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ABSTRACT:  Detecting ships in marine images is an essential problem in maritime surveillance 
systems. In recent years deep neural networks have been utilized as a tool having high potential to 
overcome the challenges of this application. Unfortunately the performance of such networks greatly 
drops when they are exposed to low size and low contrast optical images which have been captured 
by ground, aerial and satellite based systems. On the other hand, image clutters (e.g. sea waves, cloud 
and wave sequences caused by the floats) may exacerbate this problem. In this paper a new method 
is proposed to improve the performance of deep neural networks in detecting ships in low size and 
low contrast marine images which has been based on the concept of deep stacked extreme learning 
machines. In proposed method the extracted features have more generality in modeling of marine images 
based on superposition of dedicated mapping functions of extreme learning machines. Furthermore they 
have the minimal overlap thanks to performing decorrelation process on features which are propagated 
between network layers. The performance of the proposed method is evaluated on several marine images 
which have been captured in sunny, rainy and hazy conditions. The obtained results are compared with 
some other state-of-the-art detection methods by using standard parameters. Increased F-measure of the 
proposed method (i.e. 3.5 percent compared to its closest alternative) in parallel with its better accuracy, 
recall and precision shows its effectiveness in detecting ships in low size and low contrast marine images.
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1. Introduction
Identification of marine floats in the images is one of the 

most important issues in passive marine monitoring [1]. 
The aim of this procedure is determining the presence of 
the floats based on images taken from various marine scenes 
which subsequently leads to estimate the location and other 
desirable characteristics of the detected floats [1]. 

Generally, such monitoring systems are divided into 
three main categories including ground-based cameras [2, 
3], aerial-based cameras [4, 5] and satellite based solutions 
[6, 7]. The first two types are both older and simpler, but 
have serious limitations, the most important of which are: 
poor concealment, limited space coverage, and the requiring 
to sensor installation and maintenance which all of them 
may be addressed by using satellite-based monitoring. This 
method may itself be divided into SAR images as well as 
optical imaging. Optical satellite images have higher spatial 
resolution than SAR images that are more suitable for the 
purpose of ship monitoring [8].

For several years human interpretation has been the 
most traditional method for interpretation of marine images 

in which the captured images were analyzed by an expert 
human [9]. Although this method has considerable accuracy 
but it is so time consuming, therefore human analyzing is not 
applicable approach especially when it is utilized in a wide area 
which includes multiple cameras. To address this limitation 
the automated methods have been substituted in parallel with 
the expansion of the use of images in the analysis of marine 
scenes [9]. The most important step in automated techniques 
is ship detection in which the presence of a ship or marine 
float in captured images is indicated [10]. A serious challenge 
in ship detection occurs when there is low difference between 
ship and background intensities which leads to either missing 
some floats or false alarms. Furthermore small dimensions 
of floats and overlap of various image components are other 
factors which may decrease the performance of automated 
methods. Finally, optical images are usually disturbed by 
weather conditions, such as clouds or sea waves [8]. These 
limitations caused that automated ship detection still 
remained as an open problem in passive marine monitoring 
domain [11].

Several methods have been introduced to address 
automated ship detection problem in optical images, which 
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the simplest one is making use of static or dynamic thresholds 
[12] which are calculated from the intensity of the pixels. 
Unfortunately, the above approach often leads to detecting 
considerable false objects. The reason for this problem is that 
non-ship objects have the similar intensity distribution as the 
ships, therefore the resultant histograms are not acceptably 
bimodal. In some researches the fuzzy logic is incorporated 
in detecting ships based on this fact that the algorithms in 
this paradigm are able to make better decisions than their 
alternatives by using uncertain data [13]. 

A number of ship detection methods have been proposed 
based on the adoption of the coarse-to-fine strategy, which 
may be illustrated as sequential applying of ship candidate 
extraction and false alarm elimination steps [14].

Multiscale methods have also been widely used for ship 
detection [15, 16]. For instance in wavelet based schemes, the 
images are firstly divided into several sub-sections. In next 
step each section is subjected to multi-resolution transform 
and finally dependence of each section to ship or background 
is determined. Despite of superiority of this scheme against 
usual thresholding, but the accuracy of multi-resolution 
methods drops dramatically in parallel with decrease in image 
contrast. The Gaussian mixture model is another paradigm 
which has been examined to address ship detection problem 
[17]. High computational cost, the unknown number of the 
mixture models and the high sensitivity of this method to 
model parameters are main factors which hamper the use of 
this idea in real marine scenes. 

In some studies a priori coastline data is utilized to detect 
sea region and consequently to detect ships [18]. The high 
sensitivity of the performances of these type of algorithms to 
accurate detection of coastal line is the main parameter which 
hampers their vast application in ship detection. 

In last decade some researches has been focused on ship 
detection by using Artificial Neural Networks (ANNs) [19]. 
Unfortunately, the accuracy of classic ANNs are strongly 
dependent on the extracted features from the image under 
test. The above factors impress the performance of traditional 
neural networks in distinguishing ships from other parts 
of marine image in real world applications. To address the 
limitations of traditional neural networks, Deep Neural 
Networks (DNNs) have been used which led to considerable 
improvement in ship detection thanks to their deep structure 
and ability in multiple level data representation [20]. During 
recent years, several versions of deep learning schemes, has 
been utilized to detect marine objects in different types of 
optical images [21, 22]. Despite of their great potential in 
detecting ships and their valuable specifications such as 
the position and direction [23, 24], but unfortunately deep 
networks mostly require significant amount of training 
data depending on their size. However, in the case of 
marine ships, the amount of training data is small which 
yields poor performance due to overfitting phenomenon. 
Recently Extreme Learning Machines (i.e. ELMs) have been 
proposed to overcome the mentioned problem [25, 26]. This 
type of learning machines randomly choose hidden nodes 
and analytically determine the output weights. In theory, this 

algorithm tends to provide good generalization performance 
at fast learning speed. Despite the above impressive advantages 
but a number of redundant nodes may be generated in ELMs, 
which have a minor effect on the outputs of the network. 
However, the existence of redundant nodes may eventually 
increase the complexity of the network. 

In this paper, a new structure is introduced to improve 
ship detection in low size and low contrast marine images. 
The proposed structure is composed of successive layers; 
each of them is composed of some different ELMs. Each 
ELM extracts a set of features based on its dedicated mapping 
function. Propagating these features trough next layers leads 
to higher level features which are extracted by their own ELMs. 
Since each ELM has its own mapping function, therefore, 
the resultant features have more generality in modeling 
of input images. Additionally the Principal Component 
Analysis (PCA) is applied on features which are transferred 
between layers which performs the final features with the 
least amount of overlap. The paper is organized as follows: 
section 2 includes description of the proposed method for 
ship detection. In Section 3, the results of the applying the 
proposed structure for ship detection are demonstrated. In 
Section 4, the obtained results are compared to some state-
of-the-art structures by using their effective parameters. The 
conclusion is presented in the last section of the paper.

2. Materials and Methods
In this section, firstly ELM networks are briefly 

reviewed. Then the performance of ELM is promoted by 
applying Deep Restricted Boltzmann Machines as a more 
sophisticated structure called as DRBM-ELM. Finally, deep 
stacked ELM is discussed as our proposed scheme for 
improving discrimination capability of features thanks to 
its deep hierarchical mapping in parallel with performing 
decorrelation process.

2-1- ELM Networks
Although Single-Layer Feed-Forward Neural Networks 

(SLFNN) are considered as basic networks among others, but 
they provide the basis for more complex structures. One of 
these structures is Extreme Learning Machine (ELM) which 
is demonstrated in Fig. (1). 

The output function of ELM is defined as follows [27]:
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the input to a next L-dimensional space. Also β  is weight 
vector between hidden and output layers. This model has the 
potential of estimating many complex functions providing 
that proper mapping is selected in the hidden layer. Unlike 
the usual learning methods, ELM not only tries to minimize 
the error of the training data, but also tries to minimize 
the norm of weights belonging to the output. According to 
Bartlett’s Theory, jointly decrease in above parameters may 
lead to more generalization in network. The minimization is 
described as: 

2
opt arg min H T andβ β β = −   	 (2)

In which T and H represent the target vector and hidden layer 
as follows: 

� (3)

2-2- DRBM-ELM Networks
The performance of ELM model may be modified by 

using the sophisticated combination with the Deep Restricted 
Boltzmann Machines (which is called DRBM-ELM for brevity 
in this article) as demonstrated in Fig. (2).

The DRBM-ELM Structure includes two parts: i) A 
non-monitored deep network which is used only to reduce 
the dimension; ii) The ELM model which takes its input 
from the output of the deep network. The former model is 
completely unstructured and layer-by-layer, furthermore, 
the reconstruction error occurs throughout the network 
(fine-tuning). The data labels are not used in this stage, and 
eventually one ELM is independently trained to predict the 
label. 

2-3- Deep Stacked ELM 
The proposed model in this study is Deep Stacked ELM. 

In proposed structure each of successive layers is composed of 
some different ELMs which are trained independently, then 
the obtained outputs are used as the input of the next layer 
after performing decorrelation procedure. The structure of 
Deep Stacked ELM is shown in Fig. (3).The idea behind this 
method is that each of ELMs has its own mapping function, 
therefore each one may obtain better accuracy on a specific 
part of data set. As result, feeding the output of these networks 
to next layer (i.e. extracted features) may lead to more 
generality in modeling of data set. The necessary condition for 
such improvement is that the features which are transferred to 
the next layer have the minimum amount of overlap.

 In order to eliminate the correlation between these 
features the Principal Component Analysis (PCA) is 
performed. Consequently, existing ELMs in the next layer 
are trained with features which have the lowest degree of 
dependency and each of them is best-fitted for a specific 

portion of data. This procedure may be performed in several 
consecutive layers which leads to extracting higher level and 
as far as possible independent features. Finally, an ELM which 
is used in last layer of deep stacked network plays the role of 
a decision maker to recognize type of input data (i.e. ship or 
non-ship). 

The pseudo code of proposed algorithm is presented in 
Fig.s (4-a) and (4-b). Firstly Fig. (4-a) illustrates Inputs of the 
algorithm and subsequently (4-b) describes essential training 
steps of Deep-Stacked-ELM.  

3. Results
In order to evaluate the performance of the proposed 

algorithm it was applied on a set of images containing several 
scenes which either included or didn’t include ships. The 
examined dataset contained totally 1507 maritime images 
and included 544 ship images and 963 non-ship images. 
Furthermore the images may contained several phenomena 
such as sea wave, cloud and wave sequence caused by the ship. 
These effects are called as clutter in the rest of this article. Fig. 
(5) shows some representative frames which contains ships 
and Fig. (6) demonstrates some other frames which contain 
only clutters. These two categories of frames are called ship 
and non-ship images respectively. Table (1) shows the main 
characteristics of the images that are subjected to the methods 

complex functions providing that proper mapping is selected in the hidden layer. Unlike the usual 

learning methods, ELM not only tries to minimize the error of the training data, but also tries to 

minimize the norm of weights belonging to the output. According to Bartlett’s Theory, jointly decrease 

in above parameters may lead to more generalization in network. The minimization is described as:  

   andTH 2
opt minarg −=   (2) 

In which T and H represent the target vector and hidden layer as follows:  

 H=[
ℎ(𝑥𝑥1)
⋮

ℎ(𝑥𝑥𝑛𝑛)
] = [

ℎ1(𝑥𝑥1) ⋯ ℎ𝐿𝐿(𝑥𝑥1)
⋮ ⋮ ⋮

ℎ1(𝑥𝑥𝑁𝑁) ⋯ ℎ𝐿𝐿(𝑥𝑥𝑁𝑁)
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of this paper.
In this study, in order to assessing the effectiveness 

of the proposed method, three alternative methods were 
implemented including basic Extreme Learning Machine (i.e. 

ELM) [27], Deep  Restricted Boltzmann Machine combined 
with ELM [28, 29] which is called as DRBM-ELM for brevity 
in this article, Deep  Restricted Boltzmann Machine with 
Discriminative layer [30] which is called as DRBM-Disc for 

 

                                
 

 
 
 
 
 
 
 
 
 
 

(a) 
 

Starting the main loop 
 

          Inner loop: teach the ELM models the L 
           Layer from t = 1 to t = 𝑇𝑇𝑙𝑙  
-Starting the inner loop 
          Teaching ELMt  Model  
            [EL𝑀𝑀𝑡𝑡

𝑙𝑙] = 𝑬𝑬𝑬𝑬𝑬𝑬_𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻  
            (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑙𝑙−1, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) . 
- Calculating output t-th unit 
            [𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡

𝑙𝑙] = 𝑬𝑬𝑬𝑬𝑬𝑬_𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶 (𝐸𝐸𝐸𝐸𝑀𝑀𝑡𝑡
𝑙𝑙 ,  

             𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑙𝑙−1). 
            [𝑡𝑡est.𝑀𝑀𝑀𝑀pt

l ] = 𝑬𝑬𝑬𝑬𝑬𝑬_𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶 (𝐸𝐸𝐸𝐸𝑀𝑀𝑡𝑡
𝑙𝑙 ,  

             𝑡𝑡est.𝑀𝑀𝑀𝑀𝑝𝑝𝑙𝑙−1). 
-End of inner loop 
 
-Calculating the output of the 𝑙𝑙 layer  
             [𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑙𝑙 ] =[ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝1

𝑙𝑙 , … , 
              𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝1

𝑙𝑙 ]′; 
 
- Applying PCA conversion on the output ELMs 
            𝐴𝐴𝑙𝑙 = 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑙𝑙 ).  
            𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑀𝑀𝑀𝑀pl ← (Al)′ ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡pl. 
            𝑡𝑡est. 𝑀𝑀𝑀𝑀pl ← (Al) ′ ∗ 𝑡𝑡est.𝑀𝑀𝑀𝑀pl. 
 
-The end of the main loop 
 
-Calculate the final output of the  network (tagging) 
     𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡n𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ← 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡pnumlayers > Thr. 
     𝑡𝑡est𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ← 𝑡𝑡est𝑀𝑀𝑀𝑀pnumlayers > Thr.     
 
*Note: Thr is the threshold of the making decision that is zero in the default state. 
*Constraint: There is an ELM in the last layer in another word 𝑇𝑇𝑙𝑙=𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 1 
 

 
(b) 
 

Fig. 4. Pseudocode of proposed scheme, (a) Inputs of algorithm, (b) training steps 
  

 
1- Vectors of the train data features ∈ 𝑅𝑅𝑑𝑑∗𝑁𝑁   
2-Vectors of the test data features ∈𝑅𝑅𝑑𝑑∗𝑀𝑀  
3- 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∈ {+1,-1}1∗𝑁𝑁 (ship or non-ship). 
4- Test𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ∈ {+1,-1}1∗𝑀𝑀 (ship or non-ship).  
5- The number of layers in network.  
6- 𝑇𝑇𝑙𝑙  :  The number of ELM units in Lth layer. 
7- 𝑁𝑁𝑁𝑁𝑁𝑁i:  The number of neurons in each ELM 
network. 
8-A𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: The activity functions of the 
neurons in the deep network. 
 

Fig. 4. Pseudocode of proposed scheme, (a) Inputs of algorithm, (b) training steps
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brevity in this article. The most important common point of the 
above alternative methods is that all of them are based on the 
various combinations of Deep Restricted Boltzmann Machine 
(DRBM) and Extreme Learning Machine (ELM) concepts 
therefore may be considered as members of same family with 
the proposed method. The proposed and alternative methods 
were examined on both sets of ship and non-ship images. 
Fig.s (7)-(10) show the results obtained from applying the 
above methods on frames which have been shown in Fig.s 
(5)-(6). Note the label above each image shows diagnosis 
of that algorithm in such way that the blue label means the 
diagnosis of the algorithm has been correct and the red label 
means the diagnosis of the algorithm has been wrong. Fig.s 
(7)_(10) illustrate that  the frames a, d, e, j, k, have been 
correctly identified by using either the proposed method or 
its alternatives. The common feature of all these frames is the 
sharp difference between the main object and backgrounds 
(i.e. maximally 65% and minimally 55%) which caused they 
have been interpreted correctly by all methods. Another 
considerable sample is the low quality frame c (i.e. contrast 
equal 17%) which led to false recognitions when alternative 
algorithms were used while it was correctly identified by 

using proposed approach. This result may be interpreted as 
an example for superiority of the proposed method against 
its alternatives in recognizing low quality images. For some 
frames, the recognition was correct by utilizing the proposed 
method along with one or two alternatives methods. For 
example for frame h, the proposed method led to correct 
detection in parallel with ELM, However other methods have 
resulted in false alarms. There was a similar situation for the 
frame f, which has been recognized correctly by proposed 
method along with DRBM-ELM, while it has been mistakenly 
recognized by other methods. It may be noted the sharpness 
of this category of images is significantly lower than a, d, e, j, k, 
therefore they have been miss interpreted by some algorithms. 
For instance the contrast of frame h was in 34% which was 
at least 21% lower than mentioned high contrast frames. An 
exceptional case was the frame i, which was misdiagnosed 
by using the proposed method and DRBM-ELM while this 
frame was accurately interpreted by using DRBM-Disc 
and basic ELM. The remarkable fact about this frame is its 
moderate contrast (i.e. 38%) which, as a rule, should lead 
to an acceptable result. As an interesting item among the 
examined frames, we can name the frame b, which led to 
miss recognition in either proposed or alternative schemes. 
Investigating the contrast of this frame (i.e. 11%) showed its 
minimum sharpness compared to all examined frames. The 
results indicated that the superiority of the proposed method 
against its alternatives was generally related to the quality (i.e. 
sharpness) of the images. This relation was in such way that in 
parallel to the sharpness increase in the frame, the chances of 
correctly recognizing the alternative methods were reduced, 
while the correctness of the diagnosis of the proposed method 
may remain acceptable until lower contrasts. 

4.Discussion 
The proposed algorithm, ELM, DRBM-Disc  and DRBM-

ELM were applied on all of images belonging to data set 
which was described in section 3. Then four basic parameters 
were measured to evaluate the performance of each method. 
The measured parameters consisted of True Positive (TP) 
which shows the number of correctly identified ships, True 
Negative (TN) which shows the non-ship objects which were 
rejected correctly, False Positive (FP) which is the number 
of false detections and False Negative (FN) which shows the 
number of missed ships. Finally accuracy, Recall, Precision 
and F-Measure were estimated by using bellow formulas 
for all examined methods to compare their effectiveness 
in recognizing ship and non-ship contained frames. The 
accuracy illustrates the rate of the correct recognitions (either 
ships or non-ships) as:

	
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 

TN TP
TN FN FP FN

+
+ + +

.  	 (4)

Recall means the probability that a ship to be identified if 
it exists. This parameter is defined as:

 

 

Fig. 5. Representative frames from set of examined Images which include ship 

  

Fig. 5. Representative frames from set of examined Images which 
include ship 

 

Fig. 6. Representative frames from set of examined Images which only include clutter 

  

Fig. 6. Representative frames from set of examined Images which 
only include clutter
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𝑅𝑒𝑐𝑎𝑙𝑙 = 

TP
FN TP+

                                        � (5)

Precision illustrates the correct percentage of ship 
detection, in other words, from 100 reports of the ship how 
many have been actually ship reports. This parameter is 
calculated as: 

	
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 

TP
FP TP+

                                        	 (6)

An ideal ship recognition algorithm should have a high 
Recall and Precision, which seldom happens. These two 
criteria are inversely related to the technical point of view. The 
F-measure criteria may be used as an appropriate combination 
of these two concepts as a standard scale for choosing the 
efficient paragon as: 

	 (7)
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An ideal ship recognition algorithm should have a high Recall and Precision, which seldom happens. 

These two criteria are inversely related to the technical point of view. The F-measure criteria may be 

used as an appropriate combination of these two concepts as a standard scale for choosing the efficient 

paragon as:  

 𝐹𝐹–𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚=2 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅                                                 (7) 

Table (2) shows the comparison of the performances of the proposed and alternative schemes in terms 

of four mentioned parameters.  

Table 2. Comparison of the performances of proposed and alternative algorithms 

 
Method 
name 

 

 
Accuracy 

 
F-Measure 

 
 

 
Precision 

 
 

 
Recall 

 
ELM 

 

 
91.30  

 
88.29  

 
90.86  

 
85.99  

 
DRBM-Disc 

 

 
92.19  

 
88.65  

 
89.61  

 
88.03  

 
DRBM-

ELM 
 

 
91.30 

 
88.45  

 
89.39  

 
87.61  

 
Deep-

Stacked 
ELMs 

 

 
94.11  

 
92.15  

 
92.13  

 
92.34  

 

As shown in Table (2), the proposed method outperformed all of the examined parameters against 

its alternatives as described below. The obtained Accuracies revealed that the best value was gained 

by using the proposed method which has been 2.81, 1.92, and 2.81 percent better than those values 

which had been obtained by applying ELM, DRBM-Disc  and DRBM-ELM methods respectively. 

According to Precision the proposed scheme achieved the best value (i.e. 92.13%) which has been 

1.27, 2.52 and 2.81 percent better than those values which had been obtained by applying 

ELM, DRBM-Disc  and DRBM-ELM methods respectively. Exploring Recall still showed the 

superiority of the proposed algorithm against alternatives in such way that it’s obtained value was 
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Table (2) shows the comparison of the performances of the 
proposed and alternative schemes in terms of four mentioned 
parameters. 

As shown in Table (2), the proposed method outperformed 
all of the examined parameters against its alternatives as 
described below. The obtained Accuracies revealed that the 
best value was gained by using the proposed method which 
has been 2.81, 1.92, and 2.81 percent better than those values 
which had been obtained by applying ELM, DRBM-Disc  and 
DRBM-ELM methods respectively. According to Precision 
the proposed scheme achieved the best value (i.e. 92.13%) 
which has been 1.27, 2.52 and 2.81 percent better than those 
values which had been obtained by applying ELM, DRBM-
Disc  and DRBM-ELM methods respectively. Exploring 
Recall still showed the superiority of the proposed algorithm 
against alternatives in such way that it’s obtained value was 
better than those which had been obtained by other methods 
by extents of 6.35, 4.31, and 4.73 percent for ELM, DRBM-
Disc  and DRBM-ELM methods respectively. Eventually, the 
F-Measure of the proposed structure confirmed its better 
performance in such way it was 3.86, 3.5 and 3.7 percent 
better than those values which had been obtained by applying 
ELM, DRBM-Disc  and DRBM-ELM methods respectively. 

As described in section 3, the images were captured in three 
different weather conditions including sunny, rainy and hazy. 
Table (3) demonstrates the performances of the proposed 
and alternative algorithms in terms of above atmospheric 
conditions. The results which have been described in this 
table indicated that the proposed method in all three types of 
atmospheric conditions has shown to be more capable than its 
alternatives in detecting ships. 

The results described in this table reflect this important 
fact that the image contrast is the most effective parameter 
in the behavior of the proposed method. The values reported 
in the above table demonstrate a tight relationship between 
performance losses of the proposed method with the decrease 
in contrasts of images under test. Furthermore the above 
behavioral logic is relatively similar for all four evaluation 
parameters (i.e. Accuracy, F-Measure, Precision and Recall). 

Exploring the trend of changes in the values reported 
in Table 3 shows that the performance parameters of the 
proposed method became weaker in rainy condition than in 
sunny condition. In a same manner the above table clearly 
indicates evaluation parameters reach their lowest values in 
hazy conditions. To make a meaningful numerical comparison, 
let to assume the sunny condition as a benchmark, then the 
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parameters which have been obtained in other states may 
be compared with results obtained in sunny conditions as 
reference values. Table 3 shows that as the contrast of the 
images decreases compared to the benchmark (comparison 
of rainy and sunny conditions), the evaluation parameters 
also decrease.

Investigation of the Accuracy, F-Measure, precision and 
Recall which have been obtained for rainy conditions shows 
they dropped almost 2.1 to 5.1 percent compared to their 
base values (i.e. by extents of 4.1%, 3.8%, 2.09% and 5.08% 
respectively). In the lowest contrast case (i.e. hazy conditions), 
it was observed that the performance of the proposed method 
in detecting ships were 3.8 to 6.7 percent lower than its 
performance in benchmark (i.e. sunny) conditions (e.g. 
5.45%, 4.7%, 3.85% and 6.74% loss in terms of Accuracy, 
F-Measure, precision and Recall respectively).

The proposed method achieves more acceptable detection 
parameters than its alternatives even in weaker contrasts, 
therefore it may be considered as a high potential scheme for 
ship detection in marine images without exception of specific 
atmospheric conditions. However, it should be noted that the 
severe decrease in contrast of captured images (that usually 
occurs in some conditions such as hazy scenes) may also be a 
challenge for this method.

5. Conclusion 
In this paper a new method was introduced for recognizing 

ships in low size and low contrast images which have been 
captured from marine scenes. The proposed algorithm 
utilized the concept of deep stacked extreme learning 
machines in order to overcome two above main challenges 
in detecting ships in scenes contained several marine clutters 
(e.g. sea wave, cloud and wave sequence caused by the ship). 
To evaluate the performance of the proposed algorithm, 
it was examined on a data set including ship and non-ship 
images in several atmospheric conditions. Then the obtained 
results were compared with three existing methods (e.g. 
ELM, DRBM-Disc and DRBM-ELM).

The obtained results were compared by using standard 
parameters consist of accuracy, precision, recall and F-measure 
which showed superiority of the proposed method against 
its alternatives. Results showed that based on F-measure as 
the most effective parameter the proposed algorithm has 
recognized ships at least 3.5% better than its closest alternative 
(i.e. DRBM-Disc) while its gain compared to other alternatives 
is a bit more than this value. Furthermore it has been shown 
that the performance of the proposed algorithm has been at 
least 1.92%, 1.27% and 4.31% better than its closest alternatives 
based on obtained accuracy, precision and recall. Comparing 
the performance of the proposed method with its alternatives 
in terms of three atmospheric conditions (sunny, rainy and 
hazy) has also shown such superiorities. Based on the above 
results it may be concluded that the concept of deep stacked 
extreme learning machines may be considered as a suitable 
choice for recognizing ships in presence of several clutters in 
low size and low contrast images which were captured from 
different sunny, rainy and hazy marine scenes.
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