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ABSTRACT 
This paper describes how multi-agent system technology can be used as the underpinning platform for 

voltage control in power systems. In this study, some FACTS (flexible AC transmission systems) devices are 
properly designed to coordinate their decisions and actions in order to provide a coordinated secondary 
voltage control mechanism based on multi-agent theory. Each device here is modeled as an agent being able 
to cooperate and communicate with other devices. In this system, individual autonomous agents and 
intelligent decision makers learn to perform optimal actions through proper interactions with their 
environments. The SARSA Q-learning, which is an on-policy algorithm in reinforcement learning (RL) is 
then used and tested successfully in voltage control problem. In this research, the Java Agent DEvelopment 
(JADE) platform is used to implement the agents and to simulate their communications. The power system is 
also fully implemented in Java. The proposed intelligent MA based method is finally applied to IEEE 39-
buses New England power system. The results of simulation better highlight the merit of the method and its 
ability in coordinating FACTS devices for removing voltage disturbances.  
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1.  INTRODUCTION 

The control of voltage is one of the major issues in 
power system operations and reactive power plays a 
significant role in controlling the voltage in power 
systems. Adding static reactive power compensator 
devices such as FACTS at some nodes of the power 
systems is one of the solutions used to achieve and 
maintain the required voltage profile. 

The voltage control in power systems has three main 
levels with different response times. The first level is 
primary voltage control which comprises the automatic 
voltage regulator (AVR) of generators, fast reactive 
insertion and FACTS devices. The response time of 
primary voltage control is short, typically fractions of a 
second [1]. In the secondary voltage control level, the 
objectives are to attain a better voltage regulation and 
improvement of power system voltage stability in various 
system conditions, such as slow and large voltage 
variations caused by hourly evolution of the loads [2]-[3]. 
The reaction time in this control level is about one minute 
or more (usually 30-100sec). Tertiary voltage control uses 
global information of the power system for managing 

reactive resources to optimize voltage profile. The 
traditional method of tertiary control is so-called reactive 
power optimal power flow (OPF). The time constant of 
this control level is around 15 minutes. 

Though many studies in power systems have focused 
on primary voltage control, a little reported on application 
of secondary voltage control (SVC). French electricity 
company, EDF [4]-[5] is the first company who started 
application of secondary voltage control mechanism and 
after that developed it to coordinated secondary voltage 
control (CSVC) . Currently CSVC is used in some 
European countries and some countries around the world. 
The basic idea behind the coordinated secondary voltage 
control schema is that when a disturbance occurs in power 
systems, the area, the effects and intensity of disturbances 
must be as small as possible. In this situation, the 
neighboring devices that can regulate the voltage 
magnitude must operate in a way to provide backup 
supply. When two devices operate properly in this mode 
for any system disturbance, they are said to be 
coordinated. In [1], the network has been divided into a 
number of independent geographic regions. Some pilot 
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nodes in regions are selected for voltage regulation. These 
nodes are representative of the voltage situation in that 
region [6]. The main actuators are the set-point voltages 
of the primary controllers of the generators within a 
region, capacitors, reactors, synchronous machines, 
transformer taps and FACTS devices. Gaining advantages 
of FACTS devices in electric power system requires 
coordination of these controllers with each other. 
Otherwise, endangerment of dynamic behavior and 
steady-state of power system is to be expected. In [2], [3] 
and [7], the coordination of various controllers has been 
proposed to be based on a multi-agent request-and-
response type of protocol. 

In this research, multi-agent systems technology 
provides a framework for developing autonomous and 
intelligent agents for coordination of voltage control 
mechanism in power system. In this system, individual 
agents who must be autonomous and intelligent decision 
makers learn to perform optimal actions by interaction 
with environment. The SARSA algorithm which is an on-
policy algorithm in reinforcement learning (RL) has been 
used for this application. For developing agents and 
implementing communication in an adaptive coordination 
system, a MAS platform is needed. JADE [8] platform 
was chosen because of its good capabilities and logical 
structure for this research. 

This paper is structured as follows. Section 2, presents 
a brief overview about agent technology in power system. 
In section 3, a review on JADE framework is provided. 
The proposed Multi-Agent based coordinated secondary 
voltage control scheme is presented in section 4.  Section 
5, describes the Reinforcement Learning approach and 
results obtained by the application of SARSA Q-learning 
algorithm for voltage control in power system. Simulation 
and analyzing results of some test cases are presented in 
section 6. In section 7, some test cases on performance of 
proposed method are presented. The final section 
provides some conclusions. 
2.  A BRIEF REVIEW OF MULTI-AGENT SYSTEMS IN 
POWER SYSTEMS 

An agent is anything that can perceive its environment 
through sensors and act upon that environment through 
actuators [15]. It can communicate with other agents in an 
environment to achieve its local or global objectives. 
MAS is a system that is composed of agents, collectively 
capable of reaching goals that are difficult to achieve by 
an individual agent or monolithic systems [16]. MAS is 
one of the most popular approaches for designing 
decentralized solutions.  

The use of agent is to remove the burdens of human 
beings from tedious and repeating tasks. In power systems 
functions of each agent can be categorized into two main 
groups. The first one is agent’s processing or application 
functions such as data processing, simulation and control 
function. The second group is the agent’s behavioral 

characteristics. An agent regarding its own capabilities 
and functions must have decision making intelligence. By 
providing agents with underlying standards for agent 
communications, they will be able to dynamically 
organize themselves into problem solving. Agent 
technology brings many opportunities and benefits for 
power systems which can be summarized as follows: 

• Ease of interfacing with other software 
(encapsulating them into agents for 
interoperability within a larger infrastructure) 

• Simplifying complex systems modelling 
• Decomposing large complex problems into sub-

problems 
• Ease of modelling humans and knowledge in 

simulation environment 
• Modularity and reusability 
• Distributed nature 
• Increasing flexibility, scalability, reliability and 

system robustness since it does not suffer from 
the "single point of failure" problem  

• Increasing speed and efficiency of system 
• Ease of adding or replacing new agents 

(especially during a simulation without 
interruption.) 

• Providing social abilities for agents by 
communication 

• Automated adaptation to changing environments 
• Reduction of the human interactions with system 
• Behavior coordination through cooperation, 

negotiation or mediation 
• Reduction of network consumption due to the 

agent oriented approaches. 
In multi agent based simulation, there is a close match 

between the entities of the reality, the entities of the 
model, and the entities of the simulation software. This 
simplifies both the design and the implementation of the 
software [11]. In this model of power systems, there are 
various agents based on the tasks that they can perform, 
their complexity, the level of intelligence, the level of 
communications and control allowed by each agent, and 
the amount of information they can acquire from the 
system.  

The agents in MAS can interact with one another. 
There are various approaches for implementing MAS in 
system control concepts: centralized, decentralized, 
hierarchical, etc. In this study, decentralized method was 
selected because of many advantages of the decentralized 
approach respecting other methods [17].  

The multi agent system technology is recently applied 
to the applications in power systems. In most of the 
applications, the behavior of these agents is defined a 
priori. But programming behaviors is often not enough to 
face the increasing complexity of applications where 
agents interact with unknown and dynamic environments. 
So, the agents need the ability to autonomously adapt 
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their behaviors to the environment. Additionally, current 
MAS applications on power systems are topology 
dependent. This study tries to find a way to be free from 
this dependency by using autonomous agents. Except in 
[17] and [18] almost in all of the simulations and 
applications of MAS in power systems, the MAS and the 
power system are implemented on the same PC and also 
using single threaded programming environments. So 
they cannot execute two or more programs in parallel and 
also peer-to-peer message transfer is not possible. 
Therefore, we need a multi-thread platform that allows us 
to research real performance and communication 
bandwidth requirements of the MAS. 

In recent years, standards for agent organization and 
communications have been developed. One organization 
that defines and publishes standards is the Foundation for 
Intelligent Physical Agents (FIPA) [9]. Several FIPA 
compliant frameworks have been proposed. Among them 
the JADE was chosen because of its good capabilities and 
logical structure. JADE at this time is the most commonly 
used FIPA compliant platform. In the next section a brief 
review on JADE is provided. 

3.  JADE OVERVIEW 
JADE is a Java-based middleware for the development 

of distributed multi-agent applications based on the peer-
to-peer communication architecture [8]. Middleware is a 
software platform that provides another layer of 
separation between the software and the underlying 
operating system [8]. In this implementation, the 
underlying operating system is the Java Virtual Machine, 
the middleware is JADE and the application is the code 
for the agents written in Java. JADE at this time is the 
most commonly used FIPA platform. It is also an open 
source project distributed by TILab (Telecom Italia Labs). 
JADE is a very flexible platform and can be adapted to be 
used on devices with limited resources (such as PDAs and 
mobile phones).  

JADE’s architecture is based on a modular structure, in 
which a platform is split into a number of containers, 
which may run on different machines. An instance of the 
JADE is created when the execution begins, and it is 
called a container because it contains agents. A single 
special “Main container” must always be active in a 
platform and all other containers register with it as soon 
as they start. Three agents are automatically activated 
with the JADE start-up, which includes AMS, DF and 
ACC. All agents, including these, communicate via the 
Internal Platform Message Transport (IPMT). Agent 
Management System (AMS) provides white page and life 
cycle service, maintaining a directory of agent identifiers 
(AID) and agent state. AMS supports the modification of 
the agents during run-time. 

Directory Facilitator Agent (DF) is used to provide 
yellow page services and the capability to search agents 
with specific capability. It maps service descriptions to 

Agent Identifiers. In a system consisting of only a few 
agents, it is possible to provide the knowledge about other 
agents in the system manually, or to use a broadcast-based 
protocol, such as the Contract Net Protocol [3], in order to 
locate other servicing agents. However, as the number of 
agents increases, it becomes so difficult for agents to 
locate others which provide services that they require. 
This problem can be addressed by the use of Directory 
Facilitators [19]. By using DF, agents do not have to be 
aware of the other agents. Agent Communication Channel 
(ACC) is the software component controlling all the 
exchange of messages within the platform, including 
messages to/from remote platforms. In JADE, the agent 
functions are implemented in behaviors. The behavior is a 
function that is running recursively in the agent to 
implement the function of the agent. Each agent can have 
so many behaviors in its behavior pool. The JADE 
behavior model allows an agent to execute several parallel 
tasks. All active behaviours get executed with equal 
frequency. There are so many predefined behavior 
subclasses in JADE which can be executed or customized 
in order to create the required agent capabilities. Adding 
behavior should be seen as a way to spawn a new 
execution thread within the agent. Fig.1, shows different 
stages of agent execution in JADE. In setup, initialization 
of agent is carried out while execution of behaviors 
occurs in action. After the action, if the agent’s behavior 
is finished the behavior is removed from the behavior 
pool and other behaviors continue execution. Behaviors 
and sub-behaviors can be added whenever is needed, and 
not only within Agent.setup() method. Adding a behavior 
should be seen as a way to spawn a new execution thread 
within the agent. 

 
Figure 1: Agent execution in JADE [8] 
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4.  MULTI-AGENT BASED COORDINATED SECONDARY 
VOLTAGE CONTROL 

In this section, the multi-agent system framework and 
power system voltage coordination and collaboration 
protocol are introduced. In this framework, JADE is used 
as underlying agent infrastructure and can be combined 
with other tools and approaches to program the agents’ 
behavior. Fig.2 shows a graphical representation of this 
MAS. Each component in the power system is 
represented as an agent in the simulator. According to the 
electric component to which an agent is associated, the 
agents in MAS can be classified into some types.  Each 
agent type has its specific rules for performing its 
functions. In this MAS, there is no central controller or 
coordinator. Each agent works autonomously and 
independently. Thus, the MAS works in a completely 
decentralized manner. 

 

 
 

Figure 2: Graphical representation of MAS for power system. 
 
Individual agents can be both clients and servers for 

different services in different times. All of the agents who 
need information in order to perform their functions can 
send a request query to the directory facilitator to find an 
agent (or agents) that can offer requested information. 
The facilitator finds the agent who can provide this 
information and replies the requesting agent. After that, 
requesting agent can subscribe itself to the founded agent 
for information. 

For implementing agents, their objectives, behavioral 
rules and interaction mechanisms with environment as 
well as other agents must be defined. Some major agent 
types and their functionalities are described below: 

- Servicing Agent  
Servicing Agent (SA) is used to provide a special 

service like shunt or series reactive power compensation. 
These SA agents are able to perform some actions 
separately or in coordination with other agents. The 
servicing agents are categorized based on their service 
type. So, many service types can be defined based on 

application requirements. These agents hold some rules 
and computing functions to negotiate with other agents. 
Some of the SA’s can be utilized by intelligent control 
systems and learning algorithms to provide more 
autonomy and elasticities for the system. They can 
provide the reference set points of controllers 
autonomously, considering operational constraints and 
their self interests with some priorities. In this paper, the 
SAs correspond to STATCOMs and provide only shunt 
reactive power for the power system in a specified bus. 

- Load Flow Agent 
Load Flow Agent (LFA) that performs load flow 

calculations. The LFA plays the role of power system 
environment. All of the components in the power network 
are modeled in this agent. Other agents that need to know 
their state values (such as voltage or current) and other 
system measurements invoke their status from this agent 
by continually sending requests to it. The load flow agents 
can register themselves in DF. So, when each component 
agent wants to initialize in MAS, searches for available 
LFA to query for its status. Whenever the LFA receives a 
control action message from agents, it immediately 
implements the action in the power system model. Agents 
can subscribe to LFA to achieve their values every time 
that they change. It can also be implemented by using a 
TickerBehavior (a type of JADE’s behaviors which 
implements a cyclic task that must be executed 
periodically) to send a request of voltage value to LFA in 
each predefined time steps. 

- DC Load Flow Agent 
DC Load Flow Agent (DCLF) can be created by 

instantiation of LFA agent to perform DC load flow and 
sensitivity analysis. This agent is used as an analyzing 
agent who can perform some calculations and analysis on 
the power system. This agent registers itself in DF as a 
DCLF service provider. 

- Bus Agent 
Bus Agents (BA) who can monitor their buses and 

have no service to provide. In this work, each bus agent in 
the system has a unique priority number based on the 
importance of the bus. The commands of bus agents with 
higher priorities are more important than the others, and 
servicing agents will serve them first. 

- Sniffer Agent 
One of the useful agents in JADE is Sniffer Agent that 

can intercept Agent Communication Language (ACL) 
messages while they are in flight, and displays them 
graphically. It is useful for debugging the agents’ 
activities and can help monitoring and checking the 
messages exchanged among agents. 

The objective of the control in this MAS is to minimize 
deviations of bus voltages from given references to 
improve the voltage profile. 

The process of coordination and collaboration among 
agents and their behaviors are described below. 
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1) Each agent must register itself in DF based on its 
service type and the bus belongs to. 

2) All agents find the LFA and DCLF agents in DF. 
3) Each agent monitors the voltage of its own node. 
4) Once a bus agent detects a voltage violation, it 

searches the DF for available SAs. Agents invoke their 
voltage sensitivity respecting reactive power injection in 
SA buses by sending request to DCLF agent and it will 
respond these requests. The SA agents which have low 
voltage sensitivity with respect to the requester bus agent 
will be ignored from collaboration process. The BA will 
then send SAs, Call For Proposal (CFP) message to 
know the maximum collaboration they can provide. By 
this method there is no need to define a static group of 
collaborative agents in the system and based on the 
system available resources and operating conditions 
decision can be made more exactly and rapidly. 

5) Sometimes one SA cannot provide any service 
because of its internal problems or reaching its 
operational limits (such as maximum reactive power 
injection). In this case, the SA must deregister itself from 
DF. When a SA agent receives a CFP message for 
reactive power support, it checks its capacity and its own 
voltage.  It computes its maximum collaboration based on 
its available capacity and voltage of other remote 
controlled buses under its supervision and also by 
estimation of future agent’s state by doing any action.  
This gives it an estimation of the amount of support it can 
offer and can avoid elapsing time for unnecessary and 
imperfect decisions. Then, it sends back a Proposal 
message to the source of request to tell its offer of 
support; 

6) The BA waits for a predefined time for receiving all 
of the SAs’ responses and offers. Based on these 
information and decision of decision making unit (DM) 
which was learned priori by RL algorithm, the bus agent 
sends Request messages to the selected SAs to do the 
proposed actions. In contrast with the method described in 
[3] where agents are selected one after one and also in a 
not optimal configuration, in this method the decision is 
based on RL and gives the optimal or near optimal 
solution; and further, since more agents contribute in 
collaboration at the same time the overall performance 
and speed of secondary voltage control will be increased. 

7) After the SAs perform the proposed actions, they 
send an Inform message to bus agent about termination of 
their actions. If the voltage violation disappears, the agent 
returns to the normal state.  

For SA agents operation there are some other 
considerations that must be illustrated individually: 

a) When a SA runs to perform an action it must go to 
Block Action state for a short time. The reason is that if 
during operation of SA, some action request from another 
agent comes to this SA, since the agents are not aware of 
other agent’s action there is a possibility of over injection 

in the network. For resolving this problem, during 
operation of some action, if another request is received, 
this message will be returned back to its origin to check 
its new state again. This blocking time can be defined 
based on problem conditions. 

b) If SA detects voltage violations on its own bus, it 
will do its action locally and will block other requests 
until violations get eliminated. In fact, each SA is self 
interested. 

c) If any of the above processes did not suffice to 
overcome the voltage violation, the function of multi 
agent CSVC system will be terminated and another 
process like load shedding must be called.  

Sometimes there is a possibility of facing with action 
conflicts between agents. This may be created in some 
situations where the goal of an agent is in contrast with 
goal of another agent. For avoiding this situation, we must 
design two distinct mechanisms. First implementing a 
mechanism to avoid creation of conflict and the other is 
what to do for resolution of conflict when it occurred in a 
system.  The conflicts can be resolved by negotiation, 
mediation or arbitration process. 

Since the agent lacks the information about control 
objectives and actions of other agents, it has to introduce 
an assumption about the actions of other agents to remain 
constant when trying to compute its optimal control 
policy. But this assumption is not correct generally. 
Therefore, these actions of other agents can be seen as 
measured disturbances [21].  

Another solution is sharing the action information of 
each agent in the network. By this method, since the 
agents are aware about actions of others they do their 
decisions based on this knowledge. There are so many 
methods for conflict avoidance and resolution in multi-
agent systems that are beyond the scope of this paper.  

The most important and crucial step in the above 
process is the calculation of optimal or near optimal 
control sequence of SAs for taking the most effective 
control action in contingencies. This function is due to 
DM unit trained with RL algorithm that is fully discussed 
in the next section. 

5.  REINFORCEMENT LEARNING 

The problem of learning in interaction with the agent’s 
environment is that of reinforcement learning (RL). 
Reinforcement learning is learning what to do so as to 
maximize a numerical reward signal. The learner is not 
told which actions to take, as in most forms of machine 
learning, but instead must discover which actions yield 
the most reward by trying them [12]. When a detailed and 
accurate model of a system to be controlled is not 
available, adaptive mechanisms like RL can be employed. 
The main advantages of using RL in this study are that it 
is free from any knowledge of the power system dynamics 
equations (model-free) and it is also capable of adapting 
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itself to changing conditions. 
The objective of coordination of FACTS devices is to 

maintain acceptable voltage profile on the network with 
the minimum usage of reactive resources. The algorithm 
determines the control commands that will activate the 
switching of the proper reactive resources (STATCOMs) 
and their amount of injection. The algorithm selected for 
this purpose is one of well known RL algorithms named 
SARSA.  

SARSA is an on-policy temporal difference (TD) 
learning algorithm and is referred to as tabular learning, 
since it stores its representation of the world discretely in 
a lookup table. The general principle of SARSA is 
summarized by its name: State, Action, Reward, State, 
Action. In SARSA, an agent starts in a given state st, from 
which it selects an action at based on selection policy and 
does the selected action. After the action, the agent 
receives an immediate reward rt, expressing the 
effectiveness of the action and goes to a new state st+1 
from which it can take another action. The goal of RL is 
to take these experience tuples (st, at, st+1, at+1), and learn a 
mapping from states and actions, to a measure of the long 
term value of taking this action, known as the optimal 
value function (Q-value) [10]-[12]. 

The algorithm proceeds as follows: 
 

 
TABLE 1 

 

SARSA ALGORITHM APPLIED TO VOLTAGE CONTROL 
 

1) All Q(s,a) values are initialized. 
2) Repeat for each episode { 

Initialize st (create a random initial state). 
Choose at from st using ε-greedy selection policy. 
Repeat for each step in the episode{ 

Take action at , observe r and st+1 (Do load flow) 
Choose at+1 from st+1 using ε-greedy selection policy 

[ ]),(),(),(),( 111 ttttttttt asQasQrasQasQ −++= +++ γα

11 , ++ == tttt aass  

If is final state end the episode 
(final state means that all voltages are inside the 
boundaries) 

} 
} 
3) After each k episodes check the D value 
 (checking the convergence) 
 

 
In RL algorithms, there must be a tradeoff between 

exploration and exploitation. An exploratory action or 
exploiting action is chosen based on a policy such as ε 
greedy which operates on a simple principle of selecting 
the most optimal action based on the current rewards or 
Q-values for all possible state action pairs. In addition, 
there is some probability ε that the selection policy will 
choose an action randomly to explore the world in the 
hope that it may lead to a better solution. 

The state variables in our problem are voltages of 
buses. The state vector corresponding to each agent 

comprises its own voltage, servicing agents’ voltages and 
critical buses voltages in its region. By defining this state 
vector agent must be aware of its state as well as other 
important nodes in the system to make a proper and 
efficient decision. For applying the algorithm, each state  
variable must be divided into some levels as a discrete 
variable. The state discretization can be done in many 
different ways. One way is binary discretization which 
already implemented on constraint load flow problem 
[13]. Through finer discretization, the results of learning 
will change and usually get improved; however by 
reducing discretization intervals the dimension of state 
space will be increased exponentially. Hence,, it must be 
some tradeoff between the quality of learning and the size 
of discretization. Here, it is decided to discretize the states 
to 5 levels. These levels are:  below the 0.85 p.u, between 
0.85 p.u. and 0.95 p.u, between 0.95 and 1.05 p.u, 
between 1.05 p.u and 1.10 p.u. and at last above 1.10 p.u. 
Consequently, we can say that if we have n variables 
discretized to m levels, the total number of states will be: 

(1) nmS =  
 
In this application, the control variables are actions of 

STATCOM agents which can be considered as voltage set 
point or as reactive power injection. Since changing the 
voltage set point of STATCOM is equivalent to the value 
of bus injected reactive power, we work here with 
reactive power values for the ease of simulations. 
Furthermore, each control variable has to be discretized to 
ki levels. Hence, the total number of joint action vectors 
will be: 

(2) 
p

i
ikA

1=

=
 

where p expresses the number of control  variables. In this 
study each control action is discretized into five levels. 

Designing the reward strategy is the next step in 
implementation of RL.  The results of our analysis have 
shown that the following reward function is suitable for 
our application and leads to a successful phase of 
learning. While the entire state variables lie inside the 
0.95 p.u. and 1.05 p.u. the reward will be zero. Otherwise, 
the negative sum of differences of variables from these 
limits will be considered as reward. For reinforcing the 
agents to maintain maximum reactive power reserves, a 
weighted negative reward equal to sum of the actions of 
all servicing agents was also added to the reward. Some 
weighting factors also considered for the state and control 
variables to strengthen the importance of voltage value at 
some buses and also for reactive power reserves. The 
reward function corresponding to agent k is as follow: 
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(3). 

 
where ns and nc are number of servicing agents and 

critical buses, respectively. The ws, wc,wq are weighting 
factors of corresponding components. 

To check whether the algorithm converges to good 
solutions and in turn stop the learning after running some 
epochs, we should have a stopping criterion. When there 
are no significant changes in Q-values and also no new 
states visited, it means that system reached a stable 
condition and consequently np more learning is needed. 
So, after each K epochs (in our simulation we set it to 
2500 epochs), a vector of    Q-values is constructed and 
the unsigned differences of all Q-values corresponding to 
state-action pairs in two subsequent K epochs will be 
calculated as: 

(4) ∑ −=
),(

),(),(
asallfor

old
as

new
as QQD

 
 
If the value of D converges to zero or a given threshold, 
the learning will be stopped. 

The algorithm was applied to IEEE 39-buses New 
England power system shown in Fig. 3. Four 
STATCOMs are assigned at nodes 13, 14, 33, 37 to 
enhance the voltage stability. The critical buses are 
selected as buses 12 and 16.  

Since we discretized state variables to five levels and 
the size of state vector is seven (four SA, two critical 
buses and the agent itself) we have 57=78125 state 
vectors. The number of action vectors is 54=625. 
Therefore, the total number of state-action pairs is 
625×78125=48828125. 

The next step is the issue of parameterization. Three 
parameters α , γ and ε  should be chosen. The amount the 
next step influences the current step is dictated by γ. A γ 
of 1 indicates that the learning that takes place at the 
current state is heavily influenced by the next state. In our 
application since the learner is less influenced by events 
that happen in the future, the value of γ is chosen close to 
0. Since the underlying problem does not depend on the 
previous learning steps, any number close to 1 works well 
for the learning rate α. 

 

 
 
Figure 3: IEEE 39-buses New England Power System. 

 

The value of parameter ε determines how often an 
explorative step is taken for ε-greedy exploration as a 
value from 0 to 1, where a value of 0 means no 
exploration and a value of 1 means exploration in all 
steps. 

For the parameter settings of α and ε, a scanning 
program was written to determine the appropriate values 
of learning rate and exploration parameter.  The 
experiences show that a ε range of 0.05 to 0.15 offered an 
acceptable amount of exploration in this domain. For α, 
the range between 0.98 and 1.0 was identified as proper 
values. In our application for α and ε following values 
were selected: α = 0.995 and ε = 0.1. 

In the other test α and ε were fixed with the above 
values and γ was time varying. The experiences show that 
the effects of changing γ values are not considerable. We 
believe that the primary reason for this is the fact that the  
problem under investigation here has a very short time of 
training. We used in simulation tests the value of 0.01 for 
it. 

In the algorithm random initial states were created by 
changing load of some buses between ±30% of their 
normal loadings and also by outage of some transmission 
lines, all in random. The algorithm executed for various 
busbars and it was observed that after about 52500 epochs 
for agent 15 and 62500 epochs for agent 14, the algorithm 
converged successfully to stable and near optimal 
solutions. Figs. 4 and 5 present the results of variations of 
the D value at nodes 15 and 14, respectively. 

After the agents learned successfully, they can work 
on-line and directly in the power system and adapt 
themselves with real environment and real rewards. 

Another important issue in our application is that the 
number of SAs in the system varies in time, therefore the 
state vector may have different sizes in different system 
conditions and the algorithm cannot work with this 
situation. To remedy this problem we propose the 
following solution. Implement a repository of learned 
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agents for each BA or SA in the network which learned 
with different number of SAs available on the network. 
Each agent in the network based on the available SAs, 
selects an appropriate learned agent from the repository. 
The repository constructed with different numbers and 
different combination of SAs in the power system. 

 

 
 

Figure 4: Learning result of agent 15. 
 

 
Figure 5: Learning result of agent 14. 
 

 

6.  SIMULATION 

The objective of setting up these examples is to 
demonstrate ideas and methods for implementing the 
coordinated voltage control to eliminate voltage violations 
in system contingencies.  

Since JADE has been selected as the platform of agent 
development, an interface for linking power simulation 
environment with JADE or another solution is required.  

The solution is to implement power system in Java 
language and simply integrating it with JADE as a simple 
agent. InterPSS engine without its graphical user interface 
was used in this study. InterPSS is an open source 
development project aimed to develop an Internet 
technology based software system for design, analysis, 
and simulation of power systems [20]. The APIs of 
InterPSS successfully integrated in JADE and by this 
approach the interfacing problem solved by an integrating 
mechanism. As mentioned in the previous section, the 
load flow agent which plays the role of power system 
simulation environment is constructed by integrating the 

InterPSS engine in one of the JADE’s agents. So, 
communications between agents and the power system 
can be carried out merely by message passing capabilities 
of JADE.  This method is the best choice for MAS 
application because of its acceptable performance and 
high speed of data. Furthermore, it is platform-
independent. 

To test the multi-agent collaboration protocol in the 
IEEE 39 Bus New England Power System of Fig. 3, each 
agent was trained by RL. In the simulation, steady-state 
model of the IEEE 39-buses power system was used. In 
test cases it has been assumed that there are only four 
available SA at buses 13, 14, 33 and 37. The busbars 12 
and 16 were selected as critical bus. 

The algorithm in this work was implemented in Java. 
After compilation, the Java code can be executed through 
agents on the PCs. The PCs are connected to one Fast 
Ethernet switch. Many simulations have been carried out 
to verify the operation and effectiveness of multi-agent 
system and RL algorithm. Three different tests have been 
selected for presentation in this section. 

Test 1: At the 1st second of the simulation, the load at 
node 15 increased by 10% which led to voltage drop at 
node 15. At the 2nd seconds of the simulation, the 
transmission line between nodes 15 and 16 was lost that 
led to a voltage drop at node 15 below the constraint of 
0.95 p.u. The agent located at node 15 detects this voltage 
violation. It searches the DF for available SAs and finds 
SA13, SA14, SA33 and SA37.  Then, the BA15 sends 
CFP for these SAs and since all of the SAs are in normal 
mode, they reply to it with the proposal message and 
collaboration amount. The BA15 calls the DM unit to 
provide the best action vector for this state. The DM 
decides the action vector of (0.0, -1.50, 0.0, 0.0) which 
means that only SA14 must inject the reactive power of 
1.50 p.u. This decision is in compliance with topology of 
network in which SA14 is the nearest SA in the network 
to bus agent 15. BA15 sends a request for reactive power 
injection to SA14 at node 14. The action of this SA at the 
3rd second increased the voltage at node 15 and cleared 
the disturbance effectively, rapidly and also without 
involving any additional support from other agents in the 
system (it is assumed that making decision, 
communications and doing action last for about one 
second. Although this time in simulation is about some 
milliseconds, we set this time in order to have a better 
perception about the process). Voltage changes of some 
busbars during the test are shown in Table 2. The voltage 
values of bus14 and bus15 are shown in Fig. 6. 
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TABLE 2 

THE VOLTAGE MAGNITUDE OF SOME BUSBARS IN TEST 1. 
 

Voltage in p.u. Bus 
Name Normal condition Before action After actions 

Bus11 1.01219 0.99108 1.00545 
Bus12 0.9996 0.97452 0.99144 
Bus13 1.01372 0.98598 1.00457 
Bus14 1.01096 0.97044 0.99765 
Bus15 1.01419 0.92448 0.95349 
Bus16 1.03042 1.04024 1.04243 
Bus17 1.03234 1.03449 1.0380 
Bus18 1.02975 1.0262 1.03123 
Bus30 1.01665 0.99429 1.00938 
Bus32 1.02905 1.01785 1.02532 
Bus33 1.0031 0.9769 0.99433 
Bus34 1.00479 0.98553 0.99866 
Bus35 1.00719 0.98888 1.0014 
Bus36 0.99653 0.97878 0.99095 
Bus37 0.99556 0.97816 0.99009 

 
 

 
Figure 6: Simulation result of test 1. 
 

Test 2: At the 1st second of the simulation, the load at 
node 15 increased by 20% which led to a voltage drop at 
node 15. Also because of exceeding power transfer limit 
of the line between nodes 15 and 16, at the 2nd seconds, 
this transmission line was lost. Because of this line 
outage, the voltage at node 15 was dropped to 0.914 p.u. 
The agent located at node 15 detected this voltage 
violation. Like the test case I, the BA15 calls the DM unit 
for a proper action vector which is (-0.75, -1.50, 0.0, 0.0) 
and means that not only SA14 must inject 1.50 p.u but 
also SA13 must inject 0.75 p.u reactive power. Fig. 7 
shows that at the 3rd seconds by action of SA14 the 
voltage arises to 0.943 p.u and it is still below the 
acceptable voltage of 0.95 p.u. However, by action of 
SA13 (which is assumed to be done at 3.2 seconds for 
better understanding of insufficiency of only single agent 
action) the voltage violation is successfully cleared. 
Voltage changes of some busbars during the test are 
shown in Table 3. 

 

 
 

Figure 7: Simulation result of test 2. 
 
 

TABLE 3 
THE VOLTAGE MAGNITUDE OF SOME BUSBARS IN TEST 2. 

 
Voltage in p.u. Bus 

Name 
Normal 
condition 

Before 
actions 

After 1st 
action 

After 2nd 
action 

Bus11 1.01219 0.988 1.003 1.010 
Bus12 0.9996 0.971 0.988 0.998 
Bus13 1.01372 0.982 1.001 1.012 
Bus14 1.01096 0.965 0.993 1.002 
Bus15 1.01419 0.914 0.943 0.953 
Bus16 1.03042 1.040 1.042 1.043 
Bus17 1.03234 1.034 1.037 1.039 
Bus18 1.02975 1.025 1.030 1.032 
Bus30 1.01665 0.991 1.007 1.015 
Bus32 1.02905 1.016 1.024 1.027 
Bus33 1.0031 0.973 0.991 0.998 
Bus34 1.00479 0.983 0.996 1.002 
Bus35 1.00719 0.986 0.999 1.005 
Bus36 0.99653 0.976 0.989 0.994 
Bus37 0.99556 0.976 0.988 0.993 

 
 
Test 3: At the 1st second of the simulation, the load at 

node 15 increased by 30% leading to a voltage drop at 
node 15. At the 2nd seconds, the transmission line between 
nodes 15 and 16 was lost and led to a voltage drop at 
node 15 to 0.9 p.u. Before any action to be taken at 2.2 
seconds, the transmission line between nodes 30 and 13 
was also lost. These events caused the voltage at nodes 
12, 13, 14, 15 and 33 to go out of acceptable voltage 
boundaries. Hence, the agents located at these nodes 
detected this voltage violation. SA13, SA14 and SA33 
deregister themselves from DF and go to blocking mode 
and also do local actions for going inside the voltage 
limits. On the other side BA15 searches the DF for 
available SAs and only finds SA37. Since the voltage 
sensitivity of node 15 with respect to reactive power at 
node 37 is below the specified threshold, it ignores this 
SA and continues to search DF for SAs until clearance of 
the voltage violation. In this situation, STATCOMs at 
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nodes 13, 14 and 33 perform local actions of -1.125, -
1.125 and -0.375 p.u respectively. By performing these 
actions, all of the SAs go to servicing mode and register 
in DF again. At this time the BA15 finds all of the SAs 
and asks them their collaboration values. The SAs at 
nodes 13, 14 and 33 reply the BA15 with the proposal of -
0.375, -0.375 and -1.125 p.u reactive powers. After that, 
the DM at node 15 decides the action vector of (-0.375, -
0.375, -0.375, 0.0) which means reactive power injection 
of 0.375 p.u by STATCOMs at nodes 13, 14 and 33.    
From Fig. 8, we can see that the voltage violation 
eliminated successfully by collaboration of three SAs at 
5th second. Voltage changes of some busbars during the 
test are shown in Table 4. 

Simulation results in three test cases above show the 
effectiveness of the proposed voltage control mechanism 
in eliminating voltage violations in various system 
contingencies. 

The advantage of this method respecting method 
described in [3] is that time elapsed to eliminate voltage 

violation is shorter and also decisions that made by agents 
are more optimum. Indeed, reactive power reserve is 
considered which causes increasing reliability and 
robustness of system in contingency situations. 
Furtheremore, the list of available servicing agents in this 
method is dynamic and is generated automatically. 

 

 
 

Figure 8: Simulation result of test 3. 

 
TABLE 4 

THE VOLTAGE MAGNITUDE OF SOME BUSBARS IN TEST 3. 
Voltage in p.u. Bus 

Name Normal 
condition 

Before 
actions 

After 1st 
action 

After 2nd 
action 

After 3rd 
action 

After 4th 
action 

After 5th 
action 

After 6th 
action 

Bus11 1.01219 0.980 0.991 1.001 1.004 1.008 1.011 1.013 
Bus12 0.9996 0.927 0.955 0.977 0.981 0.989 0.996 1.000 
Bus13 1.01372 0.910 0.953 0.984 0.990 1.002 1.012 1.017 
Bus14 1.01096 0.907 0.941 0.974 0.981 0.990 1.001 1.007 
Bus15 1.01419 0.844 0.882 0.918 0.925 0.936 0.947 0.953 
Bus16 1.03042 1.035 1.038 1.040 1.041 1.042 1.043 1.044 
Bus17 1.03234 1.027 1.031 1.035 1.036 1.037 1.039 1.040 
Bus18 1.02975 1.015 1.021 1.027 1.029 1.030 1.032 1.034 
Bus30 1.01665 0.991 1.001 1.010 1.012 1.015 1.018 1.020 
Bus32 1.02905 1.001 1.010 1.019 1.021 1.024 1.026 1.029 
Bus33 1.0031 0.939 0.959 0.979 0.986 0.992 0.998 1.004 
Bus34 1.00479 0.964 0.977 0.989 0.993 0.997 1.001 1.004 
Bus35 1.00719 0.970 0.982 0.993 0.997 1.000 1.004 1.007 
Bus36 0.99653 0.960 0.972 0.983 0.986 0.990 0.993 0.996 
Bus37 0.99556 0.959 0.971 0.982 0.985 0.989 0.992 0.995 

 
7.  CONCLUSION 

Simulation results of this study show that the proposed 
multi-agent based secondary voltage control scheme 
equipped with RL algorithm is very effective and rapid in 
managing global voltage profile of power systems in 
voltage violation problems. By using intelligent, adaptive, 
autonomous and cooperative agents utilized with RL 
algorithm, the overall system performance was 
remarkably increased. The SARSA as an on-policy RL  

 
algorithm was implemented and worked well to make 
optimal or near optimal decisions for managing reactive 
power resources in power systems. Using JADE for 
implementation of MAS in the power systems, 
performance of method was verified in a real 
communication simulation. In addtion, InterPSS engine 
was successfully integrated in JADE and tested in many 
simulations. 
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