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ABSTRACT:  Decoupling the uplink and downlink user association improves the throughput of 
heterogeneous networks (HetNets) and balances the traffic load of macro- and small- base stations. 
Recently, fiber-wireless HetNets (FiWi-HetNets) have been considered as viable solutions for access 
networks. To improve the accuracy of user association and resource allocation algorithms in FiWi-
HetNets, the capacity limitation of various backhaul technologies must be considered. In this paper, 
we investigate the backhaul-aware decoupled uplink/downlink (UL/DL) user association, subcarrier 
allocation, and power control optimization problem in FiWi-HetNets. In our system model, fiber and 
millimeter wave (mmWave) links are used as backhaul of base stations, and the backhaul capacity 
limitation and minimum required transmission rate (R_min) are modeled in the optimization problem. 
As the formulated optimization problem is non-convex, we present a heuristic algorithm to divide the 
main problem into two sub-problems that are solved iteratively. The proposed algorithms are evaluated 
through exhaustive simulations. The results indicate that decoupling UL/DL user association improves 
the sum rate of FiWi-HetNets. Besides, we evaluate the effect of backhaul capacity limitation and R_min 
on the sum rate of FiWi-HetNets. The effect of upgrading fiber backhaul technology is also investigated 
to evaluate the role of fiber backhaul on the sum rate of the radio access network.
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1- Introduction
The emergence of new technologies such as tactile Internet 

and virtual reality [1] have exacerbated the ever-increasing 
demand for higher Quality of Service (QoS) transmission in 
access and core networks. International Telecommunication 
Union (ITU) has defined the IMT-2020 to specify the main 
requirements of fifth-generation (5G) radio access networks 
(RANs) [2, 3]. In November 2016, Full Service Access Network 
(FSAN) organization1  has released the standardization 
roadmap of optical fiber access networks specifying the 
time-line and main features of the so-called passive optical 
network (PON) architecture [4, 5]. In the FSAN roadmap, 
industry trends such as Software Defined Networking (SDN), 
Network Function Visualization (NFV), 5G, and Internet of 
Things (IoT) have been taken into account, which highlights 
the convergence of radio and fiber technologies in the next 
generation Broadband Access Networks (BANs). Recently, 
Fiber-Wireless (FiWi) heterogeneous networks (FiWi-
HetNets) have been introduced to integrate RAN and PON 
technologies and realize efficient and ultra-fast BANs [6-9]. 
For instance, [10] proposed a mobile cloud computing model 

1  FSAN is a forum through which telecom operators, equipment 
manufacturers, and chip vendors can collaborate to promote the development 
of fiber-optic access networks standards recommended by ITU.

empowered FiWi enhanced LTE-A HetNets architecture. The 
authors in [11] designed an energy-efficient FiWi network 
based on wireless sensor networks.

In 5G RAN, the densification technique, i.e., ultra-dense 
deployment of small base stations (SBSs) besides macro 
base stations (MBSs), has been proposed to improve the 
spectral efficiency of BANs [12]. Although densification 
improves aerial transmission capacity, however, it raises the 
so-called backhauling bottleneck [13, 14]. In heterogeneous 
RANs, referred to as HetNets, SBSs are connected to the 
core network through MBSs or gateway. The link between 
SBSs and either MBS or gateway is referred to as backhaul 
or fronthaul link2. Optical fiber, free-space optic link, radio 
frequency wireless link, twisted-pair wire, or coaxial cable can 
be used as backhaul (BH) link in HetNets [15, 16]. It has been 
shown that the capacity limitation of backhaul affects the QoS 
features of mobile users [7], thus, backhaul-aware resource 
allocation in FiWi-HetNets is of paramount importance.

Recently the concept of decoupling uplink (UL) and 

2  It should be noted that in the terminology of cloud-radio access network 
(C-RAN) the word fronthaul indicates the link between remote radio head 
(RRH) and baseband unit (BBU), while the term backhaul means the 
backbone infrastructure connecting BBUs to the core network. However, in 
this study, we use the term backhaul to indicate either fiber links between 
small base station and central office or wireless links between small base 
station and macro base station.
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downlink (DL) user association has been introduced in 
HetNets to achieve higher throughput and load balancing 
[17]. The performance improvement obtained with UL/
DL decoupling is due to the fact that HetNets are more 
disperse in transmit power of nodes. Therefore, analyzing the 
decoupling gain in resource allocation and user association 
problems in FiWi-HetNets, while taking into account the QoS 
requirements of each user as well as considering the limitation 
of backhaul capacity is of great importance, which has not 
been investigated in previous studies. Thus, in this paper, we 
are motivated to investigate this problem and propose new 
algorithms to solve it. 

1-1- Related Work
The authors in [18] investigated the distribution of signal-

to-interference-plus-noise ratio (SINR) and rate formula for 
the UL of a k-tier heterogeneous network using the stochastic 
geometry analysis. They showed that decoupling UL and DL 
associations result in increasing the rate coverage. In [19], 
the probability distribution functions of SINR and spectral 
efficiency in the DL of a HetNet were derived, and the concept 
of cell biasing was introduced to tackle the congestion of users 
in macrocells. By employing the stochastic geometry analysis, 
the authors in [20] solved user association problems with 
either maximum biased received signal power or maximum 
achievable rate criteria in the DL and UL association 
procedure of a 2-tier HetNet. In addition, the authors 
studied the UL/DL decoupling, but without considering the 
backhaul capacity constraint and QoS requirements. In [21], 
the UL performance of HetNets in terms of achievable rate 
and spectral efficiency has been analytically evaluated using 
stochastic geometry. None of the aforementioned prior 
studies take into account the backhaul capacity limitation and 
QoS requirements.

By leveraging the concept of convex optimization, the 
authors in [22] investigated the optimization problem of 
decoupled UL/DL association with the objective of sum-
rate maximization. In [23], the user association and resource 
allocation problem in DL of a 3-tier HetNet has been studied 

by maximizing the network utility function. Nevertheless, the 
backhaul capacity limitation and users’ QoS requirements 
have not been considered in [22, 23]. The problem of DL user 
association and power control with the aim of load balancing 
by considering both the backhaul capacity limitation and 
users’ QoS requirements has been studied in [24]. However, 
the authors did not solve the problem for UL transmission, 
and the UL/DL decoupling gain has not been investigated. 
Moreover, in [7], a backhaul-aware user association scheme for 
FiWi-LTE networks has been introduced for DL transmission 
without considering the QoS rate constraint.

On the other side, a large number of papers investigate 
the problem of resource allocation and power control in 
HetNets. Here, we only introduce the most relevant papers. 
The authors in [25] solved the problem of joint sub-channel 
assignment and power control in the UL of a HetNet, and 
the difference of convex (concave) approach has been used 
to find the sub-optimal solutions. In [26] and [27], by using 
the arithmetic geometric mean approximation (AGMA) the 
non-convex power allocation problem has been transformed 
into geometric programming (GP), and [27] considered the 
QoS requirements of the macro cell users in the proposed 
optimization problem. Table 1 shows a comparison of the 
most relevant recent studies.

1-2- Contributions and Organization
The main contribution of this paper is summarized as 

follows:
• To the best of our knowledge the optimization problem 

of resource block (RB) assignment, power control, and 
decoupled UL/DL user association in FiWi-HetNets has 
not been addressed so far. In particular, we formulate the 
optimization problem of backhaul-aware decoupled UL/DL 
user association, and joint RB assignment and power control 
in both UL and DL of a FiWi-HetNet by satisfying the users’ 
QoS requirements. 

• An efficient algorithm is presented to solve the introduced 
problem. Since the formulated problem is non-convex and 
non-tractable, we relax the integer association variables and 

Table 1. Comparing the most related studies (OP: Optimization Problem, SG: Stochastic Geometry). 

  ✓ ✓ ✓

  ✓  ✓

  ✓  ✓

✓ ✓   ✓

   ✓ ✓

 

  

Table 1. Comparing the most related studies (OP: Optimization Problem, SG: Stochastic Geometry).
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separate the main problem into two sub-problems: i) decoupled 
UL/DL user association and RB assignment, and ii) UL and 
DL power control. The association problem is transformed 
into linear programming. To solve the second problem, we 
propose to use AGMA and geometric programming approach 
to find the sub-optimal solutions iteratively. 

• Finally, we evaluate the proposed optimization problems 
and indicate that decoupling UL/DL association leads to 
higher throughput. We also show that by limiting the backhaul 
capacity of FiWi-HetNets, the QoS satisfaction of end-users is 
violated. In addition, we consider different variants of PON 
standards to evaluate the effect of the transmission rate of 
fiber backhaul in the aggregate throughput of FiWi-HetNets. 
We show that in low splitting ratios of PON technologies, the 
backhaul capacity of MBS is higher than its capacity at the air 
interface, and as a result upgrading PON technology does not 
impact its performance. 

The rest of the paper is organized as follows. In Section 
2, we present our system model. In Section 3, we formulate 
the optimization problem of user association, spectrum 
assignment, and power control in FiWi-HetNet. Then, in 
Section 4, we present the proposed algorithms to solve the 
non-convex problem formulated in the former section. In 
Section 5, numerical results are presented to evaluate the 
proposed algorithms and study the UL/DL decoupling gain 
in FiWi-HetNets. Finally, the paper is concluded in Section 6.

2- System Model
2-1- Network Architecture

In this paper, we consider FiWi-HetNet architecture 
that is the integration of radio access and fiber-optic access 
technologies, as depicted in Fig. 1.2. We employ PON 
architecture as a fiber access infrastructure to provide backhaul 
links for MBSs. This architecture has been standardized as 
a promising technology to realize fiber-to-the-x (FTTx) 
deployments, where the x stands for a home, building, 
neighborhood, or curb [6]. The main components of a PON 
are the optical line terminal (OLT), passive power splitter, 

and optical network units (ONUs). Generally, a PON has a 
tree-and-branch topology, in which the OLT and ONUs serve 
as the root and leave nodes, respectively. The OLT is located 
at the central office (CO) and performs resource allocation 
among ONUs, and ONUs reside at subscriber premises. In 
our model, the MBS is connected to an ONU serving a single 
PON subscriber.

In PON architecture, ONU is used in FTTB and FTTC 
deployments, whereas Optical Network Termination (ONT) 
is used for the case of FTTH. In general, ONU and ONT have 
the same networking functionality, however, ONU has more 
interfaces to support a number of subscribers, and ONT is a 
simple modem providing an Internet connection for only one 
subscriber.

Two families of standards have been recommended for 
PON by ITU and the Institute of Electrical and Electronics 
Engineers (IEEE) [5]. The Gigabit PON (GPON) and Ethernet 
PON (EPON) are the most popular PON technologies 
standardized by ITU and IEEE, respectively [28]. In this paper, 
we focus on the GPON and its newest variants. The GPON’s 
requirements were defined by FSAN organization which was 
ratified by ITU and published as recommendation G.984 
[29]. In the GPON standard, two separate wavelengths are 
allocated for UL and DL transmission, and in each wavelength 
time division multiple access (TDMA) technique is used to 
transmit data of multiple users, where the transmission rates 
in DL and UL are 2.5 Gbps and 1.25 Gbps, respectively. The 10 
Gigabit-class variants of GPON, referred to as XG-PON and 
XGS-PON, have been defined by ITU in recommendations 
G.987.2 and G.9807.1, respectively [30]. The multiplexing 
technique of XG-PON and XGS-PON is the same as GPON, 
and the DL/UL transmission rates of XG-PON and XGS-PON 
are 10 Gbps/2.5 Gbps and 10 Gbps/10 Gbps, respectively.

Recently, ITU has published recommendation G.989 [31] 
to specify the second phase of the next-generation GPON, the 
so-called Next-Generation Passive Optical Network 2 (NG-
PON2). In NG-PON2, multiple subscribers are served by 
utilizing hybrid time and wavelength division multiplexing 

 

Fig.  1. Fi-Wi network architecture and system model. 

  

Fig.  1. Fi-Wi network architecture and system model.
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(WDM), where four wavelengths are utilized for DL, and in 
each wavelength 10 Gbps maximum peak rate is provided, 
thus, its total DL transmission rate is 40 Gbps [28]. In NG-
PON2, two modes of 40 Gbps and 10 Gbps have been defined 
for UL transmission. In NG-PON2, in addition to the point-
to-multi-point (P2MP) operation mode, the point-to-point 
(P2P) operation has been defined, which allocates the total 
bandwidth of a wavelength to a subscriber. The P2P mode is 
desirable for FiWi-HetNets to provide guaranteed bandwidth 
as a backhaul link of either MBSs or SBSs. In this study, we 
evaluate the effect of upgrading PON technology employed 
as the optical networking infrastructure of FiWi-HetNets by 
considering migration from GPON to NG-PON2.

In the RAN part of FiWi-HetNets, we consider a two-
tier wireless network containing macro and small cells, in 
which the MBS has fiber backhaul interconnected to ONUs 
of PON, and SBSs are connected to MBS via mmWave 
backhaul. Although, SBSs can be connected to the core 
network via fiber backhaul, in this paper, without loss of 
generality of formulations and optimization framework, we 
consider only wireless backhauling for SBSs. Furthermore, 
we assume that MBSs and SBSs employ orthogonal frequency 
division multiple access (OFDMA) technique to share their 
bandwidth among served users, where frequency division 
duplexing (FDD) is used to transmit UL and DL signals. We 
denote the total UL and DL bandwidth of each base station 
(BS) by BW_UL and BW_DL, respectively.

The network architecture is indicated in Fig. 1. We assume 
two scenarios for users association: 1) UL/DL decoupled in 
which the user equipment (UE) is associated with different 
BSs (MBS or SBS) in UL and DL, and 2) UL/DL coupled 
association, which means that each UE is connected to the 
same BS in UL and DL. In the next section, the association 
problem is formulated in an optimization problem, and UEs 
are allowed to be associated either coupled or decoupled with 
the objective of rate maximization. 

2-2- Backhaul Capacity Limitation
In what follows, we formulate the capacity of fiber and 

mmWave backhauls to model the backhaul capacity constraint 
in our optimization problem presented in the next section.

Fiber Backhaul Capacity: We inspire the capacity analysis 
presented in [32] to obtain the fiber backhaul capacity in 
different PON technologies. In TDMA based PON ( Ë 1= ) 
and WDM based PON ( Ë 1> ) technologies, the transmission 
rates allocated to i ’th ONU in DL and UL transmission, 

i

DL
ONUC  and 

i

UL
ONUC , for fixed bandwidth allocation method are 

obtained as follows 

,
Ëi

DL
DL PON
ONU

k

cC
O

=

�

(1)

,
Ëi

UL
UL PON
ONU

k

cC
O

= � (2)

where Ë  is the number of wavelengths used in PON, DL
PONc  

and UL
PONc  denote the PON data rate (in bits/s) in DL and UL 

transmission, respectively, kO  indicates the number of ONUs 

served by OLT in k th wavelength. By calculating 
i

DL
ONUC  and 

i

UL
ONUC , the backhaul capacity of the MBS connected to i ’th 

ONU is obtained.
mmWave Backhaul Capacity: We consider the achievable 

rate of mmWave wireless link between SBS and MBS to 
compute the capacity of mmWave backhaul, thus we have [33]

( )mmWave mmWave ,BW log 1 SINR ,
s

UL UL UL
s bC = +

�
(3)

( )mmWave mmWave ,BW log 1 SINR ,
s

DL DL DL
s bC = +

�
(4)

 where 
mmWaves

ULC  (
mmWaves

DLC ), mmWaveBWUL  ( mmWaveBWDL ), and 

,SINRUL
s b

 ( ,SINR DL
s b ) are respectively the mmWave backhaul 

capacity of s ’th SBS, the bandwidth of mmWave backhaul 
link, and the SINR of wireless link between s ’th SBS and 
MBS b  in UL (DL) transmission.

2-3-Notations
 In this paper, we assume that each BS (MBS or SBS), 

UE, and Resource Block (RB) are indexed with b , m , and 
n , respectively. In addition, we assume that UL and DL 

bandwidths, BW  UL  and BW  DL , are divided into a number 

of equal size RBs (with bandwidth of BW  RB ). Table 2 shows 
the notations used in our paper.

2-4- Channel Model and SINR

Let 2| |n
bmh  denote the channel gain between b ’th BS ( bBS

) and m ’th UE ( mUE ) in n ’th RB ( nRB ). This channel gain 
includes path loss and shadowing (large scale and small scale 
fading). The path loss model depends on the distance between 

bBS  and mUE  ( bmD ) and path loss exponent γ . If we denote 
n
bmS  to present the shadowing effect, then 2| |n n

bm bm bmS D hγ−× = . In 
this study we set 3γ = .

We assume that noise and signal of UEs are mutually 
statistically independent. In addition, the signals of interfering 
UEs and the signal of desired UE are also independent. Thus, 
SINR of mUE  in DL and UL transmission in nRB  are obtained 
as [25, 27]

�

(5)

𝑃𝑃𝐷𝐷𝐿𝐿𝑏𝑏
𝑚𝑚𝑚𝑚𝑚𝑚 Maximum transmit power of BS 𝑏𝑏 𝑃𝑃𝑈𝑈𝐿𝐿𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚 Maximum transmit power of UE 𝑚𝑚 

𝐶𝐶𝑏𝑏
𝐷𝐷𝐷𝐷 Capacity of BS 𝑏𝑏 in DL mode 𝐶𝐶𝑏𝑏

𝑈𝑈𝑈𝑈 Capacity of BS 𝑏𝑏 in UL mode 

𝜆𝜆 Regulation parameter 𝐴𝐴 A positive large number 

BW𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷𝐷𝐷  mmWave DL bandwidth BW𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑈𝑈𝑈𝑈  mmWave UL bandwidth 

𝐶𝐶𝑂𝑂𝑂𝑂𝑈𝑈𝑖𝑖
𝐷𝐷𝐷𝐷,𝑈𝑈𝑈𝑈 Capacity of ONU 𝑖𝑖 in DL (UL) 𝒰𝒰 Set of UEs 

Λ Number of wavelengths 𝑂𝑂 Number of ONUs served by OLT 

𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃
𝐷𝐷𝐷𝐷  PON data rate in DL 𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃

𝑈𝑈𝑈𝑈  PON data rate in UL 

𝑆𝑆𝑏𝑏𝑏𝑏
𝑛𝑛  

Shadowing effect between 𝑈𝑈𝐸𝐸𝑚𝑚 and 𝐵𝐵𝑆𝑆𝑏𝑏 in 
𝑅𝑅𝐵𝐵𝑛𝑛 

ℛ Set of resource blocks 

 

2-4- Channel Model and SINR 

Let |ℎ𝑏𝑏𝑏𝑏
𝑛𝑛 |2 denote the channel gain between 𝑏𝑏’th BS (𝐵𝐵𝑆𝑆𝑏𝑏) and 𝑚𝑚’th UE (𝑈𝑈𝐸𝐸𝑚𝑚) in 𝑛𝑛’th RB (𝑅𝑅𝐵𝐵𝑛𝑛). This 

channel gain includes path loss and shadowing (large scale and small scale fading). The path loss model 

depends on the distance between 𝐵𝐵𝑆𝑆𝑏𝑏 and 𝑈𝑈𝐸𝐸𝑚𝑚 (𝐷𝐷𝑏𝑏𝑏𝑏) and path loss exponent 𝛾𝛾. If we denote 𝑆𝑆𝑏𝑏𝑏𝑏
𝑛𝑛  to present 

the shadowing effect, then 𝑆𝑆𝑏𝑏𝑏𝑏
𝑛𝑛 × 𝐷𝐷𝑏𝑏𝑏𝑏

−𝛾𝛾 = |ℎ𝑏𝑏𝑏𝑏
𝑛𝑛 |2. In this study we set 𝛾𝛾 = 3. 

We assume that noise and signal of UEs are mutually statistically independent. In addition, the signals of 

interfering UEs and the signal of desired UE are also independent. Thus, SINR of 𝑈𝑈𝐸𝐸𝑚𝑚 in DL and UL 

transmission in 𝑅𝑅𝐵𝐵𝑛𝑛 are obtained as [25, 27] 

 SINR𝑏𝑏𝑏𝑏𝑏𝑏
𝐷𝐷𝐷𝐷 = 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏𝑏𝑏
𝑛𝑛 |2

∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐿𝐿 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2+𝜎𝜎2        (5) 

 SINR𝑏𝑏𝑏𝑏𝑏𝑏
𝑈𝑈𝑈𝑈 = 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏
𝑛𝑛 |2

∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑚𝑚′

𝑛𝑛 |2+𝜎𝜎2        (6) 

where 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏
𝐷𝐷𝐷𝐷  (or 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏

𝑈𝑈𝑈𝑈 ) is the transmit power of 𝐵𝐵𝑆𝑆𝑏𝑏 (or 𝑈𝑈𝐸𝐸𝑚𝑚) in RB 𝑛𝑛. The achievable rate of each UE in 

nats/s/Hz in RB 𝑛𝑛 at UL and DL, 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏
𝑈𝑈𝑈𝑈  and 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝐷𝐷𝐷𝐷 , are given by  
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� (6)

where DL
bmnp  (or UL

bmnp ) is the transmit power of bBS  (or 

mUE ) in RB n . The achievable rate of each UE in nats/s/Hz 

in RB n  at UL and DL, UL
bmnR  and DL

bmnR , are given by 

( )log 1 SINR ,UL UL
bmn bmnR = +

�
(7)

( )log 1 SINR .DL DL
bmn bmnR = +

�
(8)

3- Problem Formulation
In this section, we formulate the optimization problem 

of decoupled UL and DL user association, RB allocation, and 
power control of BSs and UEs, which is henceforth referred 
to as Decoupled Resource Allocation Problem (DRAP). The 
objective of the problem is sum-rate maximization, and we 
consider the backhaul capacity limitation and minimum 
required transmission rate of UEs as QoS requirements. The 
DRAP is formulated as follows
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Table 2. Notations used in this paper. 

|ℎ𝑏𝑏𝑏𝑏𝑛𝑛 |2 𝑚𝑚 𝑏𝑏 𝑛𝑛 𝐷𝐷𝑏𝑏𝑏𝑏 𝑏𝑏 𝑚𝑚

𝑥𝑥𝑏𝑏𝑏𝑏𝑛𝑛 𝑦𝑦𝑏𝑏𝑏𝑏𝑛𝑛

𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏
𝐷𝐷𝐷𝐷 𝑏𝑏 𝑚𝑚 𝑛𝑛 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏

𝑈𝑈𝑈𝑈 𝑚𝑚 𝑏𝑏 𝑛𝑛

ℬ 𝜎𝜎2

𝑅𝑅𝑚𝑚𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 𝑚𝑚 𝑅𝑅𝑚𝑚𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 𝑚𝑚

𝑃𝑃𝐷𝐷𝐿𝐿𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏 𝑃𝑃𝑈𝑈𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚

𝐶𝐶𝑏𝑏𝐷𝐷𝐷𝐷 𝑏𝑏 𝐶𝐶𝑏𝑏𝑈𝑈𝑈𝑈 𝑏𝑏

𝜆𝜆 𝐴𝐴

BW𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷𝐷𝐷 BW𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑈𝑈𝑈𝑈

𝐶𝐶𝑂𝑂𝑂𝑂𝑈𝑈𝑖𝑖
𝐷𝐷𝐷𝐷,𝑈𝑈𝑈𝑈 𝑖𝑖 𝒰𝒰

Λ 𝑂𝑂

𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷 𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈

𝑆𝑆𝑏𝑏𝑏𝑏𝑛𝑛 𝑈𝑈𝐸𝐸𝑚𝑚 𝐵𝐵𝑆𝑆𝑏𝑏 𝑅𝑅𝐵𝐵𝑛𝑛 ℛ

 

  

Table 2. Notations used in this paper.

𝑃𝑃𝐷𝐷𝐿𝐿𝑏𝑏
𝑚𝑚𝑚𝑚𝑚𝑚 Maximum transmit power of BS 𝑏𝑏 𝑃𝑃𝑈𝑈𝐿𝐿𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚 Maximum transmit power of UE 𝑚𝑚 

𝐶𝐶𝑏𝑏
𝐷𝐷𝐷𝐷 Capacity of BS 𝑏𝑏 in DL mode 𝐶𝐶𝑏𝑏

𝑈𝑈𝑈𝑈 Capacity of BS 𝑏𝑏 in UL mode 

𝜆𝜆 Regulation parameter 𝐴𝐴 A positive large number 

BW𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷𝐷𝐷  mmWave DL bandwidth BW𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑈𝑈𝑈𝑈  mmWave UL bandwidth 

𝐶𝐶𝑂𝑂𝑂𝑂𝑈𝑈𝑖𝑖
𝐷𝐷𝐷𝐷,𝑈𝑈𝑈𝑈 Capacity of ONU 𝑖𝑖 in DL (UL) 𝒰𝒰 Set of UEs 

Λ Number of wavelengths 𝑂𝑂 Number of ONUs served by OLT 

𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃
𝐷𝐷𝐷𝐷  PON data rate in DL 𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃

𝑈𝑈𝑈𝑈  PON data rate in UL 

𝑆𝑆𝑏𝑏𝑏𝑏
𝑛𝑛  

Shadowing effect between 𝑈𝑈𝐸𝐸𝑚𝑚 and 𝐵𝐵𝑆𝑆𝑏𝑏 in 
𝑅𝑅𝐵𝐵𝑛𝑛 

ℛ Set of resource blocks 

 

2-4- Channel Model and SINR 

Let |ℎ𝑏𝑏𝑏𝑏
𝑛𝑛 |2 denote the channel gain between 𝑏𝑏’th BS (𝐵𝐵𝑆𝑆𝑏𝑏) and 𝑚𝑚’th UE (𝑈𝑈𝐸𝐸𝑚𝑚) in 𝑛𝑛’th RB (𝑅𝑅𝐵𝐵𝑛𝑛). This 

channel gain includes path loss and shadowing (large scale and small scale fading). The path loss model 

depends on the distance between 𝐵𝐵𝑆𝑆𝑏𝑏 and 𝑈𝑈𝐸𝐸𝑚𝑚 (𝐷𝐷𝑏𝑏𝑏𝑏) and path loss exponent 𝛾𝛾. If we denote 𝑆𝑆𝑏𝑏𝑏𝑏
𝑛𝑛  to present 

the shadowing effect, then 𝑆𝑆𝑏𝑏𝑏𝑏
𝑛𝑛 × 𝐷𝐷𝑏𝑏𝑏𝑏

−𝛾𝛾 = |ℎ𝑏𝑏𝑏𝑏
𝑛𝑛 |2. In this study we set 𝛾𝛾 = 3. 

We assume that noise and signal of UEs are mutually statistically independent. In addition, the signals of 

interfering UEs and the signal of desired UE are also independent. Thus, SINR of 𝑈𝑈𝐸𝐸𝑚𝑚 in DL and UL 

transmission in 𝑅𝑅𝐵𝐵𝑛𝑛 are obtained as [25, 27] 

 SINR𝑏𝑏𝑏𝑏𝑏𝑏
𝐷𝐷𝐷𝐷 = 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏𝑏𝑏
𝑛𝑛 |2

∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐿𝐿 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2+𝜎𝜎2        (5) 

 SINR𝑏𝑏𝑏𝑏𝑏𝑏
𝑈𝑈𝑈𝑈 = 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏
𝑛𝑛 |2

∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑚𝑚′

𝑛𝑛 |2+𝜎𝜎2        (6) 

where 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏
𝐷𝐷𝐷𝐷  (or 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏

𝑈𝑈𝑈𝑈 ) is the transmit power of 𝐵𝐵𝑆𝑆𝑏𝑏 (or 𝑈𝑈𝐸𝐸𝑚𝑚) in RB 𝑛𝑛. The achievable rate of each UE in 

nats/s/Hz in RB 𝑛𝑛 at UL and DL, 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏
𝑈𝑈𝑈𝑈  and 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝐷𝐷𝐷𝐷 , are given by  

 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏
𝑈𝑈𝑈𝑈 = log(1 + SINR𝑏𝑏𝑏𝑏𝑏𝑏

𝑈𝑈𝑈𝑈 ),        (7) 

 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏
𝐷𝐷𝐷𝐷 = log(1 + SINR𝑏𝑏𝑏𝑏𝑏𝑏

𝐷𝐷𝐿𝐿 ).        (8) 

3- Problem Formulation 

In this section, we formulate the optimization problem of decoupled UL and DL user association, RB 

allocation, and power control of BSs and UEs, which is henceforth referred to as Decoupled Resource 

Allocation Problem (DRAP). The objective of the problem is sum-rate maximization, and we consider the 

backhaul capacity limitation and minimum required transmission rate of UEs as QoS requirements. The 

DRAP is formulated as follows 

 𝐏𝐏𝐏𝐏: max
𝒙𝒙,𝒚𝒚,𝒑𝒑𝑫𝑫𝑫𝑫,𝒑𝒑𝑼𝑼𝑼𝑼

∑𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝐷𝐷𝐷𝐷 + 𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝑈𝑈𝑈𝑈 )     (9) 

   𝐬𝐬. 𝐭𝐭.    ∑𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝐷𝐷𝐷𝐷 ) ≥ 𝑅𝑅𝑚𝑚
𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 ,    𝑚𝑚 ∈ 𝒰𝒰,      (10) 

 ∑𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝑈𝑈𝑈𝑈 ) ≥ 𝑅𝑅𝑚𝑚
𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 ,    𝑚𝑚 ∈ 𝒰𝒰,      (11) 

 ∑𝑏𝑏∈ℬ,𝑛𝑛∈ℛ 𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 = 1,    𝑚𝑚 ∈ 𝒰𝒰,        (12) 

 ∑𝑏𝑏∈ℬ,𝑛𝑛∈ℛ 𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 = 1,    𝑚𝑚 ∈ 𝒰𝒰,        (13) 

 ∑𝑚𝑚∈𝒰𝒰 𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 1,    𝑏𝑏 ∈ ℬ, 𝑛𝑛 ∈ ℛ,        (14) 

 ∑𝑚𝑚∈𝒰𝒰 𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 1,    𝑏𝑏 ∈ ℬ, 𝑛𝑛 ∈ ℛ,        (15) 

 ∑𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝐷𝐷𝐷𝐷 ) ≤ 𝐶𝐶𝑏𝑏
𝐷𝐷𝐷𝐷,    𝑏𝑏 ∈ ℬ,       (16) 

 ∑𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝑈𝑈𝑈𝑈 ) ≤ 𝐶𝐶𝑏𝑏
𝑈𝑈𝑈𝑈,    𝑏𝑏 ∈ ℬ,       (17) 

 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏
𝐷𝐷𝐷𝐷 ≤ 𝑃𝑃𝐷𝐷𝐿𝐿𝑏𝑏

𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ,    𝑏𝑏 ∈ ℬ, 𝑚𝑚 ∈ 𝒰𝒰, 𝑛𝑛 ∈ ℛ,      (18) 

 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏
𝑈𝑈𝑈𝑈 ≤ 𝑃𝑃𝑈𝑈𝐿𝐿𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ,    𝑏𝑏 ∈ ℬ, 𝑚𝑚 ∈ 𝒰𝒰, 𝑛𝑛 ∈ ℛ,      (19) 

 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏
𝑈𝑈𝑈𝑈 = log(1 + SINR𝑏𝑏𝑏𝑏𝑏𝑏

𝑈𝑈𝑈𝑈 ),        (7) 

 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏
𝐷𝐷𝐷𝐷 = log(1 + SINR𝑏𝑏𝑏𝑏𝑏𝑏

𝐷𝐷𝐿𝐿 ).        (8) 

3- Problem Formulation 

In this section, we formulate the optimization problem of decoupled UL and DL user association, RB 

allocation, and power control of BSs and UEs, which is henceforth referred to as Decoupled Resource 

Allocation Problem (DRAP). The objective of the problem is sum-rate maximization, and we consider the 

backhaul capacity limitation and minimum required transmission rate of UEs as QoS requirements. The 

DRAP is formulated as follows 

 𝐏𝐏𝐏𝐏: max
𝒙𝒙,𝒚𝒚,𝒑𝒑𝑫𝑫𝑫𝑫,𝒑𝒑𝑼𝑼𝑼𝑼

∑𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝐷𝐷𝐷𝐷 + 𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝑈𝑈𝑈𝑈 )     (9) 

   𝐬𝐬. 𝐭𝐭.    ∑𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝐷𝐷𝐷𝐷 ) ≥ 𝑅𝑅𝑚𝑚
𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 ,    𝑚𝑚 ∈ 𝒰𝒰,      (10) 

 ∑𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝑈𝑈𝑈𝑈 ) ≥ 𝑅𝑅𝑚𝑚
𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 ,    𝑚𝑚 ∈ 𝒰𝒰,      (11) 

 ∑𝑏𝑏∈ℬ,𝑛𝑛∈ℛ 𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 = 1,    𝑚𝑚 ∈ 𝒰𝒰,        (12) 

 ∑𝑏𝑏∈ℬ,𝑛𝑛∈ℛ 𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 = 1,    𝑚𝑚 ∈ 𝒰𝒰,        (13) 

 ∑𝑚𝑚∈𝒰𝒰 𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 1,    𝑏𝑏 ∈ ℬ, 𝑛𝑛 ∈ ℛ,        (14) 

 ∑𝑚𝑚∈𝒰𝒰 𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 1,    𝑏𝑏 ∈ ℬ, 𝑛𝑛 ∈ ℛ,        (15) 

 ∑𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝐷𝐷𝐷𝐷 ) ≤ 𝐶𝐶𝑏𝑏
𝐷𝐷𝐷𝐷,    𝑏𝑏 ∈ ℬ,       (16) 

 ∑𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝑈𝑈𝑈𝑈 ) ≤ 𝐶𝐶𝑏𝑏
𝑈𝑈𝑈𝑈,    𝑏𝑏 ∈ ℬ,       (17) 

 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏
𝐷𝐷𝐷𝐷 ≤ 𝑃𝑃𝐷𝐷𝐿𝐿𝑏𝑏

𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ,    𝑏𝑏 ∈ ℬ, 𝑚𝑚 ∈ 𝒰𝒰, 𝑛𝑛 ∈ ℛ,      (18) 

 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏
𝑈𝑈𝑈𝑈 ≤ 𝑃𝑃𝑈𝑈𝐿𝐿𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ,    𝑏𝑏 ∈ ℬ, 𝑚𝑚 ∈ 𝒰𝒰, 𝑛𝑛 ∈ ℛ,      (19) 
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,    , , ,
b

DL max n
bmn DL bmp P x b m n≤ ∈ ∈ ∈   � (18)

,    , , ,
m
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where (9) is the objective of DRAP maximizing the sum-
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bmy , DL
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bmnp  (for , ,b m n∈ ∈ ∈  
), respectively. Constraints (10) and (11) assure the DL and 
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It is worth mentioning that problem P1 is a class of 

Mixed-Integer Nonlinear Programming (MINLP) that 
jointly investigates user association, RB allocation, and power 
control problem in both UL and DL. As P1 is MINLP, and 
hence, non-convex, obtaining its solution is quite challenging 
and intractable. Thus, in the next section, we will propose an 
algorithm to solve it sup-optimally. It should be noted that as 
the variables and constraints of DL and UL do not relate to 
each other, we can separate P1 into two sub-problems, one 
for UL (P1.1) and another for DL (P1.2) user association 
and resource allocation. The sub-problems P1.1 and P1.2 are 
given by 
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It should be noted that P3.1 is obtained by considering 
constant values for transmit power of devices in P2 or P1, 
where for P1 we must remove constraint (13) in P3.1. Thus, 
the problem P3.1 finds only the association variables for fixed 
values of transmit powers. In addition, since we have relaxed 
the binary association variables in (28), we added a regulation 
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and P2. In the first step, we solve the user association (UA) sub-problem by considering fixed values for 

data transmission powers to find the association variables. In the second step, the power allocation 

subproblem is solved by using the results of the previous step (association variables) as fixed values to 

obtain data transmission powers. Then, in the next iteration, the obtained data transmission powers are used 

in the first sub-problem. This procedure is continued until the results meet a convergence condition, as 

explained in the next sub-sections.  

4-1- User Association Sub-problem 
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 𝐏𝐏𝐏𝐏: max
𝒙𝒙,𝒚𝒚,𝒑𝒑𝑼𝑼𝑼𝑼,𝒑𝒑𝑫𝑫𝑫𝑫
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   𝐬𝐬. 𝐭𝐭.    𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏
𝐷𝐷𝐷𝐷 + (1 − 𝑥𝑥𝑏𝑏𝑏𝑏

𝑛𝑛 )𝐴𝐴 ≥ 𝑅𝑅𝑚𝑚
𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 ,    𝑏𝑏 ∈ ℬ, 𝑚𝑚 ∈ 𝒰𝒰, 𝑛𝑛 ∈ ℛ,    (26) 

 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏
𝑈𝑈𝑈𝑈 + (1 − 𝑦𝑦𝑏𝑏𝑏𝑏

𝑛𝑛 )𝐴𝐴 ≥ 𝑅𝑅𝑚𝑚
𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 ,    𝑏𝑏 ∈ ℬ, 𝑚𝑚 ∈ 𝒰𝒰, 𝑛𝑛 ∈ ℛ,     (27) 

 𝐱𝐱, 𝐲𝐲 ∈ [0,1]          (28) 

           (12), (13), (14), (15), (16), (17), (23). 

It should be noted that P3.1 is obtained by considering constant values for transmit power of devices in P2 

or P1, where for P1 we must remove constraint (13) in P3.1. Thus, the problem P3.1 finds only the 

association variables for fixed values of transmit powers. In addition, since we have relaxed the binary 

association variables in (28), we added a regulation term in the objective function of P3.1. In fact, the 

regulation term is considered to force the optimization to converge to integer solution in which for 𝜆𝜆 >> 1 

the results of the relaxed problem will be the same as the main problem [25]. In other words, the parameter 

𝜆𝜆 controls the importance of the regulation term in the objective function. For 𝜆𝜆 >> 1 the regulation term 

will force the relaxed variables to converge to one or zero. In addition, we use (26) and (27) instead of (10) 

and (11) in P1, because in this step, the data transmission powers are fixed and we should start from a 

feasible point at the initialization of the algorithm. However, by using (26) and (27) this issue is resolved. 

We note that 𝐴𝐴 is a large positive constant, i.e. 𝐴𝐴 >> 1, thus in case of 𝑥𝑥𝑏𝑏𝑚𝑚
𝑛𝑛 = 0, the constraint will be 𝐴𝐴 >

𝑅𝑅𝑚𝑚
𝑄𝑄𝑄𝑄𝑄𝑄 that is true always, and when 𝑥𝑥𝑏𝑏𝑏𝑏

𝑛𝑛 = 1 the term consisting 𝐴𝐴 will disappear so that the constraint will 

be 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏 ≥ 𝑅𝑅𝑚𝑚
𝑄𝑄𝑄𝑄𝑄𝑄, thus (26) and (27) assure the same limitation as (10) and (11), respectively. 

Clearly the problem P3.1 is a non-convex nonlinear programming, which can be transformed into a linear 

convex problem using successive convex approximation (SCA) [23, 24, 36] on the regulation term, which 

forces relaxed binary variables to be 0 or 1. To apply the SCA method, a lower bound is computed for the 

regulation term. Note that for a convex function 𝑓𝑓(𝑥𝑥) we have 𝑓𝑓(𝑥𝑥) ≥ 𝑓𝑓(𝑥𝑥0) + 𝑓𝑓′(𝑥𝑥0)(𝑥𝑥 − 𝑥𝑥0), where 

𝑓𝑓′(𝑥𝑥0) is the first derivative of 𝑓𝑓(𝑥𝑥) evaluated at point 𝑥𝑥0. The lower bound of 𝑓𝑓(𝑥𝑥) is affine and can be 
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term in the objective function of P3.1. In fact, the regulation 
term is considered to force the optimization to converge 
to integer solution in which for 1λ >>  the results of the 
relaxed problem will be the same as the main problem [25]. 

In other words, the parameter 
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or P1, where for P1 we must remove constraint (13) in P3.1. Thus, the problem P3.1 finds only the 

association variables for fixed values of transmit powers. In addition, since we have relaxed the binary 
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𝜆𝜆 controls the importance of the regulation term in the objective function. For 𝜆𝜆 >> 1 the regulation term 

will force the relaxed variables to converge to one or zero. In addition, we use (26) and (27) instead of (10) 

and (11) in P1, because in this step, the data transmission powers are fixed and we should start from a 

feasible point at the initialization of the algorithm. However, by using (26) and (27) this issue is resolved. 

We note that 𝐴𝐴 is a large positive constant, i.e. 𝐴𝐴 >> 1, thus in case of 𝑥𝑥𝑏𝑏𝑚𝑚
𝑛𝑛 = 0, the constraint will be 𝐴𝐴 >
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forces relaxed binary variables to be 0 or 1. To apply the SCA method, a lower bound is computed for the 
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where 
bm

n
valx  and 

bm

n
valy  are the solutions obtained in the 

previous iteration of the 2-step algorithm by solving the 
following linear convex problem P3.2. Note that P3.2 is 
obtained by using the lower bound of the regulation term 
which is affine. 
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( ) ( ) ( ) ( ) ( ) ( ). .    12 17 ,   23 ,   26 ,   27 ,   28 .−s t

The problem P3.2 is convex and can be easily solved by 
optimization solvers such as cvx [36, 37]. After obtaining the 
association variables, in the next iteration, the transmit powers 
of BSs and UEs are allocated as described in the following. 

4-2- Power Allocation Sub-problem
 After solving the user association sub-problem in P3.1, 

the values of x and y are inserted into P1 (or P2), and by 
removing the association constraints in P1, the power 
allocation sub-problem is defined as follows  

( ) ( ) ( ) ( ) ( ) ( ). . : 10 ,   11 ,   16 ,   17 ,   18 ,   19 .s t

The problem P3.3 is non-convex. To solve  P3.3, 
we use the following lemma for posynomial functions.  
It is worthy to note that a posynomial function for 

real value variables 1x , 2x , ..., nx  is in the form of 

( ) ( )1 2 1 21
, , ,ž , , , K

n k nk
F x x x f x x x

=
… = …∑ , where 

( ) 1
1 2 1, , , k nka a

k n k nf x x x c x x… =   is a monomial 

function, K  is the upper bound of the summation, kc ≥ 0, 

and ika ∈ . 

Lemma 1 Let 

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑𝐾𝐾
𝑘𝑘=1 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), where 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐𝑘𝑘𝑥𝑥1

𝑎𝑎1𝑘𝑘 ⋯ 𝑥𝑥𝑛𝑛
𝑎𝑎𝑛𝑛𝑛𝑛 is a monomial 

function, 𝐾𝐾 is the upper bound of the summation, 𝑐𝑐𝑘𝑘 ≥0, and 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℝ.  

Lemma 1 Let 𝑔𝑔(𝑥𝑥) = ∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑥𝑥) be a posynomial function, then 𝑔𝑔(𝑥𝑥) ≥ 𝑔̃𝑔(𝑥𝑥) = ∏𝑖𝑖 (𝑢𝑢𝑖𝑖(𝑥𝑥)
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 (∑𝑖𝑖 𝛼𝛼𝑖𝑖 = 1) 

is the Arithmetic-Geometric Mean Approximation (AGMA) of g(x). If 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖(𝑥𝑥0)
𝑔𝑔(𝑥𝑥0)  then it will be the best 

local minimum approximation [26].  

Proof. Consider Arithmetic Mean Geometric Mean (AM-GM) inequality, ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖 ≥ ∏𝑖𝑖 𝑣𝑣𝑖𝑖
𝛼𝛼𝑖𝑖. If we take 

𝑢𝑢𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖, then ∑𝑖𝑖 𝑢𝑢𝑖𝑖 ≥ ∏𝑖𝑖 (𝑢𝑢𝑖𝑖
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 and the equality holds when 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖
∑𝑖𝑖 𝑢𝑢𝑖𝑖

.                ■ 

Thus, by using AGMA, the sub-problem P3.3 is changed as follows  

 𝐏𝐏𝐏𝐏. 𝟒𝟒: min
𝒑𝒑𝑫𝑫𝑫𝑫,𝒑𝒑𝑼𝑼𝑼𝑼

∏𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝜎𝜎2+∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛   

× ∏
𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ

(𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛

 

 𝐬𝐬. 𝐭𝐭. ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 ,   𝑚𝑚 ∈ 𝒰𝒰,   (31) 

 ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 , 𝑚𝑚 ∈ 𝒰𝒰,     (32) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷′ )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝐷𝐷𝐷𝐷, 𝑏𝑏 ∈ ℬ,    (33) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑚𝑚′
𝑛𝑛 |2

𝐷̃𝐷′ )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝑈𝑈𝑈𝑈, 𝑏𝑏 ∈ ℬ,    (34) 

 (18), (19). 

 be a posynomial 

function, then  (

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑𝐾𝐾
𝑘𝑘=1 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), where 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐𝑘𝑘𝑥𝑥1

𝑎𝑎1𝑘𝑘 ⋯ 𝑥𝑥𝑛𝑛
𝑎𝑎𝑛𝑛𝑛𝑛 is a monomial 

function, 𝐾𝐾 is the upper bound of the summation, 𝑐𝑐𝑘𝑘 ≥0, and 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℝ.  

Lemma 1 Let 𝑔𝑔(𝑥𝑥) = ∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑥𝑥) be a posynomial function, then 𝑔𝑔(𝑥𝑥) ≥ 𝑔̃𝑔(𝑥𝑥) = ∏𝑖𝑖 (𝑢𝑢𝑖𝑖(𝑥𝑥)
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 (∑𝑖𝑖 𝛼𝛼𝑖𝑖 = 1) 

is the Arithmetic-Geometric Mean Approximation (AGMA) of g(x). If 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖(𝑥𝑥0)
𝑔𝑔(𝑥𝑥0)  then it will be the best 

local minimum approximation [26].  

Proof. Consider Arithmetic Mean Geometric Mean (AM-GM) inequality, ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖 ≥ ∏𝑖𝑖 𝑣𝑣𝑖𝑖
𝛼𝛼𝑖𝑖. If we take 

𝑢𝑢𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖, then ∑𝑖𝑖 𝑢𝑢𝑖𝑖 ≥ ∏𝑖𝑖 (𝑢𝑢𝑖𝑖
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 and the equality holds when 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖
∑𝑖𝑖 𝑢𝑢𝑖𝑖

.                ■ 

Thus, by using AGMA, the sub-problem P3.3 is changed as follows  

 𝐏𝐏𝐏𝐏. 𝟒𝟒: min
𝒑𝒑𝑫𝑫𝑫𝑫,𝒑𝒑𝑼𝑼𝑼𝑼

∏𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝜎𝜎2+∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛   

× ∏
𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ

(𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛

 

 𝐬𝐬. 𝐭𝐭. ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 ,   𝑚𝑚 ∈ 𝒰𝒰,   (31) 

 ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 , 𝑚𝑚 ∈ 𝒰𝒰,     (32) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷′ )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝐷𝐷𝐷𝐷, 𝑏𝑏 ∈ ℬ,    (33) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑚𝑚′
𝑛𝑛 |2

𝐷̃𝐷′ )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝑈𝑈𝑈𝑈, 𝑏𝑏 ∈ ℬ,    (34) 

 (18), (19). 

) is the Arithmetic-Geometric Mean Approximation (AGMA) 

of g(x). If 

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑𝐾𝐾
𝑘𝑘=1 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), where 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐𝑘𝑘𝑥𝑥1

𝑎𝑎1𝑘𝑘 ⋯ 𝑥𝑥𝑛𝑛
𝑎𝑎𝑛𝑛𝑛𝑛 is a monomial 

function, 𝐾𝐾 is the upper bound of the summation, 𝑐𝑐𝑘𝑘 ≥0, and 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℝ.  

Lemma 1 Let 𝑔𝑔(𝑥𝑥) = ∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑥𝑥) be a posynomial function, then 𝑔𝑔(𝑥𝑥) ≥ 𝑔̃𝑔(𝑥𝑥) = ∏𝑖𝑖 (𝑢𝑢𝑖𝑖(𝑥𝑥)
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 (∑𝑖𝑖 𝛼𝛼𝑖𝑖 = 1) 

is the Arithmetic-Geometric Mean Approximation (AGMA) of g(x). If 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖(𝑥𝑥0)
𝑔𝑔(𝑥𝑥0)  then it will be the best 

local minimum approximation [26].  

Proof. Consider Arithmetic Mean Geometric Mean (AM-GM) inequality, ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖 ≥ ∏𝑖𝑖 𝑣𝑣𝑖𝑖
𝛼𝛼𝑖𝑖. If we take 

𝑢𝑢𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖, then ∑𝑖𝑖 𝑢𝑢𝑖𝑖 ≥ ∏𝑖𝑖 (𝑢𝑢𝑖𝑖
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 and the equality holds when 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖
∑𝑖𝑖 𝑢𝑢𝑖𝑖

.                ■ 

Thus, by using AGMA, the sub-problem P3.3 is changed as follows  

 𝐏𝐏𝐏𝐏. 𝟒𝟒: min
𝒑𝒑𝑫𝑫𝑫𝑫,𝒑𝒑𝑼𝑼𝑼𝑼

∏𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝜎𝜎2+∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛   

× ∏
𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ

(𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛

 

 𝐬𝐬. 𝐭𝐭. ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 ,   𝑚𝑚 ∈ 𝒰𝒰,   (31) 

 ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 , 𝑚𝑚 ∈ 𝒰𝒰,     (32) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷′ )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝐷𝐷𝐷𝐷, 𝑏𝑏 ∈ ℬ,    (33) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑚𝑚′
𝑛𝑛 |2

𝐷̃𝐷′ )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝑈𝑈𝑈𝑈, 𝑏𝑏 ∈ ℬ,    (34) 

 (18), (19). 

 then it will be the best local minimum 
approximation [26]. 

Proof. Consider Arithmetic Mean Geometric Mean (AM-

GM) inequality,

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑𝐾𝐾
𝑘𝑘=1 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), where 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐𝑘𝑘𝑥𝑥1

𝑎𝑎1𝑘𝑘 ⋯ 𝑥𝑥𝑛𝑛
𝑎𝑎𝑛𝑛𝑛𝑛 is a monomial 

function, 𝐾𝐾 is the upper bound of the summation, 𝑐𝑐𝑘𝑘 ≥0, and 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℝ.  

Lemma 1 Let 𝑔𝑔(𝑥𝑥) = ∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑥𝑥) be a posynomial function, then 𝑔𝑔(𝑥𝑥) ≥ 𝑔̃𝑔(𝑥𝑥) = ∏𝑖𝑖 (𝑢𝑢𝑖𝑖(𝑥𝑥)
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 (∑𝑖𝑖 𝛼𝛼𝑖𝑖 = 1) 

is the Arithmetic-Geometric Mean Approximation (AGMA) of g(x). If 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖(𝑥𝑥0)
𝑔𝑔(𝑥𝑥0)  then it will be the best 

local minimum approximation [26].  

Proof. Consider Arithmetic Mean Geometric Mean (AM-GM) inequality, ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖 ≥ ∏𝑖𝑖 𝑣𝑣𝑖𝑖
𝛼𝛼𝑖𝑖. If we take 

𝑢𝑢𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖, then ∑𝑖𝑖 𝑢𝑢𝑖𝑖 ≥ ∏𝑖𝑖 (𝑢𝑢𝑖𝑖
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 and the equality holds when 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖
∑𝑖𝑖 𝑢𝑢𝑖𝑖

.                ■ 

Thus, by using AGMA, the sub-problem P3.3 is changed as follows  

 𝐏𝐏𝐏𝐏. 𝟒𝟒: min
𝒑𝒑𝑫𝑫𝑫𝑫,𝒑𝒑𝑼𝑼𝑼𝑼

∏𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝜎𝜎2+∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛   

× ∏
𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ

(𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛

 

 𝐬𝐬. 𝐭𝐭. ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 ,   𝑚𝑚 ∈ 𝒰𝒰,   (31) 

 ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 , 𝑚𝑚 ∈ 𝒰𝒰,     (32) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷′ )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝐷𝐷𝐷𝐷, 𝑏𝑏 ∈ ℬ,    (33) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑚𝑚′
𝑛𝑛 |2

𝐷̃𝐷′ )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝑈𝑈𝑈𝑈, 𝑏𝑏 ∈ ℬ,    (34) 

 (18), (19). 

  If we take i i iu vα= , then 

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑𝐾𝐾
𝑘𝑘=1 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), where 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐𝑘𝑘𝑥𝑥1

𝑎𝑎1𝑘𝑘 ⋯ 𝑥𝑥𝑛𝑛
𝑎𝑎𝑛𝑛𝑛𝑛 is a monomial 

function, 𝐾𝐾 is the upper bound of the summation, 𝑐𝑐𝑘𝑘 ≥0, and 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℝ.  

Lemma 1 Let 𝑔𝑔(𝑥𝑥) = ∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑥𝑥) be a posynomial function, then 𝑔𝑔(𝑥𝑥) ≥ 𝑔̃𝑔(𝑥𝑥) = ∏𝑖𝑖 (𝑢𝑢𝑖𝑖(𝑥𝑥)
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 (∑𝑖𝑖 𝛼𝛼𝑖𝑖 = 1) 

is the Arithmetic-Geometric Mean Approximation (AGMA) of g(x). If 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖(𝑥𝑥0)
𝑔𝑔(𝑥𝑥0)  then it will be the best 

local minimum approximation [26].  

Proof. Consider Arithmetic Mean Geometric Mean (AM-GM) inequality, ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖 ≥ ∏𝑖𝑖 𝑣𝑣𝑖𝑖
𝛼𝛼𝑖𝑖. If we take 

𝑢𝑢𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖, then ∑𝑖𝑖 𝑢𝑢𝑖𝑖 ≥ ∏𝑖𝑖 (𝑢𝑢𝑖𝑖
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 and the equality holds when 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖
∑𝑖𝑖 𝑢𝑢𝑖𝑖

.                ■ 

Thus, by using AGMA, the sub-problem P3.3 is changed as follows  

 𝐏𝐏𝐏𝐏. 𝟒𝟒: min
𝒑𝒑𝑫𝑫𝑫𝑫,𝒑𝒑𝑼𝑼𝑼𝑼

∏𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝜎𝜎2+∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛   

× ∏
𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ

(𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛

 

 𝐬𝐬. 𝐭𝐭. ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 ,   𝑚𝑚 ∈ 𝒰𝒰,   (31) 

 ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 , 𝑚𝑚 ∈ 𝒰𝒰,     (32) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷′ )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝐷𝐷𝐷𝐷, 𝑏𝑏 ∈ ℬ,    (33) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑚𝑚′
𝑛𝑛 |2

𝐷̃𝐷′ )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝑈𝑈𝑈𝑈, 𝑏𝑏 ∈ ℬ,    (34) 

 (18), (19). 

 and the equality holds when

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑𝐾𝐾
𝑘𝑘=1 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), where 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐𝑘𝑘𝑥𝑥1

𝑎𝑎1𝑘𝑘 ⋯ 𝑥𝑥𝑛𝑛
𝑎𝑎𝑛𝑛𝑛𝑛 is a monomial 

function, 𝐾𝐾 is the upper bound of the summation, 𝑐𝑐𝑘𝑘 ≥0, and 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℝ.  

Lemma 1 Let 𝑔𝑔(𝑥𝑥) = ∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑥𝑥) be a posynomial function, then 𝑔𝑔(𝑥𝑥) ≥ 𝑔̃𝑔(𝑥𝑥) = ∏𝑖𝑖 (𝑢𝑢𝑖𝑖(𝑥𝑥)
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 (∑𝑖𝑖 𝛼𝛼𝑖𝑖 = 1) 

is the Arithmetic-Geometric Mean Approximation (AGMA) of g(x). If 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖(𝑥𝑥0)
𝑔𝑔(𝑥𝑥0)  then it will be the best 

local minimum approximation [26].  

Proof. Consider Arithmetic Mean Geometric Mean (AM-GM) inequality, ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖 ≥ ∏𝑖𝑖 𝑣𝑣𝑖𝑖
𝛼𝛼𝑖𝑖. If we take 

𝑢𝑢𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖, then ∑𝑖𝑖 𝑢𝑢𝑖𝑖 ≥ ∏𝑖𝑖 (𝑢𝑢𝑖𝑖
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 and the equality holds when 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖
∑𝑖𝑖 𝑢𝑢𝑖𝑖

.                ■ 

Thus, by using AGMA, the sub-problem P3.3 is changed as follows  

 𝐏𝐏𝐏𝐏. 𝟒𝟒: min
𝒑𝒑𝑫𝑫𝑫𝑫,𝒑𝒑𝑼𝑼𝑼𝑼

∏𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝜎𝜎2+∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛   

× ∏
𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ

(𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛

 

 𝐬𝐬. 𝐭𝐭. ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 ,   𝑚𝑚 ∈ 𝒰𝒰,   (31) 

 ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 , 𝑚𝑚 ∈ 𝒰𝒰,     (32) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷′ )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝐷𝐷𝐷𝐷, 𝑏𝑏 ∈ ℬ,    (33) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑚𝑚′
𝑛𝑛 |2

𝐷̃𝐷′ )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝑈𝑈𝑈𝑈, 𝑏𝑏 ∈ ℬ,    (34) 

 (18), (19). 

  	
Thus, by using AGMA, the sub-problem P3.3 is changed as 
follows 

� (31)

� (32)

used to approximate 𝑓𝑓(𝑥𝑥) in the maximization problem using the SCA method. In P3.1, the regulation term 

is convex, thus its lower bound is given by  

𝜆𝜆(𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 2 − 𝑥𝑥𝑏𝑏𝑏𝑏

𝑛𝑛 + 𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 2 − 𝑦𝑦𝑏𝑏𝑏𝑏

𝑛𝑛 ) ≥ 𝜆𝜆(𝑥𝑥𝑣𝑣𝑣𝑣𝑙𝑙𝑏𝑏𝑏𝑏
𝑛𝑛 2 − 𝑥𝑥𝑣𝑣𝑣𝑣𝑙𝑙𝑏𝑏𝑏𝑏

𝑛𝑛 + 𝑦𝑦𝑣𝑣𝑣𝑣𝑙𝑙𝑏𝑏𝑏𝑏
𝑛𝑛 2 − 𝑦𝑦𝑣𝑣𝑣𝑣𝑙𝑙𝑏𝑏𝑏𝑏

𝑛𝑛 + (2𝑥𝑥𝑣𝑣𝑣𝑣𝑙𝑙𝑏𝑏𝑚𝑚
𝑛𝑛 − 1)(𝑥𝑥𝑏𝑏𝑏𝑏

𝑛𝑛 −

𝑥𝑥𝑣𝑣𝑣𝑣𝑙𝑙𝑏𝑏𝑏𝑏
𝑛𝑛 ) + (2𝑦𝑦𝑣𝑣𝑣𝑣𝑙𝑙𝑏𝑏𝑏𝑏

𝑛𝑛 − 1)(𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 − 𝑦𝑦𝑣𝑣𝑣𝑣𝑙𝑙𝑏𝑏𝑏𝑏

𝑛𝑛 ))   (29) 

where 𝑥𝑥𝑣𝑣𝑣𝑣𝑙𝑙𝑏𝑏𝑏𝑏
𝑛𝑛  and 𝑦𝑦𝑣𝑣𝑣𝑣𝑙𝑙𝑏𝑏𝑏𝑏

𝑛𝑛  are the solutions obtained in the previous iteration of the 2-step algorithm by 

solving the following linear convex problem P3.2. Note that P3.2 is obtained by using the lower bound of 

the regulation term which is affine.  

 𝐏𝐏𝐏𝐏. 𝟐𝟐: max
𝒙𝒙,𝒚𝒚

∑𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝐷𝐷𝐷𝐷 + 𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝑈𝑈𝑈𝑈 + 𝜆𝜆(𝑥𝑥𝑣𝑣𝑣𝑣𝑙𝑙𝑏𝑏𝑚𝑚
𝑛𝑛 2 − 𝑥𝑥𝑣𝑣𝑣𝑣𝑙𝑙𝑏𝑏𝑏𝑏

𝑛𝑛 + 𝑦𝑦𝑣𝑣𝑣𝑣𝑙𝑙𝑏𝑏𝑏𝑏
𝑛𝑛 2 − 𝑦𝑦𝑣𝑣𝑣𝑣𝑙𝑙𝑏𝑏𝑏𝑏

𝑛𝑛  

   +(2𝑥𝑥𝑣𝑣𝑣𝑣𝑙𝑙𝑏𝑏𝑏𝑏
𝑛𝑛 − 1)(𝑥𝑥𝑏𝑏𝑏𝑏

𝑛𝑛 − 𝑥𝑥𝑣𝑣𝑣𝑣𝑙𝑙𝑏𝑏𝑏𝑏
𝑛𝑛 ) +  (2𝑦𝑦𝑣𝑣𝑣𝑣𝑙𝑙𝑏𝑏𝑏𝑏

𝑛𝑛 − 1)(𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 − 𝑦𝑦𝑣𝑣𝑣𝑣𝑙𝑙𝑏𝑏𝑏𝑏

𝑛𝑛 )))   (30)  

  𝐬𝐬. 𝐭𝐭.    (12) − (17), (23), (26), (27), (28). 

The problem P3.2 is convex and can be easily solved by optimization solvers such as cvx [36, 37]. After 

obtaining the association variables, in the next iteration, the transmit powers of BSs and UEs are allocated 

as described in the following.  

4-2- Power Allocation Sub-problem 

 After solving the user association sub-problem in P3.1, the values of x and y are inserted into P1 (or P2), 

and by removing the association constraints in P1, the power allocation sub-problem is defined as follows   

 𝐏𝐏𝐏𝐏. 𝟑𝟑: max
𝒑𝒑𝑼𝑼𝑼𝑼,𝒑𝒑𝑫𝑫𝑫𝑫

∑𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝐷𝐷𝐷𝐷 + 𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝑈𝑈𝑈𝑈 ) 

 𝐬𝐬. 𝐭𝐭. : (10), (11), (16), (17), (18), (19). 

The problem P3.3 is non-convex. To solve  P3.3, we use the following lemma for posynomial functions.  

It is worthy to note that a posynomial function for real value variables 𝑥𝑥1, 𝑥𝑥2, ..., 𝑥𝑥𝑛𝑛 is in the form of 

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑𝐾𝐾
𝑘𝑘=1 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), where 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐𝑘𝑘𝑥𝑥1

𝑎𝑎1𝑘𝑘 ⋯ 𝑥𝑥𝑛𝑛
𝑎𝑎𝑛𝑛𝑛𝑛 is a monomial 

function, 𝐾𝐾 is the upper bound of the summation, 𝑐𝑐𝑘𝑘 ≥0, and 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℝ.  

Lemma 1 Let 𝑔𝑔(𝑥𝑥) = ∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑥𝑥) be a posynomial function, then 𝑔𝑔(𝑥𝑥) ≥ 𝑔̃𝑔(𝑥𝑥) = ∏𝑖𝑖 (𝑢𝑢𝑖𝑖(𝑥𝑥)
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 (∑𝑖𝑖 𝛼𝛼𝑖𝑖 = 1) 

is the Arithmetic-Geometric Mean Approximation (AGMA) of g(x). If 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖(𝑥𝑥0)
𝑔𝑔(𝑥𝑥0)  then it will be the best 

local minimum approximation [26].  

Proof. Consider Arithmetic Mean Geometric Mean (AM-GM) inequality, ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖 ≥ ∏𝑖𝑖 𝑣𝑣𝑖𝑖
𝛼𝛼𝑖𝑖. If we take 

𝑢𝑢𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖, then ∑𝑖𝑖 𝑢𝑢𝑖𝑖 ≥ ∏𝑖𝑖 (𝑢𝑢𝑖𝑖
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 and the equality holds when 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖
∑𝑖𝑖 𝑢𝑢𝑖𝑖

.                ■ 

Thus, by using AGMA, the sub-problem P3.3 is changed as follows  

 𝐏𝐏𝐏𝐏. 𝟒𝟒: min
𝒑𝒑𝑫𝑫𝑫𝑫,𝒑𝒑𝑼𝑼𝑼𝑼

∏𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝜎𝜎2+∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛   

× ∏
𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ

(𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛

 

 𝐬𝐬. 𝐭𝐭. ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 ,   𝑚𝑚 ∈ 𝒰𝒰,   (31) 

 ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 , 𝑚𝑚 ∈ 𝒰𝒰,     (32) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷′ )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝐷𝐷𝐷𝐷, 𝑏𝑏 ∈ ℬ,    (33) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑚𝑚′
𝑛𝑛 |2

𝐷̃𝐷′ )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝑈𝑈𝑈𝑈, 𝑏𝑏 ∈ ℬ,    (34) 

 (18), (19). 

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑𝐾𝐾
𝑘𝑘=1 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), where 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐𝑘𝑘𝑥𝑥1

𝑎𝑎1𝑘𝑘 ⋯ 𝑥𝑥𝑛𝑛
𝑎𝑎𝑛𝑛𝑛𝑛 is a monomial 

function, 𝐾𝐾 is the upper bound of the summation, 𝑐𝑐𝑘𝑘 ≥0, and 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℝ.  

Lemma 1 Let 𝑔𝑔(𝑥𝑥) = ∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑥𝑥) be a posynomial function, then 𝑔𝑔(𝑥𝑥) ≥ 𝑔̃𝑔(𝑥𝑥) = ∏𝑖𝑖 (𝑢𝑢𝑖𝑖(𝑥𝑥)
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 (∑𝑖𝑖 𝛼𝛼𝑖𝑖 = 1) 

is the Arithmetic-Geometric Mean Approximation (AGMA) of g(x). If 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖(𝑥𝑥0)
𝑔𝑔(𝑥𝑥0)  then it will be the best 

local minimum approximation [26].  

Proof. Consider Arithmetic Mean Geometric Mean (AM-GM) inequality, ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖 ≥ ∏𝑖𝑖 𝑣𝑣𝑖𝑖
𝛼𝛼𝑖𝑖. If we take 

𝑢𝑢𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖, then ∑𝑖𝑖 𝑢𝑢𝑖𝑖 ≥ ∏𝑖𝑖 (𝑢𝑢𝑖𝑖
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 and the equality holds when 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖
∑𝑖𝑖 𝑢𝑢𝑖𝑖

.                ■ 

Thus, by using AGMA, the sub-problem P3.3 is changed as follows  

 𝐏𝐏𝐏𝐏. 𝟒𝟒: min
𝒑𝒑𝑫𝑫𝑫𝑫,𝒑𝒑𝑼𝑼𝑼𝑼

∏𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝜎𝜎2+∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛   

× ∏
𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ

(𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛

 

 𝐬𝐬. 𝐭𝐭. ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 ,   𝑚𝑚 ∈ 𝒰𝒰,   (31) 

 ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 , 𝑚𝑚 ∈ 𝒰𝒰,     (32) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷′ )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝐷𝐷𝐷𝐷, 𝑏𝑏 ∈ ℬ,    (33) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑚𝑚′
𝑛𝑛 |2

𝐷̃𝐷′ )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝑈𝑈𝑈𝑈, 𝑏𝑏 ∈ ℬ,    (34) 

 (18), (19). 

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑𝐾𝐾
𝑘𝑘=1 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), where 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐𝑘𝑘𝑥𝑥1

𝑎𝑎1𝑘𝑘 ⋯ 𝑥𝑥𝑛𝑛
𝑎𝑎𝑛𝑛𝑛𝑛 is a monomial 

function, 𝐾𝐾 is the upper bound of the summation, 𝑐𝑐𝑘𝑘 ≥0, and 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℝ.  

Lemma 1 Let 𝑔𝑔(𝑥𝑥) = ∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑥𝑥) be a posynomial function, then 𝑔𝑔(𝑥𝑥) ≥ 𝑔̃𝑔(𝑥𝑥) = ∏𝑖𝑖 (𝑢𝑢𝑖𝑖(𝑥𝑥)
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 (∑𝑖𝑖 𝛼𝛼𝑖𝑖 = 1) 

is the Arithmetic-Geometric Mean Approximation (AGMA) of g(x). If 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖(𝑥𝑥0)
𝑔𝑔(𝑥𝑥0)  then it will be the best 

local minimum approximation [26].  

Proof. Consider Arithmetic Mean Geometric Mean (AM-GM) inequality, ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖 ≥ ∏𝑖𝑖 𝑣𝑣𝑖𝑖
𝛼𝛼𝑖𝑖. If we take 

𝑢𝑢𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖, then ∑𝑖𝑖 𝑢𝑢𝑖𝑖 ≥ ∏𝑖𝑖 (𝑢𝑢𝑖𝑖
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 and the equality holds when 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖
∑𝑖𝑖 𝑢𝑢𝑖𝑖

.                ■ 

Thus, by using AGMA, the sub-problem P3.3 is changed as follows  

 𝐏𝐏𝐏𝐏. 𝟒𝟒: min
𝒑𝒑𝑫𝑫𝑫𝑫,𝒑𝒑𝑼𝑼𝑼𝑼

∏𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝜎𝜎2+∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛   

× ∏
𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ

(𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛

 

 𝐬𝐬. 𝐭𝐭. ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 ,   𝑚𝑚 ∈ 𝒰𝒰,   (31) 

 ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 , 𝑚𝑚 ∈ 𝒰𝒰,     (32) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷′ )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝐷𝐷𝐷𝐷, 𝑏𝑏 ∈ ℬ,    (33) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑚𝑚′
𝑛𝑛 |2

𝐷̃𝐷′ )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝑈𝑈𝑈𝑈, 𝑏𝑏 ∈ ℬ,    (34) 

 (18), (19). 

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑𝐾𝐾
𝑘𝑘=1 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), where 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐𝑘𝑘𝑥𝑥1

𝑎𝑎1𝑘𝑘 ⋯ 𝑥𝑥𝑛𝑛
𝑎𝑎𝑛𝑛𝑛𝑛 is a monomial 

function, 𝐾𝐾 is the upper bound of the summation, 𝑐𝑐𝑘𝑘 ≥0, and 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℝ.  

Lemma 1 Let 𝑔𝑔(𝑥𝑥) = ∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑥𝑥) be a posynomial function, then 𝑔𝑔(𝑥𝑥) ≥ 𝑔̃𝑔(𝑥𝑥) = ∏𝑖𝑖 (𝑢𝑢𝑖𝑖(𝑥𝑥)
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 (∑𝑖𝑖 𝛼𝛼𝑖𝑖 = 1) 

is the Arithmetic-Geometric Mean Approximation (AGMA) of g(x). If 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖(𝑥𝑥0)
𝑔𝑔(𝑥𝑥0)  then it will be the best 

local minimum approximation [26].  

Proof. Consider Arithmetic Mean Geometric Mean (AM-GM) inequality, ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖 ≥ ∏𝑖𝑖 𝑣𝑣𝑖𝑖
𝛼𝛼𝑖𝑖. If we take 

𝑢𝑢𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖, then ∑𝑖𝑖 𝑢𝑢𝑖𝑖 ≥ ∏𝑖𝑖 (𝑢𝑢𝑖𝑖
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 and the equality holds when 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖
∑𝑖𝑖 𝑢𝑢𝑖𝑖

.                ■ 

Thus, by using AGMA, the sub-problem P3.3 is changed as follows  

 𝐏𝐏𝐏𝐏. 𝟒𝟒: min
𝒑𝒑𝑫𝑫𝑫𝑫,𝒑𝒑𝑼𝑼𝑼𝑼

∏𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝜎𝜎2+∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛   

× ∏
𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ

(𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛

 

 𝐬𝐬. 𝐭𝐭. ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 ,   𝑚𝑚 ∈ 𝒰𝒰,   (31) 

 ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 , 𝑚𝑚 ∈ 𝒰𝒰,     (32) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷′ )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝐷𝐷𝐷𝐷, 𝑏𝑏 ∈ ℬ,    (33) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑚𝑚′
𝑛𝑛 |2

𝐷̃𝐷′ )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝑈𝑈𝑈𝑈, 𝑏𝑏 ∈ ℬ,    (34) 

 (18), (19). 

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑𝐾𝐾
𝑘𝑘=1 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), where 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐𝑘𝑘𝑥𝑥1

𝑎𝑎1𝑘𝑘 ⋯ 𝑥𝑥𝑛𝑛
𝑎𝑎𝑛𝑛𝑛𝑛 is a monomial 

function, 𝐾𝐾 is the upper bound of the summation, 𝑐𝑐𝑘𝑘 ≥0, and 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℝ.  

Lemma 1 Let 𝑔𝑔(𝑥𝑥) = ∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑥𝑥) be a posynomial function, then 𝑔𝑔(𝑥𝑥) ≥ 𝑔̃𝑔(𝑥𝑥) = ∏𝑖𝑖 (𝑢𝑢𝑖𝑖(𝑥𝑥)
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 (∑𝑖𝑖 𝛼𝛼𝑖𝑖 = 1) 

is the Arithmetic-Geometric Mean Approximation (AGMA) of g(x). If 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖(𝑥𝑥0)
𝑔𝑔(𝑥𝑥0)  then it will be the best 

local minimum approximation [26].  

Proof. Consider Arithmetic Mean Geometric Mean (AM-GM) inequality, ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖 ≥ ∏𝑖𝑖 𝑣𝑣𝑖𝑖
𝛼𝛼𝑖𝑖. If we take 

𝑢𝑢𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖, then ∑𝑖𝑖 𝑢𝑢𝑖𝑖 ≥ ∏𝑖𝑖 (𝑢𝑢𝑖𝑖
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 and the equality holds when 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖
∑𝑖𝑖 𝑢𝑢𝑖𝑖

.                ■ 

Thus, by using AGMA, the sub-problem P3.3 is changed as follows  

 𝐏𝐏𝐏𝐏. 𝟒𝟒: min
𝒑𝒑𝑫𝑫𝑫𝑫,𝒑𝒑𝑼𝑼𝑼𝑼

∏𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝜎𝜎2+∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛   

× ∏
𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ

(𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛

 

 𝐬𝐬. 𝐭𝐭. ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 ,   𝑚𝑚 ∈ 𝒰𝒰,   (31) 

 ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 , 𝑚𝑚 ∈ 𝒰𝒰,     (32) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷′ )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝐷𝐷𝐷𝐷, 𝑏𝑏 ∈ ℬ,    (33) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑚𝑚′
𝑛𝑛 |2

𝐷̃𝐷′ )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝑈𝑈𝑈𝑈, 𝑏𝑏 ∈ ℬ,    (34) 

 (18), (19). 

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑𝐾𝐾
𝑘𝑘=1 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), where 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐𝑘𝑘𝑥𝑥1

𝑎𝑎1𝑘𝑘 ⋯ 𝑥𝑥𝑛𝑛
𝑎𝑎𝑛𝑛𝑛𝑛 is a monomial 

function, 𝐾𝐾 is the upper bound of the summation, 𝑐𝑐𝑘𝑘 ≥0, and 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℝ.  

Lemma 1 Let 𝑔𝑔(𝑥𝑥) = ∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑥𝑥) be a posynomial function, then 𝑔𝑔(𝑥𝑥) ≥ 𝑔̃𝑔(𝑥𝑥) = ∏𝑖𝑖 (𝑢𝑢𝑖𝑖(𝑥𝑥)
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 (∑𝑖𝑖 𝛼𝛼𝑖𝑖 = 1) 

is the Arithmetic-Geometric Mean Approximation (AGMA) of g(x). If 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖(𝑥𝑥0)
𝑔𝑔(𝑥𝑥0)  then it will be the best 

local minimum approximation [26].  

Proof. Consider Arithmetic Mean Geometric Mean (AM-GM) inequality, ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖 ≥ ∏𝑖𝑖 𝑣𝑣𝑖𝑖
𝛼𝛼𝑖𝑖. If we take 

𝑢𝑢𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖, then ∑𝑖𝑖 𝑢𝑢𝑖𝑖 ≥ ∏𝑖𝑖 (𝑢𝑢𝑖𝑖
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 and the equality holds when 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖
∑𝑖𝑖 𝑢𝑢𝑖𝑖

.                ■ 

Thus, by using AGMA, the sub-problem P3.3 is changed as follows  

 𝐏𝐏𝐏𝐏. 𝟒𝟒: min
𝒑𝒑𝑫𝑫𝑫𝑫,𝒑𝒑𝑼𝑼𝑼𝑼

∏𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝜎𝜎2+∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛   

× ∏
𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ

(𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛

 

 𝐬𝐬. 𝐭𝐭. ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 ,   𝑚𝑚 ∈ 𝒰𝒰,   (31) 

 ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 , 𝑚𝑚 ∈ 𝒰𝒰,     (32) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷′ )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝐷𝐷𝐷𝐷, 𝑏𝑏 ∈ ℬ,    (33) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑚𝑚′
𝑛𝑛 |2

𝐷̃𝐷′ )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝑈𝑈𝑈𝑈, 𝑏𝑏 ∈ ℬ,    (34) 

 (18), (19). 
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�

(33)

� (34)

( ) ( )18 ,   19 .

where D , 'D , D , 'D  are given by 

�
� where mnθ , bnθ , 'bmnθ , ''bmnθ  are defined as  

� (35)

� (36)

� (37)

� (38)

where ' '
UL val
b m np −  and ' '

DL val
b m np −  are respectively the values of 

transmit powers of the UEs and BSs obtained in the previous 
iteration (i.e., the power control sub-problem). It can be 
proved that the problem P3.4 is a geometric programming 
(GP) [36]. As expressed in [38], a GP has a general form as 
follows 

( )0min    
x

f x

( ). .    1,    1,..., ,if x i m≤ =s t �
(39)

( )    1,    1,..., ,ig x i p= =

 where if , ig  are posynomial and monomial functions, 
respectively, and x  is the optimization variable. In order 
to prove that P3.4 is a GP, we show that the objective 
function of P3.4 is posynomial. In addition, since the 
right hand side of all constraints in P3.4 are constant, we 

can rewrite all constraints in the form of ( ) 1if x ≤ . The 
objective function and left hand side of all constraints 
(19a)-(19d) are the multiplication of liner terms (e.g., in 
the form of ( ) ( )( ) ( )2 2 2 4

1 2 1 2 1 2 1 2,f x x x x x x x xσ σ σ σ= + + = + + + ). 
Thus, the objective function and constraints (19a)-(19d) are 
the summation of monomial functions (i.e., posynomial). 
Furthermore, the constraints (18) and (19) are monomial 

functions (a spacial case of posynomial) in terms of ,DL ULp p
. Consequently, P3.4 is a GP. The whole process to solve P1 
or P2 sub-optimally is summarized in Algorithm 1. In this 
algorithm, first, the values of transmit powers in DL and UL 
are initialized to maximum value. Then, the problem P3.2 is 
solved at line 2 to find the association vectors x and y. At line 
3, we apply the following heuristic relation 

( )
( )* ,

, ,

1         , argmax  

0                                 .
bm

n
b mn b n

val b m n

if b n x
x x

otherwise

′
′

′ ′
 == = 


� (40)

The main reason to use (40) is to speed up the simulations 
by removing small value variables. For example, when the 
solution of the first sub-problem is [0.99 0.001 0.009], we can 
reduce the run time of the algorithm by setting small value 
variables to be zero and consider [1 0 0] for the next step. It 

should be noted that in line 3, *y  is obtained by applying (40) 

on the values of , ,b m ny . The power allocation sub-problem 
P3.4 is solved in line 4 to find the sub-optimal values of 
transmit powers. This procedure is iteratively continues until 
the objective function meets the convergence condition. 
The convergence condition is that the difference of the 
objective function in two consequent iterations to be less than 

0.001=ò . It is worth mentioning that in our simulations 
we did not observe any performance loss by using equation 
(40). 

5- Numerical Results
In this section, we evaluate the proposed algorithms 

numerically. We assume that the MBS and SBSs’ locations 
are fixed and UEs are uniformly distributed in 2-D plane, as 
shown in Fig. 2. 

The optimization variables and simulation parameters are 
listed in Table 3.

Fig. 3(a) shows the sum rate of network in nats/s/Hz 
versus the backhual capacity of BSs for decoupled uplink/
downlink association (DUDA) and coupled uplink/downlink 
association (CUDA) modes. We observe that the sum rate 
in the CUDA scenario is lower than that of DUDA one. In 

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑𝐾𝐾
𝑘𝑘=1 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), where 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐𝑘𝑘𝑥𝑥1

𝑎𝑎1𝑘𝑘 ⋯ 𝑥𝑥𝑛𝑛
𝑎𝑎𝑛𝑛𝑛𝑛 is a monomial 

function, 𝐾𝐾 is the upper bound of the summation, 𝑐𝑐𝑘𝑘 ≥0, and 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℝ.  

Lemma 1 Let 𝑔𝑔(𝑥𝑥) = ∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑥𝑥) be a posynomial function, then 𝑔𝑔(𝑥𝑥) ≥ 𝑔̃𝑔(𝑥𝑥) = ∏𝑖𝑖 (𝑢𝑢𝑖𝑖(𝑥𝑥)
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 (∑𝑖𝑖 𝛼𝛼𝑖𝑖 = 1) 

is the Arithmetic-Geometric Mean Approximation (AGMA) of g(x). If 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖(𝑥𝑥0)
𝑔𝑔(𝑥𝑥0)  then it will be the best 

local minimum approximation [26].  

Proof. Consider Arithmetic Mean Geometric Mean (AM-GM) inequality, ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖 ≥ ∏𝑖𝑖 𝑣𝑣𝑖𝑖
𝛼𝛼𝑖𝑖. If we take 

𝑢𝑢𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖, then ∑𝑖𝑖 𝑢𝑢𝑖𝑖 ≥ ∏𝑖𝑖 (𝑢𝑢𝑖𝑖
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 and the equality holds when 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖
∑𝑖𝑖 𝑢𝑢𝑖𝑖

.                ■ 

Thus, by using AGMA, the sub-problem P3.3 is changed as follows  

 𝐏𝐏𝐏𝐏. 𝟒𝟒: min
𝒑𝒑𝑫𝑫𝑫𝑫,𝒑𝒑𝑼𝑼𝑼𝑼

∏𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝜎𝜎2+∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛   

× ∏
𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ

(𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛

 

 𝐬𝐬. 𝐭𝐭. ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 ,   𝑚𝑚 ∈ 𝒰𝒰,   (31) 

 ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 , 𝑚𝑚 ∈ 𝒰𝒰,     (32) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷′ )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝐷𝐷𝐷𝐷, 𝑏𝑏 ∈ ℬ,    (33) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑚𝑚′
𝑛𝑛 |2

𝐷̃𝐷′ )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝑈𝑈𝑈𝑈, 𝑏𝑏 ∈ ℬ,    (34) 

 (18), (19). 

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑𝐾𝐾
𝑘𝑘=1 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), where 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐𝑘𝑘𝑥𝑥1

𝑎𝑎1𝑘𝑘 ⋯ 𝑥𝑥𝑛𝑛
𝑎𝑎𝑛𝑛𝑛𝑛 is a monomial 

function, 𝐾𝐾 is the upper bound of the summation, 𝑐𝑐𝑘𝑘 ≥0, and 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℝ.  

Lemma 1 Let 𝑔𝑔(𝑥𝑥) = ∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑥𝑥) be a posynomial function, then 𝑔𝑔(𝑥𝑥) ≥ 𝑔̃𝑔(𝑥𝑥) = ∏𝑖𝑖 (𝑢𝑢𝑖𝑖(𝑥𝑥)
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 (∑𝑖𝑖 𝛼𝛼𝑖𝑖 = 1) 

is the Arithmetic-Geometric Mean Approximation (AGMA) of g(x). If 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖(𝑥𝑥0)
𝑔𝑔(𝑥𝑥0)  then it will be the best 

local minimum approximation [26].  

Proof. Consider Arithmetic Mean Geometric Mean (AM-GM) inequality, ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖 ≥ ∏𝑖𝑖 𝑣𝑣𝑖𝑖
𝛼𝛼𝑖𝑖. If we take 

𝑢𝑢𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖, then ∑𝑖𝑖 𝑢𝑢𝑖𝑖 ≥ ∏𝑖𝑖 (𝑢𝑢𝑖𝑖
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 and the equality holds when 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖
∑𝑖𝑖 𝑢𝑢𝑖𝑖

.                ■ 

Thus, by using AGMA, the sub-problem P3.3 is changed as follows  

 𝐏𝐏𝐏𝐏. 𝟒𝟒: min
𝒑𝒑𝑫𝑫𝑫𝑫,𝒑𝒑𝑼𝑼𝑼𝑼

∏𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝜎𝜎2+∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛   

× ∏
𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ

(𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛

 

 𝐬𝐬. 𝐭𝐭. ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 ,   𝑚𝑚 ∈ 𝒰𝒰,   (31) 

 ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 , 𝑚𝑚 ∈ 𝒰𝒰,     (32) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷′ )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝐷𝐷𝐷𝐷, 𝑏𝑏 ∈ ℬ,    (33) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑚𝑚′
𝑛𝑛 |2

𝐷̃𝐷′ )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝑈𝑈𝑈𝑈, 𝑏𝑏 ∈ ℬ,    (34) 

 (18), (19). 

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑𝐾𝐾
𝑘𝑘=1 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), where 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐𝑘𝑘𝑥𝑥1

𝑎𝑎1𝑘𝑘 ⋯ 𝑥𝑥𝑛𝑛
𝑎𝑎𝑛𝑛𝑛𝑛 is a monomial 

function, 𝐾𝐾 is the upper bound of the summation, 𝑐𝑐𝑘𝑘 ≥0, and 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℝ.  

Lemma 1 Let 𝑔𝑔(𝑥𝑥) = ∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑥𝑥) be a posynomial function, then 𝑔𝑔(𝑥𝑥) ≥ 𝑔̃𝑔(𝑥𝑥) = ∏𝑖𝑖 (𝑢𝑢𝑖𝑖(𝑥𝑥)
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 (∑𝑖𝑖 𝛼𝛼𝑖𝑖 = 1) 

is the Arithmetic-Geometric Mean Approximation (AGMA) of g(x). If 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖(𝑥𝑥0)
𝑔𝑔(𝑥𝑥0)  then it will be the best 

local minimum approximation [26].  

Proof. Consider Arithmetic Mean Geometric Mean (AM-GM) inequality, ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖 ≥ ∏𝑖𝑖 𝑣𝑣𝑖𝑖
𝛼𝛼𝑖𝑖. If we take 

𝑢𝑢𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖, then ∑𝑖𝑖 𝑢𝑢𝑖𝑖 ≥ ∏𝑖𝑖 (𝑢𝑢𝑖𝑖
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 and the equality holds when 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖
∑𝑖𝑖 𝑢𝑢𝑖𝑖

.                ■ 

Thus, by using AGMA, the sub-problem P3.3 is changed as follows  

 𝐏𝐏𝐏𝐏. 𝟒𝟒: min
𝒑𝒑𝑫𝑫𝑫𝑫,𝒑𝒑𝑼𝑼𝑼𝑼

∏𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝜎𝜎2+∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛   

× ∏
𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ

(𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛

 

 𝐬𝐬. 𝐭𝐭. ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 ,   𝑚𝑚 ∈ 𝒰𝒰,   (31) 

 ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 , 𝑚𝑚 ∈ 𝒰𝒰,     (32) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷′ )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝐷𝐷𝐷𝐷, 𝑏𝑏 ∈ ℬ,    (33) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑚𝑚′
𝑛𝑛 |2

𝐷̃𝐷′ )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝑈𝑈𝑈𝑈, 𝑏𝑏 ∈ ℬ,    (34) 

 (18), (19). 

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑𝐾𝐾
𝑘𝑘=1 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), where 𝑓𝑓𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐𝑘𝑘𝑥𝑥1

𝑎𝑎1𝑘𝑘 ⋯ 𝑥𝑥𝑛𝑛
𝑎𝑎𝑛𝑛𝑛𝑛 is a monomial 

function, 𝐾𝐾 is the upper bound of the summation, 𝑐𝑐𝑘𝑘 ≥0, and 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℝ.  

Lemma 1 Let 𝑔𝑔(𝑥𝑥) = ∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑥𝑥) be a posynomial function, then 𝑔𝑔(𝑥𝑥) ≥ 𝑔̃𝑔(𝑥𝑥) = ∏𝑖𝑖 (𝑢𝑢𝑖𝑖(𝑥𝑥)
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 (∑𝑖𝑖 𝛼𝛼𝑖𝑖 = 1) 

is the Arithmetic-Geometric Mean Approximation (AGMA) of g(x). If 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖(𝑥𝑥0)
𝑔𝑔(𝑥𝑥0)  then it will be the best 

local minimum approximation [26].  

Proof. Consider Arithmetic Mean Geometric Mean (AM-GM) inequality, ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖 ≥ ∏𝑖𝑖 𝑣𝑣𝑖𝑖
𝛼𝛼𝑖𝑖. If we take 

𝑢𝑢𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖, then ∑𝑖𝑖 𝑢𝑢𝑖𝑖 ≥ ∏𝑖𝑖 (𝑢𝑢𝑖𝑖
𝛼𝛼𝑖𝑖

)𝛼𝛼𝑖𝑖 and the equality holds when 𝛼𝛼𝑖𝑖 = 𝑢𝑢𝑖𝑖
∑𝑖𝑖 𝑢𝑢𝑖𝑖

.                ■ 

Thus, by using AGMA, the sub-problem P3.3 is changed as follows  

 𝐏𝐏𝐏𝐏. 𝟒𝟒: min
𝒑𝒑𝑫𝑫𝑫𝑫,𝒑𝒑𝑼𝑼𝑼𝑼

∏𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (𝜎𝜎2+∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛   

× ∏
𝑏𝑏∈ℬ,𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ

(𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛

 

 𝐬𝐬. 𝐭𝐭. ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷 )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 ,   𝑚𝑚 ∈ 𝒰𝒰,   (31) 

 ∏𝑏𝑏∈ℬ,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝐷̃𝐷 )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒−𝑅𝑅𝑚𝑚

𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 , 𝑚𝑚 ∈ 𝒰𝒰,     (32) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝐷𝐷′ )𝑥𝑥𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝐷𝐷𝐷𝐷, 𝑏𝑏 ∈ ℬ,    (33) 

 ∏𝑚𝑚∈𝒰𝒰,𝑛𝑛∈ℛ (
𝜎𝜎2+∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰

𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑚𝑚′
𝑛𝑛 |2

𝐷̃𝐷′ )𝑦𝑦𝑏𝑏𝑏𝑏
𝑛𝑛 ≤ 𝑒𝑒𝐶𝐶𝑏𝑏

𝑈𝑈𝑈𝑈, 𝑏𝑏 ∈ ℬ,    (34) 

 (18), (19). 
  where 𝐷𝐷, 𝐷𝐷′, 𝐷̃𝐷, 𝐷𝐷′̃ are given by  

 𝐷̃𝐷 = 𝜃𝜃𝑏𝑏𝑏𝑏
𝜃𝜃𝑏𝑏𝑏𝑏

−1
∏𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 ( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏
)

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2
𝜃𝜃𝑏𝑏𝑏𝑏 , 

 𝐷𝐷 = 𝜃𝜃𝑚𝑚𝑚𝑚
𝜃𝜃𝑚𝑚𝑚𝑚−1 ∏𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 ( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2/𝜃𝜃𝑚𝑚𝑚𝑚
)

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2
𝜃𝜃𝑚𝑚𝑚𝑚 , 

 𝐷𝐷′ = 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′−1 ∏ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′)
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷−𝑣𝑣𝑎𝑎𝑎𝑎|ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′ , 

  𝐷̃𝐷′ = 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′−1 ∏ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝐿𝐿 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′)
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ . 

 where 𝜃𝜃𝑚𝑚𝑚𝑚, 𝜃𝜃𝑏𝑏𝑏𝑏, 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′, 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ are defined as   

 𝜃𝜃𝑚𝑚𝑚𝑚 = 𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2,      (35) 

 𝜃𝜃𝑏𝑏𝑏𝑏 = 𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2,      (36) 

 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′ = 𝜎𝜎2 + ∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2,      (37) 

 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ = 𝜎𝜎2 + ∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2.      (38) 

where 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣 and 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣 are respectively the values of transmit powers of the UEs and BSs obtained in 

the previous iteration (i.e., the power control sub-problem). It can be proved that the problem P3.4 is a 

geometric programming (GP) [36]. As expressed in [38], a GP has a general form as follows  

 min
𝑥𝑥

    𝑓𝑓0(𝑥𝑥) 

 𝐬𝐬. 𝐭𝐭.    𝑓𝑓𝑖𝑖(𝑥𝑥) ≤ 1,    𝑖𝑖 = 1, . . . , 𝑚𝑚,        (39) 

     𝑔𝑔𝑖𝑖(𝑥𝑥) = 1,    𝑖𝑖 = 1, . . . , 𝑝𝑝, 

  where 𝐷𝐷, 𝐷𝐷′, 𝐷̃𝐷, 𝐷𝐷′̃ are given by  

 𝐷̃𝐷 = 𝜃𝜃𝑏𝑏𝑏𝑏
𝜃𝜃𝑏𝑏𝑏𝑏

−1
∏𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 ( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏
)

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2
𝜃𝜃𝑏𝑏𝑏𝑏 , 

 𝐷𝐷 = 𝜃𝜃𝑚𝑚𝑚𝑚
𝜃𝜃𝑚𝑚𝑚𝑚−1 ∏𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 ( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2/𝜃𝜃𝑚𝑚𝑚𝑚
)

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2
𝜃𝜃𝑚𝑚𝑚𝑚 , 

 𝐷𝐷′ = 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′−1 ∏ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′)
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷−𝑣𝑣𝑎𝑎𝑎𝑎|ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′ , 

  𝐷̃𝐷′ = 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′−1 ∏ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝐿𝐿 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′)
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ . 

 where 𝜃𝜃𝑚𝑚𝑚𝑚, 𝜃𝜃𝑏𝑏𝑏𝑏, 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′, 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ are defined as   

 𝜃𝜃𝑚𝑚𝑚𝑚 = 𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2,      (35) 

 𝜃𝜃𝑏𝑏𝑏𝑏 = 𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2,      (36) 

 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′ = 𝜎𝜎2 + ∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2,      (37) 

 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ = 𝜎𝜎2 + ∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2.      (38) 

where 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣 and 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣 are respectively the values of transmit powers of the UEs and BSs obtained in 

the previous iteration (i.e., the power control sub-problem). It can be proved that the problem P3.4 is a 

geometric programming (GP) [36]. As expressed in [38], a GP has a general form as follows  

 min
𝑥𝑥

    𝑓𝑓0(𝑥𝑥) 

 𝐬𝐬. 𝐭𝐭.    𝑓𝑓𝑖𝑖(𝑥𝑥) ≤ 1,    𝑖𝑖 = 1, . . . , 𝑚𝑚,        (39) 

     𝑔𝑔𝑖𝑖(𝑥𝑥) = 1,    𝑖𝑖 = 1, . . . , 𝑝𝑝, 

  where 𝐷𝐷, 𝐷𝐷′, 𝐷̃𝐷, 𝐷𝐷′̃ are given by  

 𝐷̃𝐷 = 𝜃𝜃𝑏𝑏𝑏𝑏
𝜃𝜃𝑏𝑏𝑏𝑏

−1
∏𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 ( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏
)

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2
𝜃𝜃𝑏𝑏𝑏𝑏 , 

 𝐷𝐷 = 𝜃𝜃𝑚𝑚𝑚𝑚
𝜃𝜃𝑚𝑚𝑚𝑚−1 ∏𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 ( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2/𝜃𝜃𝑚𝑚𝑚𝑚
)

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2
𝜃𝜃𝑚𝑚𝑚𝑚 , 

 𝐷𝐷′ = 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′−1 ∏ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′)
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷−𝑣𝑣𝑎𝑎𝑎𝑎|ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′ , 

  𝐷̃𝐷′ = 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′−1 ∏ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝐿𝐿 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′)
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ . 

 where 𝜃𝜃𝑚𝑚𝑚𝑚, 𝜃𝜃𝑏𝑏𝑏𝑏, 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′, 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ are defined as   

 𝜃𝜃𝑚𝑚𝑚𝑚 = 𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2,      (35) 

 𝜃𝜃𝑏𝑏𝑏𝑏 = 𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2,      (36) 

 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′ = 𝜎𝜎2 + ∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2,      (37) 

 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ = 𝜎𝜎2 + ∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2.      (38) 

where 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣 and 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣 are respectively the values of transmit powers of the UEs and BSs obtained in 

the previous iteration (i.e., the power control sub-problem). It can be proved that the problem P3.4 is a 

geometric programming (GP) [36]. As expressed in [38], a GP has a general form as follows  

 min
𝑥𝑥

    𝑓𝑓0(𝑥𝑥) 

 𝐬𝐬. 𝐭𝐭.    𝑓𝑓𝑖𝑖(𝑥𝑥) ≤ 1,    𝑖𝑖 = 1, . . . , 𝑚𝑚,        (39) 

     𝑔𝑔𝑖𝑖(𝑥𝑥) = 1,    𝑖𝑖 = 1, . . . , 𝑝𝑝, 

  where 𝐷𝐷, 𝐷𝐷′, 𝐷̃𝐷, 𝐷𝐷′̃ are given by  

 𝐷̃𝐷 = 𝜃𝜃𝑏𝑏𝑏𝑏
𝜃𝜃𝑏𝑏𝑏𝑏

−1
∏𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 ( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏
)

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2
𝜃𝜃𝑏𝑏𝑏𝑏 , 

 𝐷𝐷 = 𝜃𝜃𝑚𝑚𝑚𝑚
𝜃𝜃𝑚𝑚𝑚𝑚−1 ∏𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 ( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2/𝜃𝜃𝑚𝑚𝑚𝑚
)

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2
𝜃𝜃𝑚𝑚𝑚𝑚 , 

 𝐷𝐷′ = 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′−1 ∏ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′)
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷−𝑣𝑣𝑎𝑎𝑎𝑎|ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′ , 

  𝐷̃𝐷′ = 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′−1 ∏ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝐿𝐿 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′)
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ . 

 where 𝜃𝜃𝑚𝑚𝑚𝑚, 𝜃𝜃𝑏𝑏𝑏𝑏, 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′, 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ are defined as   

 𝜃𝜃𝑚𝑚𝑚𝑚 = 𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2,      (35) 

 𝜃𝜃𝑏𝑏𝑏𝑏 = 𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2,      (36) 

 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′ = 𝜎𝜎2 + ∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2,      (37) 

 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ = 𝜎𝜎2 + ∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2.      (38) 

where 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣 and 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣 are respectively the values of transmit powers of the UEs and BSs obtained in 

the previous iteration (i.e., the power control sub-problem). It can be proved that the problem P3.4 is a 

geometric programming (GP) [36]. As expressed in [38], a GP has a general form as follows  

 min
𝑥𝑥

    𝑓𝑓0(𝑥𝑥) 

 𝐬𝐬. 𝐭𝐭.    𝑓𝑓𝑖𝑖(𝑥𝑥) ≤ 1,    𝑖𝑖 = 1, . . . , 𝑚𝑚,        (39) 

     𝑔𝑔𝑖𝑖(𝑥𝑥) = 1,    𝑖𝑖 = 1, . . . , 𝑝𝑝, 

  where 𝐷𝐷, 𝐷𝐷′, 𝐷̃𝐷, 𝐷𝐷′̃ are given by  

 𝐷̃𝐷 = 𝜃𝜃𝑏𝑏𝑏𝑏
𝜃𝜃𝑏𝑏𝑏𝑏

−1
∏𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 ( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏
)

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2
𝜃𝜃𝑏𝑏𝑏𝑏 , 

 𝐷𝐷 = 𝜃𝜃𝑚𝑚𝑚𝑚
𝜃𝜃𝑚𝑚𝑚𝑚−1 ∏𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 ( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2/𝜃𝜃𝑚𝑚𝑚𝑚
)

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2
𝜃𝜃𝑚𝑚𝑚𝑚 , 

 𝐷𝐷′ = 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′−1 ∏ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′)
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷−𝑣𝑣𝑎𝑎𝑎𝑎|ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′ , 

  𝐷̃𝐷′ = 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′−1 ∏ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝐿𝐿 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′)
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ . 

 where 𝜃𝜃𝑚𝑚𝑚𝑚, 𝜃𝜃𝑏𝑏𝑏𝑏, 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′, 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ are defined as   

 𝜃𝜃𝑚𝑚𝑚𝑚 = 𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2,      (35) 

 𝜃𝜃𝑏𝑏𝑏𝑏 = 𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2,      (36) 

 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′ = 𝜎𝜎2 + ∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2,      (37) 

 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ = 𝜎𝜎2 + ∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2.      (38) 

where 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣 and 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣 are respectively the values of transmit powers of the UEs and BSs obtained in 

the previous iteration (i.e., the power control sub-problem). It can be proved that the problem P3.4 is a 

geometric programming (GP) [36]. As expressed in [38], a GP has a general form as follows  

 min
𝑥𝑥

    𝑓𝑓0(𝑥𝑥) 

 𝐬𝐬. 𝐭𝐭.    𝑓𝑓𝑖𝑖(𝑥𝑥) ≤ 1,    𝑖𝑖 = 1, . . . , 𝑚𝑚,        (39) 

     𝑔𝑔𝑖𝑖(𝑥𝑥) = 1,    𝑖𝑖 = 1, . . . , 𝑝𝑝, 

  where 𝐷𝐷, 𝐷𝐷′, 𝐷̃𝐷, 𝐷𝐷′̃ are given by  

 𝐷̃𝐷 = 𝜃𝜃𝑏𝑏𝑏𝑏
𝜃𝜃𝑏𝑏𝑏𝑏

−1
∏𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 ( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏
)

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2
𝜃𝜃𝑏𝑏𝑏𝑏 , 

 𝐷𝐷 = 𝜃𝜃𝑚𝑚𝑚𝑚
𝜃𝜃𝑚𝑚𝑚𝑚−1 ∏𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 ( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2/𝜃𝜃𝑚𝑚𝑚𝑚
)

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2
𝜃𝜃𝑚𝑚𝑚𝑚 , 

 𝐷𝐷′ = 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′−1 ∏ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′)
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷−𝑣𝑣𝑎𝑎𝑎𝑎|ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′ , 

  𝐷̃𝐷′ = 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′−1 ∏ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝐿𝐿 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′)
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ . 

 where 𝜃𝜃𝑚𝑚𝑚𝑚, 𝜃𝜃𝑏𝑏𝑏𝑏, 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′, 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ are defined as   

 𝜃𝜃𝑚𝑚𝑚𝑚 = 𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2,      (35) 

 𝜃𝜃𝑏𝑏𝑏𝑏 = 𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2,      (36) 

 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′ = 𝜎𝜎2 + ∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2,      (37) 

 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ = 𝜎𝜎2 + ∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2.      (38) 

where 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣 and 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣 are respectively the values of transmit powers of the UEs and BSs obtained in 

the previous iteration (i.e., the power control sub-problem). It can be proved that the problem P3.4 is a 

geometric programming (GP) [36]. As expressed in [38], a GP has a general form as follows  

 min
𝑥𝑥

    𝑓𝑓0(𝑥𝑥) 

 𝐬𝐬. 𝐭𝐭.    𝑓𝑓𝑖𝑖(𝑥𝑥) ≤ 1,    𝑖𝑖 = 1, . . . , 𝑚𝑚,        (39) 

     𝑔𝑔𝑖𝑖(𝑥𝑥) = 1,    𝑖𝑖 = 1, . . . , 𝑝𝑝, 

  where 𝐷𝐷, 𝐷𝐷′, 𝐷̃𝐷, 𝐷𝐷′̃ are given by  

 𝐷̃𝐷 = 𝜃𝜃𝑏𝑏𝑏𝑏
𝜃𝜃𝑏𝑏𝑏𝑏

−1
∏𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 ( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏
)

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2
𝜃𝜃𝑏𝑏𝑏𝑏 , 

 𝐷𝐷 = 𝜃𝜃𝑚𝑚𝑚𝑚
𝜃𝜃𝑚𝑚𝑚𝑚−1 ∏𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 ( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2/𝜃𝜃𝑚𝑚𝑚𝑚
)

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2
𝜃𝜃𝑚𝑚𝑚𝑚 , 

 𝐷𝐷′ = 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′−1 ∏ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′)
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷−𝑣𝑣𝑎𝑎𝑎𝑎|ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′ , 

  𝐷̃𝐷′ = 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′−1 ∏ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝐿𝐿 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′)
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ . 

 where 𝜃𝜃𝑚𝑚𝑚𝑚, 𝜃𝜃𝑏𝑏𝑏𝑏, 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′, 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ are defined as   

 𝜃𝜃𝑚𝑚𝑚𝑚 = 𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2,      (35) 

 𝜃𝜃𝑏𝑏𝑏𝑏 = 𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2,      (36) 

 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′ = 𝜎𝜎2 + ∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2,      (37) 

 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ = 𝜎𝜎2 + ∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2.      (38) 

where 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣 and 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣 are respectively the values of transmit powers of the UEs and BSs obtained in 

the previous iteration (i.e., the power control sub-problem). It can be proved that the problem P3.4 is a 

geometric programming (GP) [36]. As expressed in [38], a GP has a general form as follows  

 min
𝑥𝑥

    𝑓𝑓0(𝑥𝑥) 

 𝐬𝐬. 𝐭𝐭.    𝑓𝑓𝑖𝑖(𝑥𝑥) ≤ 1,    𝑖𝑖 = 1, . . . , 𝑚𝑚,        (39) 

     𝑔𝑔𝑖𝑖(𝑥𝑥) = 1,    𝑖𝑖 = 1, . . . , 𝑝𝑝, 

  where 𝐷𝐷, 𝐷𝐷′, 𝐷̃𝐷, 𝐷𝐷′̃ are given by  

 𝐷̃𝐷 = 𝜃𝜃𝑏𝑏𝑏𝑏
𝜃𝜃𝑏𝑏𝑏𝑏

−1
∏𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 ( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏
)

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2
𝜃𝜃𝑏𝑏𝑏𝑏 , 

 𝐷𝐷 = 𝜃𝜃𝑚𝑚𝑚𝑚
𝜃𝜃𝑚𝑚𝑚𝑚−1 ∏𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 ( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2/𝜃𝜃𝑚𝑚𝑚𝑚
)

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2
𝜃𝜃𝑚𝑚𝑚𝑚 , 

 𝐷𝐷′ = 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′−1 ∏ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′)
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷−𝑣𝑣𝑎𝑎𝑎𝑎|ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′ , 

  𝐷̃𝐷′ = 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′−1 ∏ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝐿𝐿 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′)
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ . 

 where 𝜃𝜃𝑚𝑚𝑚𝑚, 𝜃𝜃𝑏𝑏𝑏𝑏, 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′, 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ are defined as   

 𝜃𝜃𝑚𝑚𝑚𝑚 = 𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2,      (35) 

 𝜃𝜃𝑏𝑏𝑏𝑏 = 𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2,      (36) 

 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′ = 𝜎𝜎2 + ∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2,      (37) 

 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ = 𝜎𝜎2 + ∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2.      (38) 

where 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣 and 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣 are respectively the values of transmit powers of the UEs and BSs obtained in 

the previous iteration (i.e., the power control sub-problem). It can be proved that the problem P3.4 is a 

geometric programming (GP) [36]. As expressed in [38], a GP has a general form as follows  

 min
𝑥𝑥

    𝑓𝑓0(𝑥𝑥) 

 𝐬𝐬. 𝐭𝐭.    𝑓𝑓𝑖𝑖(𝑥𝑥) ≤ 1,    𝑖𝑖 = 1, . . . , 𝑚𝑚,        (39) 

     𝑔𝑔𝑖𝑖(𝑥𝑥) = 1,    𝑖𝑖 = 1, . . . , 𝑝𝑝, 

  where 𝐷𝐷, 𝐷𝐷′, 𝐷̃𝐷, 𝐷𝐷′̃ are given by  

 𝐷̃𝐷 = 𝜃𝜃𝑏𝑏𝑏𝑏
𝜃𝜃𝑏𝑏𝑏𝑏

−1
∏𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 ( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈 |ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏
)

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2
𝜃𝜃𝑏𝑏𝑏𝑏 , 

 𝐷𝐷 = 𝜃𝜃𝑚𝑚𝑚𝑚
𝜃𝜃𝑚𝑚𝑚𝑚−1 ∏𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 ( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2/𝜃𝜃𝑚𝑚𝑚𝑚
)

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2
𝜃𝜃𝑚𝑚𝑚𝑚 , 

 𝐷𝐷′ = 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′−1 ∏ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷 |ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′)
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷−𝑣𝑣𝑎𝑎𝑎𝑎|ℎ𝑏𝑏′𝑚𝑚
𝑛𝑛 |2

𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′ , 

  𝐷̃𝐷′ = 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′−1 ∏ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

( 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝐿𝐿 |ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2/𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′)
𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′
𝑛𝑛 |2

𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ . 

 where 𝜃𝜃𝑚𝑚𝑚𝑚, 𝜃𝜃𝑏𝑏𝑏𝑏, 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′, 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ are defined as   

 𝜃𝜃𝑚𝑚𝑚𝑚 = 𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2,      (35) 

 𝜃𝜃𝑏𝑏𝑏𝑏 = 𝜎𝜎2 + ∑𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2,      (36) 

 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′ = 𝜎𝜎2 + ∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏′𝑚𝑚

𝑛𝑛 |2,      (37) 

 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏′′ = 𝜎𝜎2 + ∑ 𝑏𝑏′∈ℬ,𝑚𝑚′∈𝒰𝒰
𝑏𝑏′≠𝑏𝑏,𝑚𝑚′≠𝑚𝑚

𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣|ℎ𝑏𝑏𝑏𝑏′

𝑛𝑛 |2.      (38) 

where 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛
𝑈𝑈𝑈𝑈−𝑣𝑣𝑣𝑣𝑣𝑣 and 𝑝𝑝𝑏𝑏′𝑚𝑚′𝑛𝑛

𝐷𝐷𝐷𝐷−𝑣𝑣𝑣𝑣𝑣𝑣 are respectively the values of transmit powers of the UEs and BSs obtained in 

the previous iteration (i.e., the power control sub-problem). It can be proved that the problem P3.4 is a 

geometric programming (GP) [36]. As expressed in [38], a GP has a general form as follows  

 min
𝑥𝑥

    𝑓𝑓0(𝑥𝑥) 

 𝐬𝐬. 𝐭𝐭.    𝑓𝑓𝑖𝑖(𝑥𝑥) ≤ 1,    𝑖𝑖 = 1, . . . , 𝑚𝑚,        (39) 

     𝑔𝑔𝑖𝑖(𝑥𝑥) = 1,    𝑖𝑖 = 1, . . . , 𝑝𝑝, 
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addition, as the backhaul capacity becomes larger the network 
throughput increases.    

Fig. 3(b) illustrates the sum-rate of network in terms of the 
number of RBs allocated in either DL or UL. We observe that 
in both CUDA and DUDA, the sum rate of network increases 
as the number of RBs goes higher. In addition, results reveal 
that by applying the UL/DL decoupled association the sum 
rate is improved, where the decoupling gain is higher for a 
lower number of RBs. This is due to the fact that at larges 
number of RBs, the inference power coming from neighbor 
users or BSs is canceled since the orthogonal channels are 
increased than before.

In Fig. 3(c) the effect of the minimum required 

transmission rate (QoS constraint) has been evaluated. As 
shown in Fig. 5(c), we observe that the sum-rate decreases 

as the minimum required transmission rate ( minR ) of UEs 
becomes larger. This is due to the fact that with the increase 

of minR  the feasible region of the optimization problem is 
restricted and its optimum value is changed. We can also 

conclude that the decoupling gain is higher as minR  decrease.
It is worth mentioning that we can consider different 

values for minR  of each UE, and realize a multi-class of the 
service access network. The practical application of this 
approach is to support machine-type communication in the 
internet of things (IoT) application besides ordinary cellular 
communications. IoT sensors have limited battery and need 
low rate transmission, whereas ordinary UEs need a higher 
transmission rate and can consume more power. Thus, by 
selecting appropriate  minR for IoT sensors and ordinary UEs, 
we can support both IoT sensors and UEs in the proposed 
FiWi-HetNets.

To evaluate the effect of different backhaul technologies 
in the throughput of FiWi-HetNet, we considered three PON 
conFigurations with splitting ratios of 64, 128, and 256, where 
each ONU is connected to an MBS and each MBS support 4 
SBSs. In addition, we assume that the number of UEs in these 
scenarios is 10×64, 10×128, and 10×256 UEs. In addition, for 
simplicity, only the DL transmission is considered and the 
QoS constraint is ignored. In Fig. 4, the average throughput 
per MBS and its corresponding SBSs (aerial throughput 
supported by each ONU) are shown for various GPON 
standards. We observe that for the splitting ratio of 256, 
the throughput is increased linearly as we upgrade PON 
technology from GPON to NG-PON2, however, for splitting 
ratios of 128 and 64, the XG-PON and NG-PON2 have the 
same throughput which is higher than that of GPON. This 
saturation is due to the fact that in a low splitting ratio, the 

Algorithm 1. User Association, and Power and RB Allocation. 

𝒑𝒑∗𝑫𝑫𝑫𝑫, 𝒑𝒑∗𝑼𝑼𝑼𝑼, 𝒙𝒙∗, 𝒚𝒚∗
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(i.e., coupled association).
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backhaul capacity of MBS is higher than its capacity at the 
air-interface and as a result upgrading PON technology from 
XG-PON to NG-PON2 does not affect its performance.

3- Conclusion
In this paper, we investigated the optimization problem of 

decoupled DL/UL user association, RB allocation, and power 
control in FiWi-HetNet by considering the backhaul capacity 
limitation and minimum required transmission rate. As the 
formulated optimization problem is MINLP, we separated it 
into two sub-problems and solved them iteratively. We also 
evaluated the effect of backhhaul capacity on the sum rate 

Table 3. Parameters used in simulations 

1

4

10

𝛾𝛾 = 3

𝐶𝐶−𝐷𝐷𝐷𝐷 = 8

𝐶𝐶−𝑈𝑈𝑈𝑈 = 8

𝑅𝑅−𝑄𝑄𝑄𝑄𝑆𝑆𝐷𝐷𝐷𝐷 = 0.2

𝑅𝑅−𝑄𝑄𝑄𝑄𝑆𝑆𝑈𝑈𝑈𝑈 = 0.2

𝜎𝜎2 = 1

𝑃𝑃𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 = 1𝑒𝑒6

𝑃𝑃𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 = 1𝑒𝑒7 𝑃𝑃𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 = 5𝑒𝑒7

𝑁𝑁 = 4

𝜆𝜆 = 10

200

×
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Fig.  4. Sum Rate of the MBS and its corresponding SBSs vs the capacity of fiber backhaul provided by various GPON standards. 

of FiWi-HetNet and showed that as long as the traffic load 
of MBS is higher than its backhaul capacity, upgrading its 
backhaul improves the network throughput. For the cases 
in which the traffic load of MBS is lower than its backhaul 
capacity, the network throughput is saturated to the backhaul 
capacity, and upgrading backhaul technology does not 
improve the FiWi-HetNet throughput.
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