loads in 14 and 30 
bus systems (Figures 5 and 6) and with standard deviation is 
shown in Figures 7 and 8, respectively.

The power factor and reactive power of the system load 
are assumed to be constant during the simulation.

 

Fig. 4. Steps of learning and state estimation in the proposed algorithm 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Steps of learning and state estimation in the proposed algorithm
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Fig. 5. IEEE 14-bus system topology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.IEEE 14-bus system topology

 
 

Fig. 6. IEEE 30-bus system topology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. IEEE 30-bus system topology
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The data obtained from Linear-SE includes the PMU 
measurements as input and the resulting state estimates as 
the output of the neural network. State estimation has been 
done 24 hours a day with time intervals every 10 minutes 
in different network loads according to Figures 7 and 8, and 
the Gaussian noise resulting from the measurement has been 
assumed with a tolerance of 15%. In addition, the optimal 
placement of PMUs in the state of complete visibility of the 

power system is shown in Table 1.
The data obtained from the simulation includes 83100 

samples, 80% of which are for the training samples and 
20% of which are randomly divided for the test samples. 
The population size is 100. Then feature selection was made 
by the Whale optimization algorithm (WOA) using two 
mathematical models of encirclement and bubble net attack. 

According to data classification by the WOA algorithm 

 
 

Fig. 7. IEEE 14-bus system summer load profile 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. IEEE 14-bus system summer load profile

 
 

Fig. 8. IEEE 30-bus system summer load profile 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. IEEE 30-bus system summer load profile
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(Figure 4), they were trained in a three-layer perceptron 
artificial neural network. These three layers include the input 
layer consisting of measurement data, the hidden layer, and 
the output layer consisting of system states. To achieve the 
best classification, different architectures were used for the 
neural network from 5 to 40 neurons in the hidden layer and 
weight optimization through WOA in 100 Epochs. Finally, 
the number of states of each system was chosen as the number 
of hidden layer neurons. 

The Root Mean Square Error (RMSE) index was used as a 
performance calculation index, and in the first iterations with 
WOA learning, a noticeable reduction in error was obtained 
from 1.115 to 0.995 for the 14-bus system and from 2.11 to 
1.45 for the 30-bus system, and finally the lowest The amount 
of error based on the methods of Root Square Error (RSE), 
Mean Absolute Error (MAE), Mean Square Error (MSE) and 
RMSE, obtained for the neural network test for training with 
BP and WOA algorithms in the best condition was obtained 
according to Tables 2 and 3.

Figures 9 and 10 show the fitting of the curve of the actual 
values   of the state estimation against the output values   of the 
neural network trained with two algorithms for the two parts 
of training and testing.

According to Figures 11 to 14, to better examine the 
simulation, the state estimation of the power system for two 
systems of 14 and 30 buses has been performed every 10 
minutes, 24 hours a day. Due to the network load changes and 
its inverse relationship with the voltage profile, the accuracy 
of the state estimator is of particular importance for the 
network operator. According to equation (2), the value of the 
objective function for the three WOA-MLPNN, Linear-SE, 
and BP-MLPNN estimators, respectively, is 0.036, 4.12 and 
12 for the 14-bus system and 0.013, 3.1 and 10 for the 30-bus 
system. the results indicate the effectiveness of the WOA-
MLPNN state estimator and the importance of proper and 
intelligent learning of neural networks using optimization 
algorithms.

Table 1. Optimal PMU placement in test systems for complete network observabilityTable 1. Optimal PMU placement in test systems for complete network observability 

Test System Optimal PMU Placement (#Bus) 
IEEE 14 Bus 2,8,10,13 
IEEE 30 Bus 1,5,8,10,11,12,19,23,26,29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. The error obtained from the neural network test with two BP and WOA learning 
algorithms of the IEEE 14-bus system

Table 2. The error obtained from the neural network test with two BP and WOA learning algorithms of 
the IEEE 14-bus system 

Results RSE MAE MSE RMSE 
BP-MLPNN 1.0507 0.0497 3.3e-4 0.0559 

WOA-MLPNN 0.0749 0.0146 2.77e-5 0.018 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. The error obtained from the neural network test with two BP and WOA learning 
algorithms of the IEEE 30-bus system

Table 3. The error obtained from the neural network test with two BP and WOA learning algorithms of 
the IEEE 30-bus system 

Results RSE MAE MSE RMSE 
BP-MLPNN 1.009 0.172 0.0018 0.199 

WOA-MLPNN 0.0508 0.0382 9.58e-5 0.0484 
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Fig. 9. Showing the correlation between the correct value and the predicted value 
for the training and test data sets of the IEEE 14-bus system 

Fig. 9. Showing the correlation between the correct value and the predicted value for the training 
and test data sets of the IEEE 14-bus system
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Fig. 10. Showing the correlation between the correct value and the predicted 
value for the training and test data sets of the IEEE 30-bus system 

Fig. 10. Showing the correlation between the correct value and the predicted value for the training 
and test data sets of the IEEE 14-bus system
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Fig. 11. IEEE 14 Bus state estimation results (Bus #12 voltage angle) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. IEEE 14 Bus state estimation results (Bus #12 voltage angle)

 
Fig. 12. IEEE 14 Bus state estimation results (Bus #12 voltage mag.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. IEEE 14 Bus state estimation results (Bus #12 voltage mag.)
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Fig. 13. IEEE 30 Bus state estimation results (Bus #18 voltage angle) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. IEEE 30 Bus state estimation results (Bus #18 voltage angle)

 
Fig. 14. IEEE 30 Bus state estimation results (Bus #18 voltage mag.) 

 

 

 

 

 

 

 

Fig. 14. IEEE 30 Bus state estimation results (Bus #18 voltage mag.)
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4- Conclusion
In this article, firstly, the development process of 

power system state estimation, the optimal placement of 
phasor measurement units, and the advantages of linear 
state estimation were discussed. Due to the importance 
of accuracy and speed for real-time decision-making and 
reaction by the power grid operator, the best option for 
performing state estimation was the artificial neural network. 
One of the advantages of the neural network is that it does 
not rely on relationships and complex calculations. Neural 
network training is one of its main pillars, and by optimally 
determining its weights, the best output can be expected from 
it. The results of state estimation using a neural network 
optimized with a Whale optimization algorithm show that its 
performance is verified and its error is more suitable than the 
conventional neural network training method.
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