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ABSTRACT: In deregulated electricity markets, the electricity consumer should distribute his 
required electricity optimally between different markets including spots markets with instantaneous 
price and bilateral contract markets. The present study is aimed to design a model for selecting the 
optimal electricity market portfolio, so the purchase costs can be minimized by considering a risk 
level. For this purpose, an optimization approach based on random planning was proposed to minimize 
costs and reduce power supply risk. Conditional value at risk was used as an appropriate and well-
known factor for reducing unfavorable situations in decision-making under uncertain conditions. For 
simulations, the real information of Iran in 2018 was used as much as possible. Due to the small number 
of industrial subscribers, the whole population was studied. A genetic algorithm has been used to solve 
this optimization problem. In addition, MATLAB software was used for implementing the proposed 
model. The efficiency of the proposed model was proved by analyzing different sensitivities and the best 
components of the risk-averse decision-making purchasing portfolio in β=5 included from the energy 
exchange, then from the energy pool, and finally from bilateral contracts.
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1- INTRODUCTION
In addition to its advantages and positive points, 

liberalizing the electricity industry has caused some operational 
complexities and financial risks. In this structure, the number 
of market actors increases, and their relations become more 
complex. Furthermore, large-scale financial exchanges are 
formed between such actors. As a result, it can cause some 
risks such as price fluctuations, volume fluctuations, credit 
risks, and operational risks. Identifying the effects of different 
risks related to market actors is incredibly important in such 
environments. Furthermore, designing and applying some 
strategies to manage and eliminate such risks are greatly 
essential. The electricity industry has encountered fundamental 
changes in the world during the past two decades. Furthermore, 
it has been expressed under different titles such as deregulation, 
review of laws, or deconstruction, and so on. In the traditional 
structure of the electricity industry, known as systems with 
vertically integrated structures, a company was in charge of 
the production, transmission, and distribution of electricity. In 
the new structure, a company fails to take advantage of such 
an inherent monopoly, and the various parts of the electricity 
industry including production, transmission, and distribution 
are separated from each other [4].

The electricity industry of Iran has experienced 
four evolutionary phases of regulation, deregulation, 
deconstruction, and privatization. Regulation increased the 
managerial and ownership role of the government in the 
electricity industry, while deregulation changed the laws 
leading to the continued presence of the government in 
the electricity industry and created a legal framework for 
the private sector. Deconstruction separated the vertical 
monopoly into production, transmission, and distribution. 
Finally, privatization transferred ownership to the private 
sector. Reviewing the previous studies on the Iranian 
electricity market showed some indicators of these risks [3]. 
In addition, some factors and limitations differentiate the 
Iranian electricity industry from other counties economically, 
socially, and etc. Such factors are related to the electricity 
system, as well as the political and cultural conditions of 
the country. Electricity cannot be purchased and stored 
for consumption. The new electricity market is highly 
volatile compared to the commodity market and the actors 
of this market are exposed to significant risks arising from 
volatile market conditions. This study provided a solution 
for the problem of optimal risk management from project 
portfolio management in deregulated electricity markets. 
Producers and buyers compete for the exchange of their 
required electricity in the electricity markets and offer their 
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prices to the market operator at different times. Cash prices, 
along with high risk and changes determined in competitive 
markets, change the behavior of market actors. Based on 
one of the acts approved by the Delegation of ministers in 
2015, the subscribers with a contract power of more than five 
MW, known as large consumers, can supply their required 
electricity from the energy exchange, energy pool, bilateral 
contracts, or their power plants. If the power plants cannot 
generate the committed electricity for any reason, the 
subscriber’s electricity is supplied through the national grid, 
and the power plant is obliged to compensate the related costs 
in the electricity market based on the regulations approved by 
the board of market regulation.

This study aimed to present a model for large consumers 
to design and supply their optimal energy portfolio from the 
energy pool of the wholesale market, signing bilateral contracts 
with power plants, and energy exchange in the physical 
market at the minimum cost. Thus, it is assumed that the input 
electrical energy plays a significant role in the production 
process of this consumer and constitutes a considerable 
part of production costs. In addition, it is assumed that this 
consumer buys a significant portion of demand from the 
pool and energy exchange. Due to uncertainty in electricity 
prices, the final goal of large consumers is to minimize the 
expected cost of electricity supply with the risk related to 
price changes, which is an issue of electricity supply for large 
consumers. Furthermore, risk means that the fluctuations 
related to electricity supply cost significantly increase the risk 
of imposing a cost level. Uncertainty is considered only in the 
instantaneous prices of the energy pool and energy exchange. 
The future prices of electricity purchase contracts are fixed 
and risk-free and are considered as coverage for risk [1].

2- REVIEW OF LITERATURE 
The previous studies mostly focused on the electrical 

energy sales portfolio. However, few studies are available on 
purchasing the optimal electrical energy portfolio from the 
consumer perspective [7]- [9]- [10]- [11]- [12]- [29]. Zare 
et al., presented a method for determining the strategy of 
large consumers supplying their electricity demand from the 
market. In this study, they used the information gap decision 
theory for modeling the cost uncertainty [20]. Conejo et 
al., presented a technical solution for the problem of power 
generators with large consumers. To minimize the purchase 
costs and limit the risk of cost fluctuations due to price 
instability, they used a quadratic mixed-integer mathematical 
model [14]. Garcia et al., used the mean-variance model and 
the CVaR model for power generators. The results indicated 
that the CVaR model has a more conservative approach 
than the variance-mean model and provides a more stable 
allocation for risky markets such as spot markets [31]. Glensk 
et al., used the fuzzy set theory in the optimization process of 
the electricity sales portfolio. 

In this study, a mathematical framework was proposed to 
identify a set of efficient portfolios, which means maximizing 
the return of expected return for the predicted risk or 
minimizing the risk of return for expected return [28]. Liu et 

al., considered the energy allocation between instantaneous 
price markets and bilateral contracts as optimizing the 
energy portfolio with a risk-free asset and a risky asset. 
They used a quadratic programming model and electricity 
market historical data for optimizing the studied portfolio 
[8]. Rebennack et al., conducted a study on optimizing 
the electrical energy purchasing portfolio in the German 
electricity market. Their study could determine how much of 
the energy demand should be generated in the consumer’s 
power plant, how much should be purchased from the 
instantaneous price market, and how much from contracts. 
This problem was formulated as a mixed-integer linear 
programming model without considering the uncertainty 
conditions and risk measurement in the Gams software [15]. 
Cohen et al., proposed a multistage variance optimization 
model for management. To reduce the complexity, they used 
linear decision rules including the limiting of decision rules 
set to random parameters [34]. Algariv et al., proposed a 
retailer portfolio optimization model for future markets, other 
electricity markets, or a combination of markets. In their 
study, a multi-factor system was presented to simulate the 
energy markets with an emphasis on the interaction between 
retailers and end customers. In their optimization model, the 
modern portfolio theory was used to identify risk [32]. De 
Filippo et al., presented a nonlinear optimization approach 
to electricity market dynamics, which could be used for 
obtaining tariff proposals. Their approach was based on a 
stochastic model for residential electricity consumption and 
a definitive model for large electricity consumers. This model 
was tested for the Italian energy market data and an extensive 
analysis of various scenarios was performed [33]. Barati et 
al., conducted a study to maximize profits and minimize the 
operating costs of the distribution system by considering the 
retailer’s perspective and the regulation of contracts between 
suppliers and consumers. In their study, a bi-level optimization 
model was proposed. This model can minimize the cost of the 
distribution system with distributed generation and maximize 
the profits of retailers [5]. Kehunen et al., argued that the 
conventional risk management optimization methods are 
typically ineffective when an electricity retailer faces volume 
and price risk in purchasing from the wholesale market. Thus, 
they developed a multi-stage stochastic optimization method 
for managing the electricity contract portfolio. The model 
considers price uncertainty and electrical loads and uses CVaR 
to control risk during the planning horizon. The experimental 
results based on real data indicated that modeling price-load 
relationships are of particular significance. In a conclusion, 
a retailer is more sensitive to price uncertainty in terms of 
expected cost without considering risk. In addition, a risk-
averse retailer is sensitive to the incentives of expected risk 
[19].

Golmuhammadi et al., discussed the green generation 
portfolio optimization from the retailer’s perspective in 
the market competitive environment. They formulated 
the uncertainty in electricity price, wind and solar energy 
generation using stochastic variables. In addition, they used 
pre-sales contracts to supply a load of customers to reduce 
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the risk caused by purchasing electricity from customers’ 
perspectives. They claimed that consumers can enable 
retailers to manage the risk and profit caused by attending 
to the retailer market. In their study, stochastic planning and 
time series of ARIM, as well as the Monte Carlo method, 
were used to optimize the clean energy generation portfolio 
and formulate the problem uncertainties. They considered a 
set of risk-free bilateral contracts in futures markets, as well 
as two with instantaneous price markets in Iran including 
energy pool and energy exchange, from which the customer 
should purchase by considering risk management [2].

If the price seasonality is considered, triggering an 
adaptive seasonal behavior which supports the decision of the 
decision-maker towards its goals, results in illustrating the 
advantage of reducing the costs and risk. This work proposes 
a mixed-integer linear formulation for the energy portfolio 
optimization problem for a large consumer from a buyer 
perspective. A multi-objective approach is explored to deploy 
several options to the decision-maker based on its risk pattern. 
A weighted sum formulation is presented for the expected 
cost and risk minimization. The binary variables define the 
procurement decisions and the continuous variables define 
the electricity procured, the cost of each electricity supplier 
option, as well as the value of the CVaR [13]. Kokkinos et al., 
examined the impacts of bio waste-based energy transition 
through a semi-quantitative evaluation by engaging the 
relevant social stakeholders’ evaluation in the strategic 
plan. The proposed decision-making tool uses analytics and 
optimization algorithms to guide competent authorities and 
decision-makers to sustainable energy transitioning towards 
decarbonization [17]. Thombs discussed the potential energy 
future perspectives and proposed a topology. As a result, the 
authors conclude, that not only the potential energy futures 
are a simple function of the technologies employed and 
their scale, but also will be shaped by the social relations 
that configure societies in general [22]. Falcone, P.M et al., 
provided the most elective instrument mix for the energy 
transition in the biofuel industry based on the case of the 
Italian liquid biofuel sector. The simulation results showed 
the persistence of negative context conditions would be 
detrimental for the convergence of expectations, providing 
clear priorities in setting the energy policy agenda [24]. 
Falcone, P.M et al, discussed energy and bio-products 
production based on resource circularity in the tourism 
industry. Research has shed light on external pressures and 
internal dynamics to provide a clear direction for policy 
strategies to support the transition towards a tourism-based 
circular economy. An integrated SWOT-MLP framework has 
been built to provide crucial theoretical perceptions for the 
transition under investigation [21]. 

The advantage of this study over similar and previous 
works is that the present study considered two markets with 
instantaneous prices in Iran’s electricity market, including 
energy pool and energy exchange, in addition to the current 
contracts. At the same time, the buyer must manage the 
amount of risk. In other words, the previous executive and 
economic research is not in the Iranian electricity market 

and does not give a real answer, since both markets have 
a significant impact on costs with spot prices and current 
contracts in Iran. Therefore, the model is designed to match 
the structure of the Iranian electricity market and efficiency.

Accordingly, the present study aimed to study the goals 
which should be considered for designing an electricity 
portfolio and selection of the optimal level for applied 
planning.

3- RESEARCH METHODOLOGY
The present study was applied in terms of purpose. 

The research design was field experimental while the data 
collection method was the library and using articles from 
scientific databases. Data collection tools included databases, 
articles, scientific books, and databases from the studied 
organization. In addition, MATLAB software was used 
for data analysis. Due to the small number of industrial 
subscribers, the whole population was studied. To use the 
model and numerical studies in the Iranian electricity market, 
real information was used from the historical prices in 2018.

3-1- Decision-making Framework 
They use bilateral contracts to supply part of their energy. 

A bilateral contract is a treaty between two parties outside the 
electricity market environment. In this study, it is assumed 
that the consumer has the following eight contracts:

- Contract C1 is to cover the whole summer (whole period), 
which is prepared and signed one year before consumption

- Contract C2 is to cover the whole summer (whole period), 
which is prepared and signed one year before consumption

- Contract C3 is to cover the first half of June, which is 
prepared and signed in the first half of July

- Contract C4 is to cover the second half of June, which is 
prepared and signed in the second half of July

- Contract C5 is to cover the first half of July, which is 
prepared and signed in the first half of July

- Contract C6 is to cover the second half of July, which is 
prepared and signed in the second half of July

- Contract C7 is to cover the first half of August, which is 
prepared and signed in the first half of August

- Contract C8 is to cover the second half of August, which 
is prepared and signed in the second half of August

Consumers attend the electricity market to purchase at 
an instantaneous price. Transactions in the energy pool and 
energy exchange are instantaneous and depend on the market 
price. Due to the uncertainty in the price of these two markets, 
these decisions are always associated with their complexities. 
Prices are expressed in different scenarios. Each scenario 
is related to the realization of the price of pool and energy 
exchange in all periods (i.e. each scenario represents a 
scenario of energy purchase with its probability). In using 
stochastic planning, the problem of purchasing the optimal 
electrical energy portfolio is a multi-stage problem that can 
be solved in form of a stochastic planning model. In the 
present study, a period of three months, including six times 
subscales was considered so that each subscale represented 
half of each month in summer. Therefore, the planning 



S. Khalili1 et al., AUT J. Elec. Eng., 53(2) (2021) 171-188, DOI: 10.22060/eej.2021.19236.5387

174

horizon was 93 days of summer. The main decision-making 
variables in this issue include determining the amount of 
energy purchase from bilateral contracts, electricity purchase 
from the instantaneous price market, energy pool, and energy 
exchange. At all periods, the amount of purchase from bilateral 
contracts related to the whole period or each half of the month 
was concluded without knowing the future market prices, and 
was not related to the realization of scenarios. Thus, these 
types of decision-making variables are called here-and-now 
variables. Instead, the variables related to the energy pool 
market and energy exchange are close enough to the time of 
consumption and are called stay-and-see variables [30]. Fig. 1 
shows the decision-making framework from the consumer’s 

perspective. As shown, the number of steps and the type 
of decision variables in each step is specified. In addition, 
several paths are specified in each node. The combination of 
these nodes leads to the production of a possible scenario. 
Each scenario is the realization of a complete path from the 
root node to the last node.

3-2- Modeling 
In this section, stochastic planning for the problem of 

purchasing the optimal portfolio of electrical energy is 
presented, considering the explanations provided in the pre-
model mathematical section.

STEP1
a1           an

period 1-93

STEP2
                bn  b1

            . . . 
period 1-15

STEP3
                 cn   c1

            . . . 
period 16-31

STEP4
                dn   d1

            . . . 
period 32-46

STEP5
                en   e1

            . . . 
period 47-62

STEP6
                fn   f1

            . . . 
period 63-77

STEP7
                gn   g1

            . . . 
period 78-93

STEP8
                hn   h1

            . . . 

...

Scenario 1=a1b1c1d1e1f1g1h1
Scenario 2=a2b2c2d2e2f2g2h2

energy pool، energy exchangeBilateral contract for the second 
half of September and the whole 

stay and see variables:here-and-now variables:

energy pool، energy exchange------

stay and see variables:here-and-now variables:

energy pool، energy exchangeBilateral contract for the first 
half of September and the whole 

stay and see variables:here-and-now variables:

energy pool، energy exchangeBilateral contract for the first 
half of August and the whole 

stay and see variables:here-and-now variables:

energy pool، energy exchangeBilateral contract for the second 
half of August and the whole 

stay and see variables:here-and-now variables:

energy pool، energy exchangeBilateral contract for the second 
half of July and the whole period

stay and see variables:here-and-now variables:

stay and see variables:here-and-now variables:

energy pool، energy exchangeBilateral contract for the first 
half of July and the whole period

stay and see variables:

------

here-and-now variables:

One bilateral contract halfway each 
month and two bilateral agreements 

for the whole period

 

Fig. 1: Decision-making framework from the consumer’s perspective 

  

Fig. 1: Decision-making framework from the consumer’s perspective
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3-2-1- Purchasing Energy from Energy Pool and Energy 
Exchange 

The cost of purchasing in energy pool and energy 
exchange is as follows (1).

( )
1

T
C P P M M
tw tw tw tw tw

t

C P Pλ λ+
=

=∑
 

(1)

Where  p
twλ  presents the price of electrical energy in the 

energy pool and  M
twλ  represents the price of electrical energy 

in energy exchange. In addition, p
twp and pM

twp indicate the 
energy purchased from the energy pool, and the energy 
exchange in scenario w and time t. Furthermore,   S

twC  presents 
the final cost of purchasing from instantaneous markets.

3-2-2- Purchasing From Bilateral Contracts
Consumers can use bilateral contracts to supply parts 

of their energy [6]. A bilateral contract refers to a contract 
between two parties outside the electricity market, and it 
is assumed that the price of contract C

Cλ  is independent of 
the market price. The cost of purchasing from the bilateral 
contract in scenario w and the whole period of contract C is 
introduced with  C

CWC  and obtained as follows (2): 

1 1

 
nc T

C C C
CW ctw cw t

c t

C p dλ
= =

=∑∑
 

(2)

Where C
ctwλ  represents the price of purchasing from 

contract c at the period t, and  C
cw tp d  indicates the power 

purchased from the contract at the period t, while NC refers to 
the number of bilateral contracts. Eq. 3, which is considered 
as a constraint, allows energy to be purchased from a given 
contract during a time, and if contract c is selected in scenario 
w, Scw is a binary variable which equals to 1; otherwise, it is 
zero.

0≤ C
cw tp d∑ ≤ ,C max

c cwp S  (3)

In this study, a capacity was provided for contracts. In 
addition, the generated power C

cw tp d is enclosed by its own 
upper and lower limits, as given in Eq. 4:

,C min C
c cw tp p d≤ ≤ ,C max

cp  (4)

12 
 

(3) 0≤∑𝑝𝑝𝑐𝑐𝑐𝑐𝐶𝐶 𝑑𝑑𝑡𝑡≤𝑝𝑝𝑐𝑐𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑐𝑐𝑐𝑐 

In this study, a capacity was provided for contracts. In addition, the generated power 𝑝𝑝𝑐𝑐𝑐𝑐𝐶𝐶 𝑑𝑑𝑡𝑡is enclosed by 

its own upper and lower limits, as given in Eq. 4: 

(4)    𝑝𝑝𝑐𝑐𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑝𝑝𝑐𝑐𝑐𝑐𝐶𝐶 𝑑𝑑𝑡𝑡≤𝑝𝑝𝑐𝑐𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 

(5)  ⋃ 𝑇𝑇𝑐𝑐,𝑚𝑚=
𝑚𝑚=1,…,𝑚𝑚𝑐𝑐

𝑇𝑇𝑐𝑐 

In Eq.5, the planning horizon of each contract is usually divided into several subsets of periods based on 

the prices of the energy pool and energy exchange. 

3-2-3- Model of Conditional Value at Risk 

Markowitz was the first person who has stated the use of the relationship between risk and return in form 

of portfolio theory, and the risk became a quantitative criterion for the first time through the proposed model 

[3]. In modern portfolio theory, the risk is defined as the variability of total returns around the average, and 

is calculated using the variance criterion. Assuming the distribution is normal, variance is an acceptable 

measure of return on risk. However, real-world research and theoretical debates reject this assumption. 

Thus, it is not a good criterion of risk when the distribution of returns is asymmetric, and because the 

variance fines favorable price moves upwards as much as undesirable price moves downwards [25]- [26]. 

A logical investor with a short-term vision not only welcomes positive stock price fluctuations, but also 

seeks a way for measuring the negative fluctuations of the portfolio and selects the optimal portfolio with 

the least adverse risk on average based on the results. Such approach is the main tool for risk measurement 

and management [27]- [18]. Value at Risk (VaR) refers to the maximum loss that we expect the portfolio 

to have in each time horizon at a certain level of confidence. Summarizing risks into a single number is 

considered one of the significant advantages of this tool. Unlike the simple concept of VaR, its calculation 

is associated with difficulties [23]- [16].  

 (5)

In Eq.5, the planning horizon of each contract is usually 
divided into several subsets of periods based on the prices of 
the energy pool and energy exchange.

3-2-3- Model of Conditional Value at Risk
Markowitz was the first person who has stated the use of 

the relationship between risk and return in form of portfolio 

theory, and the risk became a quantitative criterion for the 
first time through the proposed model [3]. In modern portfolio 
theory, the risk is defined as the variability of total returns 
around the average, and is calculated using the variance 
criterion. Assuming the distribution is normal, variance is an 
acceptable measure of return on risk. However, real-world 
research and theoretical debates reject this assumption. Thus, 
it is not a good criterion of risk when the distribution of returns 
is asymmetric, and because the variance fines favorable 
price moves upwards as much as undesirable price moves 
downwards [25]- [26]. A logical investor with a short-term 
vision not only welcomes positive stock price fluctuations, 
but also seeks a way for measuring the negative fluctuations 
of the portfolio and selects the optimal portfolio with the least 
adverse risk on average based on the results. Such approach 
is the main tool for risk measurement and management [27]- 
[18]. Value at Risk (VaR) refers to the maximum loss that we 
expect the portfolio to have in each time horizon at a certain 
level of confidence. Summarizing risks into a single number 
is considered one of the significant advantages of this tool. 
Unlike the simple concept of VaR, its calculation is associated 
with difficulties [23]- [16]. 

VaR is the maximum amount of damage at the confidence 
level(1-α) during a specified period. In this model, risk occurs 
when the daily loss is higher than VaR. In a fully designed 
model, the probability that the realized loss deviates from the 
specified VaR will be  ξ %. In the VaR measurement model, 
the confidence of the investor at his investment portfolio at 
level α is determined to not lose more than Y Rls during a 
T period in the future. The variable Y, VaR, is related to the 
specified portfolio, being obtained from Eq. 6:

1Y CDF −= −  (1-α) (6)

Where 1CDF −−  represents the inverse cumulative 
distribution function for investment profit V and α indicates the 
confidence level for the investor. Calculating VaR statistically 
means finding the critical value for the desired probability 
level [3]. Since the probability distribution of returns over 
time is not constant, there are problems in calculating VaR. 
The inconsistency of this criterion is one of the main problems 
with VaR. CVaR has been introduced for the evolution of VaR 
in recent years. This criterion estimates the expected loss at or 
above VaR at a certain confidence level. Thus, this view is more 
conservative than the previous one. Due to the precautionary 
aspect of CVaR and its higher application during recent 
years, the present study focused on this criterion as a risk 
indicator. The measurement model of CVaR has a coherent 
criterion unlike the VaR model, and is a coherent criterion 
with four characteristics of uniformity, addibility, positive 
homogeneity, and uniform transmission. While addibility is 
one of the mental principles of every investor, the VaR model 
is not considered coherent due to its lack of this feature. For 
instance, the addibility rule is extremely critical in discussing 
the capital adequacy requirements of banks from a regulatory 
perspective. Consider the branches of a bank. If the capital 
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requirements of each branch are specified based on its risk, 
the supervisor can be sure that the total capital of the branch 
will be sufficient based on the addibility rule. Based on the 
VaR criterion, the set risk will be equal to the total risk of all 
branches. This criterion was developed in a study [3] to cover 
coherence indicators.

Finally, the VaR method has an undesirable property due 
to the lack of a subset, making it difficult to calculate when 
using the scenarios, because it is a non-convex and uneven 
function and has several local extreme values. CVaR, which 
has convex, subset, and even properties and calculates losses 
greater than VaR is the appropriate criterion. Fig. 2 shows 
the position of VaR and CVaR [3]. Eq. 7 indicates that the 
CVaR value measures the expected loss if it increases more 
than VaR.

(CVaR E Loss= \ )Loss VaR>  (7)

In addition, the y-vector represents the uncertainties 
affecting the loss. Therefore, the return on portfolio x is the 
sum of the returns on each capital in the portfolio on a ratio 
of xj. Since loss is a negative return on expected return, it is 
defined as Eq. 8:

( ) [ ],  T
s s c cf x y x y x y x y=− + = −

 
(8)

Where xs represents the portfolio ratio, used in the spot 
market, risky assets, and xc is used in risk-free assets. The 
performance function based on CVaR is described as (9) and 
(10) (Rockafer and Uriasov, 2010) [21-35].

( ) ( )

( ) ( )

1, 1

,

a

y R

CVaR F x a

w f x y p y dy

ξ ξ

ξ

−

+

= = + +

 − ∫ ò  

(9)

( )
( )

( )
,

,
f x y

x p y dy
ξ

ψ ξ
≤

= ∫
 

(10)

Where p(y) is a function of density y, which is a function 
of the cumulative distribution ( ) ,xψ ξ  for the loss associated 
with x. In addition, it is assumed that VaR for a particular 
portfolio is underconfidence at level α . In the above Eq. 

aF  is an approximation obtained through the Monte Carlo 
simulation. When applying Monte Carlo simulations,

( ) ,aF x ξ  is obtained as a distribution aF  by sampling the 
probability distribution in y:

( ) ( )
( )

1

,1,  
1

w

a
w

f x y
F x

w a
ξ ξ

ξ

+

=

 
= +  − − 

∑
 

(11)

Where ω  represents the sample number p (y). The 
estimated function ( )  ,aF x ξ  is convex and linear ξ  is a piece 
being minimized by linear search techniques or a rudimentary 
programming problem. The risk of uncertainties should be 
considered in the decision-making process for energy supply. 
In this study, the CVaR criterion was used to model the 
risk of cost changes, and CVaR is in fact the mathematical 

 

Fig. 2: Position of value at risk and conditional value at risk [3] 

  

Fig. 2. Position of value at risk and conditional value at risk [3]
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expectation ( )1 *100%a−  of the scenarios with the largest 
cost. CVaR is expressed by the mathematical model (12) [19-
35]:

( ) 1

1  
1

w

w w
w

Cvar min
w a

ξ π η
=

= +
− ∑

 
(12)

To eliminate the non-negative constraints of the above 
function, an auxiliary variable ( )1, ,w w wη = …  was added to 
the model with other constraints. Equations 13-15 indicate 
this issue.

(
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0          w wξ η− − ≤ ∀ ∈  (14)

0            w w wη ≥ ∀ ∈  (15)

3-2-4- Unpredictable Constraint   
Every scenario including one answer may be the same 

during the planning period, when the scenarios are the same. 
Afterwards, the values of the decision variables are equal at 
this step. In other words, this constraint is considered as a 
source to limit the decision variables associated with a node 
with the same values in different scenarios.

( )
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3-2-5- General Model of Multi-objective Optimization 
The multi-objective optimization model for the problem 

of the present study is expressed as equations 18- 29:
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Equation 18 represents a function of the overall 
objective and involves costs and risks. In this regard, costs 
are minimized by selecting among possible scenarios. In 
addition, purchasing from the instantaneous price markets 
and buying from bilateral contracts, as well as the amount 
of CVaR were included in the confidence level. The discrete 
cost distribution ( ) a CVaR−   is the expected cost of scenarios 
with higher costs, which  β  is a risk factor describing the way 
of thinking about the level of risk and is a number that strikes 
a balance between the mathematical expectation of cost and 
risk. In other words, it is a weighting factor that balances 
the expected costs of purchase and risk, and depends on 
consumer preferences. In addition, [ ] 0,10βò . A risk-averse 
consumer prefers to meet demand and reduce risk. Thus, he 
selects a larger amount of β  risk factors  to measure the 
risk. In addition, another consumer can take risks in reducing 
purchase costs. Thus, the selected value of the weighting 
factor tends to zero. Constraint 19 ensures that the required 
energy is provided in all periods and scenarios. Based on 
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constraint 20, the required demand should be equal or greater 
than five MW per hour. Constraint 21 determines the range of 
energy consumed by each contract in each period. Based on 
constraint 22, it is impossible to purchase energy outside the 
planning horizon of any contract. Constraint 23 determines the 
upper and lower limits for the energy consumption resulting 
from the contracts in each subset of periods. Constraints 24 
and 25, model the unpredictable constraints. Equations 26 
and 27 provide the constraints associated with calculating the 
conditional value at risk. Eq. 28 represents the nature of the 
decision variables in the model and Equation 29 represents 
the binary variable and determines whether contract c is 
selected in step w. If this happens, the variable will select a 
value of one; otherwise, it will select a value of zero.

In this article, a multi-objective mathematical model 
is proposed for the electricity market portfolio, required 
by the industrial Consumptions problem under uncertainty 
conditions. According to the article references such as [36]- 
[37]- [38], to solve the real-world problems the Genetic 
algorithm, the known meta-heuristic algorithms were applied.
3-3- Genetic Algorithm (GA)

Genetic algorithm is a common optimization tool for 
engineering problems, which was introduced by John Holland 
from the University of Michigan in 1975 [35]. Genetic 
algorithms are special types of evolutionary algorithms that 
utilize biological anabolic techniques such as inheritance 
and mutation. The genetic algorithms use the principles of 
Darwin’s natural selection to find the optimum formula for 
estimation or matching patterns. Genetic algorithms are 
programming techniques that make use of genetic evolution 
as a problem-solving scheme. The problem to be solved is 
the input and the solutions are coded per scheme, which is 
called the fitness function that evaluates every candidate. 
Two search operators are present in this algorithm: Crossover 
and Mutation. Mutation creates a neighborhood based on the 

offspring, while crossover selects two solutions as the parents 
and creates two offspring solutions by combining them, and 
thus, searching for the possibility space of the solution [35]. 
The algorithm performs the focus and variety phases of 
metaheuristics blindly in the solution space. The pseudocode 
of the genetic algorithm in which the mentioned steps are 
implemented, is in Figure 3.

In this case, the following chromosome is used to allocate 
energy to each source in Figure 4.

3-3-1- Operators
A genetic operator is an operator used in genetic algorithms 

to guide the algorithm towards a solution to a given problem. 
There are three main types of operators (mutation, crossover, 
and selection), which must work in conjunction together for 
the algorithm to be successful [35].

3-3-2- Adjust the Parameters of the Genetic Algorithm
Taguchi method is applied to select the best value of each 

required parameter in metaheuristic algorithms. This method 
was developed by Taguchi to select the best value of each 
parameter, instead of taking all possible experiments [35]. 
First, we set the parameters of the genetic algorithm, using 
the Taguchi method. The parameters of the genetic algorithm 
are as shown in Table 1.n 

Using the Taguchi method and its implementation in 
Minitab software, orthogonal L9 is suggested as shown in 
Table 2. 

The best values of each parameter of the problem are 
obtained according to the SN diagram for the GA (Figure 
5). The best value of each parameter in each problem is the 
parameter level with the highest SN value. For example, 0.7, 
0.4,50,50 are the best values for Pc, Pm, MaxIt, and nPop on 
the first test problem.

Generate random population. 
Calculate the fitness of each chromosome. 
X*=the best solution. 
While (t < maximum number of iterations) 
Select a pair of chromosomes as parents. 
Perform crossover and mutation to generate new chromosomes. 
Merge all the chromosomes and select the new population. 
Update the X* if there is a better solution. 
t=t+1 
End while 
Return X* 

 

Fig. 3. Pseudocode of the genetic algorithm. 

  

Fig. 3. Pseudocode of the genetic algorithm.
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Fig. 4. Images related to problem chromosomes

 
 

Fig. 4. Images related to problem chromosomes 
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4- RESULTS
3- 1- Implementing the model in the Iranian electricity 

market
To use this model and numerical studies in the Iranian 

electricity market, some real information was used from the 
historical prices in 2019. Instantaneous prices are found using 
the sets of { }1 , ,P P

Ntλ λ… and{ }1 , ,M M
Ntλ λ…  from energy prices in 

periods  1, , tt N= …  and M
tλ through a completely stochastic 

process based on the empirical probability distribution used 
in scenario analysis. Each scenario shows the occurrence of 
a specific group or a combination of prices for all planning 
horizons. Thus, { }1 , , ,   ÙP P

Ntw wλ λ… ∀ ò  represents a set of stochastic 
variables { }1 , ,P P

Ntλ λ…  and { }1 , ,M M
Ntλ λ… , where w indicates the 

scenario of scenarios, Ω shows the set of scenarios and 
represents the number of courses on the planning horizon. 
Each scenario has a probability of occurrence wπ , so that 
the sum of the probabilities of all scenarios equals one. Using 
the current data, 64 scenarios with a similar probability of 
occurrence were created for a summer planning horizon in 
the form of six subsets including half of each summer month. 
Instantaneous market prices are shown using a decision tree, 
in which each node is the start of two branches, and each 
branch equals the probable price for the analyzed period. 
Different price scenarios for all periods are achieved through 
the branch from origin. The number of scenarios that should 
be considered is a function of the number of periods for the 
energy supply planning horizon. In this model, eight bilateral 
contracts were considered so that two contracts were used for 
the whole period and one contract for each half of the month. 
The data relating to each period with the energy constraints 
and reference prices for each contract are shown in Table 1. 
The instantaneous prices of the market were displayed using a 

decision tree. For this purpose, two branches were taken from 
each node and each node equals the probable price for the 
analyzed period. Different price scenarios for all the periods 
were achieved through the branches of origin. The number of 
scenarios was a function of the number of planning horizons 
of the energy supply problem. In this model, the value of the 
parameter was considered 0.95, for which various values can 
be considered in the sensitivity analysis.

Fig. 6 displays the different amounts of energy purchase 
cost from energy pool and energy exchange related to 
summer 2019. Fig. 7 illustrates the different amounts of 
energy purchase costs from contracts during different time 
horizons. The data shown in Table 3 and Fig. 7 were used 
for conducting simulations and numerical calculations. In 
addition, MATLAB software and genetic algorithm were 
used for implementing the model and sensitivity analysis. 
The specifications of the components of the energy purchase 
portfolio were given in the previous section. It is assumed 
that this portfolio is only part of the electrical energy required 
by the large consumer. After implementing the model in 
MATLAB software, the collected data were applied in the 
model and the sensitivity value of β was analyzed in the 
interval[ ]0,10 . Table 4 shows the expected cost values (cost 
expectation), CVaR (risk expectation), an objective function 
for different β values.

As shown in Table 4, increasing the β value increases 
the risk aversion of decision-makers and energy supply 
costs while the amount of risk (risk expectation) decreases. 
In addition, a positive relationship was observed between 
increasing the β value and risk aversion. Fig. 8 shows the 
efficient frontier curve based on the expected energy costs 
versus CVaR risk levels for different β values.

Fig. 5. The SN diagram for the NBL-GA
 

 

Fig. 8- The SN diagram for the NBL-GA 
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Table 3. Energy supply contracts
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In this model, the value of the parameter 𝛼𝛼 was considered 0.95, for which various values can be considered 

in the sensitivity analysis. 

Table 3. Energy supply contracts 

𝑃𝑃𝐶𝐶
𝐶𝐶  𝑃𝑃𝐶𝐶

𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃𝐶𝐶
𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚  t C 

Rial Kwh Kwh day 
710 200 1000 1 - 93 1      whole period 750 500 1500 1 - 93 2 
660 200 1000 1 - 15 3 June 700 500 1500 16 - 31 4 
741 200 1000 32 - 46 5 July 780 300 1200 47 - 62 6 
728 200 1000 63 - 77 7 August 640 600 3000 78 - 93 8 

Fig. 6. Different amounts of energy purchase cost from the pool, stock market, and their average in different periods

 
Fig. (9): Different amounts of energy purchase cost from the pool, stock market, and their average in different periods 
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If the risk is ignored (β value is considered zero), the 
expected cost of energy purchase is calculated as 8.463 
million Rls. If the risk is considered, the expected cost value 
and the CVaR value face no changes for the values more than 

β=5. Thus, the expected cost becomes 8.863 million Rls by 
considering β = 5 that increases by 2.6. Instead, the amount 
of Cvar reduces by 6.8%.
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Fig. 7. Different amounts of energy purchase costs from contracts in different periods

 
Fig. (10): Different amounts of energy purchase 

costs from contracts in different periods 
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Table 4. Expected cost values, CVaR, and objective function for different β values

25 
 

Table 4: Expected cost values, CVaR, and objective function for different β values 
 

β Expected Cost  
(Million Rls) 

CVaR 
 (Million Rls)   

The objective function 
(Million Rls) 

0 8.46323024 9.45410458 8.46323024 
0.15 8.517935505 9.15732843 9.96653477 
0.25 8.638434252 8.86464308 10.844595 
0.5 8.675555119 8.81748028 13.0842953 
1.25 8.678465237 8.81503754 14.1742563 
2.5 8.678465237 8.81503754 14.1742563 
5 8.682616477 8.81174255 52.7413292 
8 8.682616477 8.81174255 52.7413292 
10 8.682616477 8.81174255 52.7413292 

 
As shown in Table 4, increasing the β value increases the risk aversion of decision-makers and energy 

supply costs while the amount of risk (risk expectation) decreases. In addition, a positive relationship was 

observed between increasing the β value and risk aversion. Fig. 11 shows the efficient frontier curve based 

on the expected energy costs versus CVaR risk levels for different β values. 

 
Fig. 11: Expected cost versus CVaR for different β values 
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Decisions to purchase electrical energy with higher 
levels of risk aversion and more participation in bilateral 
contracts are recommended in comparison to spot price 
markets and purchasing from the energy pool. Purchasing 
from bilateral contracts reduces the market price fluctuations. 
Such behavior can be observed in Figs. 9 -11 for different β 
values. In addition, the share of purchases from spot price 
markets, especially energy exchange, increases at a low 
level of risk aversion in purchasing portfolio. Although the 
purchase of energy through bilateral contracts has higher 
costs, it becomes a tool for covering effective risk due to its 

low volatility. As displayed in Fig. 9, when β is 0.15, a new 
scenario is created, because it is possible to reduce the CVaR 
by 3.2% and increase the cost by 0.64% in the expected cost. 
This special scenario is important for the decision-makers 
who are risk-averse and reluctant to control the risk, but tend 
to purchase a portfolio with a low level of risk coverage. In 
addition, it is significant for the decision-makers who are 
risk-averse and manage risk. The value of CVaR is critical 
based on the expected cost value. Based on Fig. 11 and Table 
4, the value of β = 5 was selected. The relationship between 
the risk cost and the expected cost is more stable when the 
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value of β increases. However, the value of the objective 
function increases by keeping a constant and similar level 
of relative risk  5β ≥ . Finally, the best answer for the cost of 
energy supply was proposed at β* = 5, that in β*, the cost 
from level β = 5 had a 2.5% increase in the expected cost and 
6.73% reduction in risk.

5- DISCUSSION AND CONCLUSION
This study presented an efficient approach based on 

stochastic planning for determining the electrical energy 
purchasing portfolio of the large consumer. The proposed 
approach can minimize the purchasing costs by considering a 
level of risk. The presented model is in the field of planning 
issues and proposing the portfolio of electric energy. It should 
be noted that previous studies mostly focused on the sales 
portfolio of electrical energy and there are few studies on 
how to purchase the optimal electrical energy portfolio from 
the consumer’s perspective. This study presented a practical 
model for large consumers in the Iranian electricity industry, 
including a set of bilateral contracts in risk-free futures 
markets and the use of two markets with instantaneous prices, 
including energy pool and energy exchange by considering 
the planning horizon to provide energy carriers. In addition, 

uncertainty in the instantaneous prices of the subscribers’ 
electrical energy market was considered in the decision-
making, considering that uncertainty expands the space of 
scenarios and complicates the decision-making process. 
The proposed model used the concept of CVaR to eliminate 
unfavorable scenarios in the costs of scenarios. Increasing 
the importance of risk in the problem reduces the risk, but 
increases the cost function. Furthermore, each scenario 
presents a different answer for energy supply. The energy 
supply framework reflects many situations in the real world. 
In this study, the real data of Iran were used. Purchasing 
energy from bilateral contracts is normally more expensive, 
while it reduces the risk of the transaction. Due to the lack of 
fluctuations, it is a kind of financial coverage to deal with the 
fluctuations related to the instantaneous prices of electrical 
energy. The maximum cost in the cost function is related 
to the factors with higher levels of risk aversion (higher β 
parameters). Thus, bilateral electrical energy purchasing 
contracts are selected before the planning horizon, even 
when the instantaneous price of markets is less than the 
reference price of bilateral contracts. Furthermore, the price 
of the energy pool fluctuates less in the instantaneous prices 
markets of electrical energy. In conditions β*, purchasing 

Fig. 8. Expected cost versus CVaR for different β values
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Fig. 9 Obtained results for β=0 values

  

A) The average of the objective function   for different 
repetitions of the algorithm 

 

B) Energy purchased at the first  
20 periods for a single scenario 

 

  

D) Objective function values for different repetitions of the 
algorithm 

 

C) Energy purchased in the first period for all 
scenarios 

 

Fig. 12: Obtained results for β=0 values                                          
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Fig. 10. Obtained results for β=0.25 values

  

A) The average of the objective function for different 
repetitions of the algorithm 

 

B) Energy purchased in the first 20 periods for a 
single scenario 

 

 

  

C) Objective function values for different repetitions of the 
algorithm 

 

D) Energy purchased in the first period for all 
scenarios 

Fig. 13: Obtained results for β=0.25 values 
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from energy exchange is a priority. In addition, purchasing 
from the energy pool and using bilateral contracts to cover 
the risk are the next priorities. In other words, a significant 
percentage of the consumer’s purchasing portfolio is allocated 
to energy exchange, and the rest of the portfolio is allocated 
to the energy pool, while preserving the priority and using 
bilateral contracts. The present study has useful information 
based on the presented results and has high accuracy. Thus, 
the financial and planning managers of industries having 

more than five MW per month are suggested to purchase 
the electrical energy purchasing portfolio from electricity 
markets by minimizing costs and reducing risk. Furthermore, 
it is suggested to use other models and methods and compare 
the results to allocate the optimal energy purchasing portfolio 
in the case of uncertainty. Using other approaches to deal with 
uncertainty such as robust optimization, fuzzy set theory, and 
interval planning is suggested for future studies.

Fig. 11. Obtained results for β = 5values

  

A) The average of the objective function for different 
repetitions of the algorithm 

 

B) Energy purchased in the first 20 periods for a 
single scenario 

 

  

C) Objective function values for different repetitions of the 
algorithm 

 

D) Energy purchased in the first period for all 
scenarios 

Fig. 14: Obtained results for β = 5values 
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