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ABSTRACT 

Several techniques exist to select and materialize a proper set of data in a suitable structure that manage 
the queries submitted to the online analytical processing systems. These techniques are called view 
management techniques, which consist of three research areas: 1) view selection to materialize, 2) query 
processing and rewriting using the materialized views, and 3) maintaining materialized views. There are 
several parameters should be considered in order to find the most important algorithm for view management. 
As various researches have been done to propose view selection algorithms, we should select and modify the 
most suitable algorithm for view materialization based on the properties of the applications. In this paper, we 
investigate and find relevant parameters to view selection algorithms and classify them based on these 
parameters. We also present a system to evaluate algorithms and compare them with respect to the values of 
the evaluation parameters. Based on the results of these activities, we propose a roadmap that helps us 
choose the most efficient view selection algorithm concerning application types. 
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1.  INTRODUCTION 

OLAP is defined as online analytical processing 
system to answer the multidimensional queries to 
managerial decisions in decision support systems (DSS) 
and data mining. Multidimensional queries are complex 
and operate on huge amount of data. To decrease query 
response time, we have to have the multidimensional 
structure to store data. Data cube is the structure of the 
Data warehouses to represent data sources. Data 
warehouse is a new representation of data sources to meet 
online analytical needs of users, within a 
multidimensional structure. To achieve analytical process 
of queries, data cubes store data in different 
summarization degree related to the aggregation function 
type. With multidimensional data, the lattice of cuboids 
will be made, which contains data in different level of 
summarization. In this structure, data are summarized 
with respect to the different dimensions related to the type 
of the aggregate function. 

Data cube computation is time and money consuming 
because it requires costly query processing. Various 
researches have been done to improve the query response 

time [1]-[3], [9] based on both index and view selection. 
We focus on view selection techniques which are the 
main issue to construct data warehouses [5], [7]-[8], [10]-
[13], [16]-[19], [22]-[29], [31]-[32], [34]-[49]. 

Data cubes are usually pre-computed and stored in data 
warehouses in the form of materialized views. As various 
types of aggregate functions and various dimensions exist, 
there are several views which should be materialized. 
Consequently, it requires huge amount of space. 
Moreover these data should be refreshed periodically, 
which is a time consuming process. Therefore, it is 
important to select the best subset of views by considering 
the cost of their materialization. Selection of a proper 
subset of cubes to store depends on the query types, query 
frequency, and the cost of responding the query, which is 
the time consumed to answer the query through past 
materialized views.  

User requirements may change through time. 
Materialized views should be changed to respond these 
queries through time. Indeed, unnecessary views should 
be removed and required views should be materialized 
from time to time. The time consumed to do these 
changes is important too. 

View management, as an important issue to build data 
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warehouses, consists of three activities which are: 1) 
proper views selection to materialize, 2) query processing 
and rewriting using the materialized views, and 3) 
materialized views maintenance. To apply these type of 
activities, many systems with different parameters namely 
algorithm, benefit function, algorithm’s input type, the 
time of calling view selection algorithms, the metadata 
required to calculate the benefit function, the metadata 
required to select old materialized views, and architecture 
type are involved. Among these parameters, “algorithm” 
is the very crucial and important issue.  

In this paper, several recently developed view selection 
algorithms have been investigated and the important 
parameters have been recognized and based on them 
classification has been done. The main issue in this regard 
was the properties of algorithms and their effectiveness on 
applications. We compare algorithms with respect to the 
values of evaluation parameters and propose a roadmap 
based on the results of this activity which shows how to 
select the most efficient view materialization algorithms 
concerning the type of applications. We surveyed several 
algorithms presented in literature during 1996 – 2009 [4]-
[8], [10]-[13], [16]-[19], [21]-[32], [34]-[49]. These 
algorithms have been published in well-known journals 
and conferences. In this paper, the frequently used 
algorithms were identified and compared in a table and 
classified based on their properties.  

The remainder of this paper is organized as follows. 
The next section introduces important parameters of view 
selection systems. Section 3 presents the main steps to 
select proper view selection algorithms. These steps are 
described in sections 4, 5, and 6. Section 4, firstly 
introduce 15 view selection algorithms as instances, and 
then presents the properties of them in a table to compare 
and classify them based on various parameters. Section 5 
presents different parameters which are important to 
identify the type of applications. Section 6 presents the 
roadmap to select the most suitable view selection 
algorithm for applications. In Section 7, we test and then 
evaluate the roadmap. Conclusions of this work are 
presented in Section 8. 

2.  IMPORTANT PARAMETERS OF VIEW SELECTION 
SYSTEMS 

There are different view selection systems. These 
systems include several parameters extracted from their 
original references and introduced in details in our 
previous work [15]. We define view selection systems in 
the form of a function with inputs and outputs as: 

( ) MVarsmbmetitbfalVS →,,,,,,                  (1) 

In this function, VS is a view selection system, and MV 
is a set of selected views through VS to materialize. The 
parameters of view selection systems which are the inputs 
of this function are described below. 

• al: It means an algorithm and is a step by step 
process. It consists of conditions and solves the 
problem. It should be converted to the 
programming code directly [33]. In view 
selection systems, algorithms are used to select 
views to materialize. 

•  fb: It is a benefit function and is an indicator to 
select views to materialize. Views with the 
highest benefit functions are selected as 
candidates for materialization. 

• ti: It means an algorithm's input type. View 
selection algorithms process different input 
types. Some of the most important inputs are 
lattice of cuboids and and-or view graph of input 
queries. 

• te: It is the time of calling view selection 
algorithms to execute. Some of the algorithms 
are executed before any query arrival and others 
are executed during run time. 

• mb: It means the metadata required to calculate 
the benefit function, and their extraction 
methods. Benefit functions consist of some 
parameters that should be collected to calculate 
these functions. Some of these parameters are the 
number of rows in the view, the frequency of a 
query, the frequency of an update statement, the 
cost of answering the query using old 
materialized views, and the cost of refreshing 
views. 

• ms: It means the metadata required to select old 
materialized views for answering the current 
query, and their extraction methods. To decrease 
query response time, the most proper 
materialized views should be selected to execute 
queries. Therefore, the information about some 
parameters such as the attributes of each view 
and each query, the range of each attribute, and 
the number of rows in view should be collected. 

• ar: It is the architecture of a view selection 
system. This architecture should contain various 
units such as an information repository to store 
materialized results, a process unit to determine 
whether or not already materialized results can 
be efficiently used to respond the query, a 
process unit to search in information repository 
to find candidate materialized results, and a 
process unit to decide about the materialization 
of query results in the information repository. 

“Algorithm” is the most important parameter of view 
selection systems because it affects the other parameters. 
Several algorithms have been presented for view 
selections [4]-[8], [10]-[13], [16]-[19], [21]-[32], [34]-
[49]. We classify these algorithms based on 4 parameters 
which are: Type, Input, Benefit function, Time 
Complexity, and Constraining Factor. Table 1 shows 
algorithms classification based on these parameters .The 
search strategy of these algorithms such as depth first and 
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best first is not the issue for classification. 
TABLE 1 

VIEW SELECTION ALGORITHMS’ CLASSIFICATION PARAMETERS 

Type Input Benefit 
Function 

Time 
Complexity 

Constraining 
Factor 

Static / 
Dynamic 

Data 
cube 

lattice / 
DAG/ 
query 

Query 
processin
g cost / 

materiali
zed 

view's 
refreshm
ent cost 

Suitable for 
applications 

with 8 
dimensions in 

maximum / 
executable for 
applications 
with more 

than 8 
dimensions 

Space 
limitation / 

Maintenance 
time 

restriction 

 
Types as defined below are divided into two main 

groups.  
1. Static algorithms: In these algorithms, views are 

selected and materialized before processing the 
first query. These views are maintained until 
processing the last query. This type of algorithms 
is called to execute (te) before processing the first 
query. 

2. Dynamic algorithms: In these algorithms, views 
are selected and materialized during query 
processing time. These algorithms are called to 
execute (te) repeatedly during query processing. 
We classify these algorithms into two groups. In 
the first group, the queries and their order of 
execution are known before processing the first 
query. In the second group, queries are unknown 
before execution. To materialize a proper set of 
views, it is better to use a technique to predict 
incoming queries in this group. 

Dynamic algorithms are more complex than the static 
ones, because finding proper checkpoints to materialize 
each view is very time consuming and it needs heavy 
competitions and experimental jobs. These algorithms are 
more beneficial than static algorithms because they 
provide the flexibility to change materialized views 
through runtime. Moreover, in these algorithms 
unnecessary old materialized views are deleted during run 
time and their space and maintenance costs are decreased. 
Static algorithms are suitable when there is less 
dimensionality which makes less candidate views.  

Both dynamic and static algorithms operate on two 
approaches to select proper set of views to materialize. In 
one approach, they select the answer of costly queries to 
materialize which is the part of the data cube. They 
usually use the data cube lattice as input which contains 
cuboids' dependencies. In this approach, dynamic 
algorithms use input queries as inputs too. In the other 
approach, algorithms select common sub queries to 
materialize. They use Directed Acyclic Graphs (DAGs) to 
represent queries as inputs and then extract common sub 
queries. Common sub queries can be used to answer more 
than one query, but it is required to join more than one of 

them to answer a query, which is a costly process.  
Some algorithms use benefit functions [13], [18]-[19], 

[22], [24]-[26], [28], [32], [34]-[37], [45], [49] and some 
others use cost functions [5], [17], [23], [31], [35]-[36], 
[47] to select views for materialization. In this paper, cost 
functions are converted to benefit functions. Different 
algorithms use different benefit functions to select views. 
These functions mostly depend on the query processing 
cost and the cost of updating materialized views leading 
to better results.   

The time complexity of different view selection 
algorithms should be considered as a key parameter for 
being executable on high dimensional applications.  

Space limitation to store views and view maintenance 
cost are two constraining factors for selecting views to be 
materialized. Because of limitation in resources, space is a 
constraining factor. Views are maintained when systems 
are off-line. When the maintenance time is bigger than 
offline time of the system, we should reduce this time by 
discarding some materialized views. Some algorithms 
consider both constraining factors while the others 
consider either only one of the constraining factors, or 
consider none of them. 

3.  FOUR STEPS TO SELECT THE SUITABLE ALGORITHM 

Selecting the most suitable algorithm for view 
selection is important and depends on application type. In 
this section, we present 4 steps based on different types of 
algorithms to select views to materialize data warehouses 
for different types of applications. These steps are given 
below.  

1. Identifying different types of algorithms for view 
selection and their properties. This step consists 
of 2 stages: 1) identifying algorithms evaluation 
parameters, 2) evaluating and classifying 
algorithms based on these parameters. 

2. Identifying different parameters which are 
important to determine the type of applications in 
this subject. These parameters are as follows: 
1. Applications with known/unknown queries. 
2. The number of dimensions in applications. 
3. Applications with known/unknown 

sequence of statements. 
4. Whether the view maintenance cost is 

important or not in application. 
3. Creating a roadmap based on the above 

parameters and an instance of each type of 
algorithms for view selection. 

4. Selecting the most suitable type of algorithms 
through the roadmap.  

In the following section, the instances of the 
conventional view selection algorithms reported in the 
literature during 1996-2009 are presented and classified 
based on the presented parameters in section2.  
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4.  VIEW SELECTION ALGORITHMS CLASSIFICATION 

In this section, the first step to select the most suitable 
algorithm is explained and different types of algorithms 
for view selection and their properties should be 
identified. 

View selection algorithms depend on parameters 
described in section 2 which are: type of algorithm, input 
type, benefit function, time complexity, and constraining 

factor. Different algorithms have different values for these 
parameters and are suitable for different applications. 

In this section, 15 important algorithms for view 
selection are considered. We extract and analyze the 
values of the view selection algorithms parameters for 
these algorithms using their original references and 
present them in a comparison table (Table 2) in a unified 
format; and then classify them  

 
 

TABLE 2 
 ALGORITHMS COMPARISON BASED ON CLASSIFICATION PARAMETERS  

Name Presen-
tation 
year 

Type Input 
Type 

Time  
complexity 

Benefit function Constr
ainig 

Factor 

Analysis 

HRU 1996 Static Cube O(kn2) (Rows(A)-Rows(v))*NC Space Simple. 
GM 1997 Static DAG O(km2) ( ) ( )vMGMG ∪− ,, ττ

( ) ( ) ( )∑∑
==

+=
m

i
iuq

k

i
iq MvUCfMqQfMG

ii
11

,,,τ
 

Space More complex than HRH to 
implement. 

PBS 1998 Static Cube O(n logn) -Sv/Nq Space The same performance as HRU, 
advantages compared with 

HRU:  
lower time complexity, more 

complete benefit function. 
PGA 2002 Static DAG O(dk2l) (Rows(A)-Rows(v))*NC /Rows(v) Space Its performance is close to 

HRU, advantages compared 
with HRU: lower time 

complexity, flexible, more 
complete benefit function. 

VRDS 2002 Static DAG O(km2) ( ) ( )∑ ∑−= MvUCfMvCfMvB iuqiqi ,*),(*,

 
Space Advantages compared with 

GM: more suitable benefit 
function, improved 

performance. 
Randomize

d 
algorithms 

2002 Static / 
Dynamic 

DAG O(hs logs) -T Update 
cost 
and 

Space 

Advantages compared with 
HRU: lower time complexity, 
the only applicable algorithms 

when we have high 
dimensional problems, its 

performance are better than 
DynaMat. 

Drawback: in these algorithms 
some parts of the space are not 
extensively searched and good 
local minima may be missed. 

CSA 2006 Static DAG, 
Query 

O(kc2) ( ) { }( ) ( )∑ ∑ −− MvUCvMiqQMiqQ ,,, ∪

 

Space Advantages compared with 
HRU: Search in smaller search 

space. 
MPL 2007 Static DAG O(kn2) ( ) { }( ){ }

v
SvMCostMCost /∪−  

( ) ( ) ( )∑ ∑
= =

+=
n

i

m

j
juqiq MvUCfwMvQfMCost

ji
1 1

,,

 

Space Advantages compared with 
HRU: Better results in less 

time. 

DynaMat 1999 Dynamic DAG, 
Query 

O(rk2) fq*C(v,M)/Sv Update 
cost 
and 

Space 

More suitable prediction 
function is required. 

ZYK 2003 Dynamic DAG, 
Query 

O(i) -c(x) - More complex than DynaMat 
to implement. 

DMP 2003 Dynamic DAG, 
Query 

 
 

O(P2) fP*SP Space It does not have various views, 
because it partisions base 

cuboid. 
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Hybrid 2006 Dynamic DAG, 
Query 

O(kn2) Max(a) Space It has better response time for 
drill-down queries compared 

with DynaMat. 
XTZ 2007 Dynamic DAG, 

Query ( )2
nqO  -Q(q,M) Update 

cost 
and 

Space 

The workload is already 
definite, complex to implement. 

CDA 2008 Dynamic DAG, 
Query 

( )( )cnLogcnO 2

 ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

∑
∈

+−
Mv

MvUCMqQ ,,  
Space Advantages compared with 

DynaMat: Search in smaller 
search space. 

PL 2008 Dynamic DAG, 
Query 

O(rk2) -T Space Fewer complexes than XTZ to 
implement. 

 
based on each parameter. These algorithms have been 

extracted from well-known journals and conferences 
presented in ten recent years. We also present three 
reference algorithms (HRU, GM, and DynaMat). Details 
of these algorithms were presented in our previous work 
[15]. 

These algorithms are given below. 
1. The algorithm presented by Harinarayan and et 

al. (HRU Algorithm) [22]. 
2. The algorithm presented by Gupta and et al. (GM 

Algorithm) [18]-[19]. 
3. Pick By Size Algorithm (PBS Algorithm) [37]. 
4. Polynomial Greedy Algorithm (PGA Algorithm) 

[32]. 
5. View Relevance Driven Selection Algorithm 

(VRDS Algorithm) [45]. 
6. Randomized Algorithm [24], [28]. 
7. The algorithm presented by Aouiche and et al. 

(CSA Algorithm) [5], [31]. 
8. Mid Point Locating Algorithm (MPL Algorithm) 

[23]. 
9. DynaMat Algorithm [25]-[26]. 
10. Dynamic Materialized View Management Based 

on Predicates (DMP Algorithm) [13]. 
11. The algorithm presented by Zhang and et al. 

(ZYK Algorithm) [49]. 
12. Hybrid Algorithm [35]-[36]. 
13. The algorithm presented by Gong and et al. 

(CDA Algorithm) [17]. 
14. The Algorithm presented by Xu and et al. (XTZ 

Algorithm) [47]. 
15. The algorithm presented by Phan and et al. (PL 

Algorithm) [34]. 
The comparisons of these algorithms are presented in 

Table 2. This table contains 7 static algorithms, 7 dynamic 
algorithms, and a randomized algorithm which has static 
and dynamic versions. All of the algorithms are evaluated 
based on five parameters extracted from their evaluations 
according to their reports on the reference papers. These 
parameters are the type of algorithm, the type of their 
input, time complexity, benefit function, and constraining 
factors. Therefore, Table2 has 8 columns which are 
algorithm’s name, presentation year, 5 columns related to 
the parameters, and an analysis column containing 
algorithms’ analysis based on their techniques and the 

results of accomplished experiments. Static algorithms, 
which use DAG (Directed Acyclic Graph) of cuboids as 
input, are compared with HRU algorithms and the other 
static algorithms are compared with the GM algorithm. 
Dynamic algorithms are compared with DynamMat. In 
the upper rows static algorithms and in the lower rows 
dynamic algorithms are presented. These two types have 
been ordered by time.  

We can classify algorithms through various 
parameters. These classifications are listed below. 

1. Algorithms classification based on their types: 
Static algorithms, and Dynamic algorithms. 

2. Algorithms classification based on input types: 
algorithms which use and/or graph of input 
queries as input, algorithms which use DAG of 
cuboids as input, and algorithms which use input 
queries as input. 

3. Algorithms classification based on constraining 
factors: algorithms which are based on restricted 
space, algorithms which are based on restricted 
time to refresh materialized views, and 
algorithms which are based on the above-
mentioned constraining factors. 

4. Algorithms classification based on time 
complexity: algorithms, which have exponential 
time complexity, and algorithms, which have 
polynomial time complexity. 

5. Algorithms classification based on the 
parameters required to calculate their benefit 
functions: the benefit function of algorithms is 
based on parameters which are: update 
frequency, query processing cost, update cost, 
query frequency, the space required to 
materialize a view, the number of queries which 
can be answered through a materialized view 
with improved response time. 

6. Dynamic algorithms classification based on their 
queries: algorithms with unknown input queries, 
and algorithms with known sequence of 
incoming queries. 

Classifications of algorithms based on the above 
parameters were presented in detail in our technical report 
[15]. Different algorithms which have different values for 
each parameter can be used for suitable applications 
types. The next section presents applications types. 
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5.  THE TYPE OF APPLICATIONS IDENTIFICATION 

The second step to select the suitable algorithm for 
view selection is the type of application identification. We 
define the data structure of the type of application 
identification process in the form of a function with inputs 
and outputs as: 

CAvUCqsdqAC →⎟
⎠
⎞⎜

⎝
⎛ ,,,                     (2) 

 
In this function, AC is a function to specify application 
type, and CA is an application with the specified type. In 
this step, we should identify different parameters which 
are important to identify the type of applications. These 
parameters are the inputs of this function and extracted 
through investigation of data mining applications and 
decision support systems applications [20], [43] and are 
described as follows. 
 

1. q: stands for query type in applications. In some 
applications, the queries are known before 
arriving [14].  

2. d: stands for the number of dimensions in 
applications.  

3. sq: stands for the type of sequence of statements. 
In some applications, the sequence of statements 
is known and in other applications, they are 
unknown. Sequence of statements contains 
queries, updating, and their order of execution. 

4. UCv: stands for view maintenance cost. Some 
applications have limited time to update and 
refresh materialized views and in the others it is 
not an important issue. There are different 
algorithms for these two types. 

Based on the value of the above parameters, the most 
suitable algorithm for view selection in different 
applications can be selected. 

6.  THE ROADMAP TO SELECT THE MOST SUITABLE VIEW 
SELECTION ALGORITHM FOR APPLICATIONS 

Creating roadmap as a third step is defined in this 
section. The roadmap is created based on two factors: the 

parameters of applications, and the algorithms’ properties. 
The other factors such as data distribution is not directly 
affect the algorithm selection. These can be used as 
parameters in the state of preprocessing to achieve the 
roadmap.  

Fig.1 presents the proposed roadmap to select the 
suitable algorithm based on application parameters. The 
proposed roadmap is created based on 15 available 
algorithms and can be generalized. To add new algorithm 
to this roadmap, it is necessary to recognize the properties 
of each of them. 

In this roadmap, the type of queries is first checked. If 
they are unknown, all of the dynamic algorithms except 
XTZ and PL algorithms should be used. Therefore, there 
are six choices: DynaMat, Randomized, CDA, Hybrid, 
DMP, and ZYK. Then, the number of dimensions in the 
application should be checked. If this number is at most 8, 
CDA is the most suitable algorithm because it searches in 
the smallest search space and selects suitable views in a 
reasonable time. If the number of dimensions is more than 
8, other algorithms should be used. In this type, Hybrid 
algorithm is the best one when there are drill-down 
queries.  

If the queries are known before arrival, all of the static 
algorithms, Randomized, XTZ, and PL algorithms can be 
used. If the number of dimensions is more than 8, fast 
algorithms such as PGA, CSA, or Randomized algorithms 
should be used.  

If the queries of applications are known before their 
arrival and an application has at most 8 dimensions, HRU, 
GM, PBS, PGA, VRDS, CSA, MPL, PL, and XTZ 
algorithms can be used. If an application has known 
sequence of statements, XTZ and PL are more suitable 
algorithms. XTZ is more complex than PL to implement. 
If the order of queries’ execution is changeable, PL 
algorithm is more suitable than XTZ. 

If the view maintenance cost is important and limited, 
VRDS, MPL, and GM algorithms are more suitable. 
However, GM has the lowest performance and is not 
suggested.   
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Figure 1: The roadmap to select the best suitable view selection algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 2: The used path in the roadmap to select the view selection algorithm for the Sell application. 

 
If 1) the queries of application are known, 2) an 

application has at most 8 dimensions, 3) the order of 
queries’ execution is unknown, and 4) the view 
maintenance cost is not important, HRU or PBS 
algorithms should be used. PBS has lower time 
complexity and more suitable benefit function. This 
algorithm is recommended in this situation. 

The roadmap can be used to select the most suitable 
algorithm for each type of applications. For example, 
assume there are sale queries in a data warehouse system. 
It consists of five major dimensions: parts, suppliers, 
customers, times, items. Suppose that the orders of 

queries’ execution are known. Whereas queries are 
known before arrival, HRU, GM, PBS, PGA, VRDS, 
Randomized, CSA, MPL, PL, and XTZ algorithms can be 
used. These queries have 5 dimensions, then HRU, GM, 
PBS, VRDS, MPL, PL, and XTZ algorithms are more 
suitable. As the order of queries’ execution is known, 
XTZ and PL algorithms are more suitable algorithms for 
this application. If the order of queries’ execution is 
changeable, PL is more suitable than XTZ. However, 
XTZ is more complex than PL to implement. 
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7.  TEST AND EVALUATION OF THE PROPOSED ROADMAP 

In this section, sale database is introduced to test and 
evaluate the proposed roadmap. This database contains 5 
main tables which are presented below. 
Shop (shop_id int, name char(30), address char(120))   (2) 
Customer (customer_id int, nationality char(30), birthdate 
date, address char(120))                      (3) 
Seller (seller_id int, name char(30), birthdate date)     (4) 
Item (item_id int, name char(30), size char(30), producer 
cahr(30), type char(30))                (5) 
Sell (id int, selldate date, price int, customer_id int, 
seller_id int, item_id int)                  (6) 

Sell database contains the information about sells in 20 
recent years from a chain store which contains 1000 
branches in a country with 20 states. This shop has 10000 
sellers and 1000000 customers which have 10 
nationalities and ages between 20 and 80 years. 
Moreover, this shop has 10000 different items in 7 sizes 
and 10 types. 

The input queries to this database are given in 
Appendix 2. The execution order of these queries is not 
definite. The Sell table is the main table of this database 
and has been contained in the “from clause” of all queries. 
These queries are divided in two groups: 

1. Ten first queries require data extraction and 
transformation to execute. 

2. Ten last queries require join operation, data 
extraction and transformation to execute. 

Join operation is a time consuming operation. If sell 
table has 2*107 records, 2.002*1026 records should be 
joined to execute ten last queries. If views are created to 
execute these queries, these records should be joined 
again. If these views are materialized before query 
processing to create a data warehouse, join operations are 
removed during query processing leading to a query 
processing improvement.  

Concerning the above analysis, as there are 
multidimensional aggregate queries, it should be created a 
data warehouse to improve the query response time [14]. 
The aggregate function of these queries is “sum” and 
dimensions are: Time, Item, Customer, Shop, and Seller. 
The huge amount of space is required to store the related 
cube without considering the hierarchies of dimensions 
(2.103*1018 records). As the space is limited, the set of 
more suitable views should be selected to materialize. 
Therefore, a suitable view selection algorithm should be 
used to select proper views. The proposed roadmap 
should be used to select the most suitable algorithm. 
Whereas there are predefined queries, HRU, GM, PBS, 
PGA, VRDS, Randomized, CSA, MPL, XTZ, and PL 
algorithms could be used. Since Sale data warehouse has 
5 dimensions, HRU, GM, PBS, VRDS, MPL, XTZ, and 
PL algorithms are more suitable. As the order of queries 
execution is not predefined, HRU, GM, PBS, VRDS, and 
MPL algorithms can be used. If there is limited time to 
refresh views, VRDS and MPL algorithms should be 

used; otherwise, the PBS algorithm is more suitable. The 
used path in the roadmap to select these algorithms is 
presented in Fig. 2. 

The space required to materialize the views 
corresponding input queries is 4.968*109 records. In this 
paper, the equal space in average for each record is 
assumed. The performance of the PBS algorithm is 
considered with the assumption that the space allocated 
for the materialized views is 10 percent of the required 
space. 

The PBS algorithm selects views in increasing size 
until the space limitation is reached. If this algorithm is 
executed, only the views related to the query8, query9, 
and query10 cannot be materialized. The ratio of the 
query processing cost in data warehouse (created through 
PBS algorithm) to the database could be calculated 
through formula 7. In this formula, the benefit of 
removing join operations and the pre-process to extract 
and transform some fields (such as customer age, seller 
age, and the state of a shop) are relinquished.  

the ratio of the query processing cost
∑

∑
=

i ic
i is

              (7) 

In this formula, ci is the processing cost of the ith query 
(qi)  on the database and si is the processing cost of the ith 
query (qi)  on the data warehouse. The number of records 
in each table, which is accessed to answer a query, has 
direct effect on both ci and si. The numerator of this 
formula is 4.28*108, and the denominator is 2.002*1026. 
These two costs are incomparable. Therefore, the 
proposed roadmap causes high improvement in 
processing multidimensional aggregate queries. 

If there is a limited time to refresh and maintain 
materialized views, MPL, or VRDS algorithms should be 
used and we reach to the similar results obtained through 
PBS algorithm. 

8.  CONCLUSIONS 

Multidimensional aggregate queries are the main 
working units used in decision support systems. These 
queries are complex, and operate on huge amount of data. 
To improve query response time, the multidimensional 
structure to store data are needed. Data cube is the 
structure of the data warehouses to represent data sources 
in a multidimensional structure. Several view selection 
algorithms are available to materialize views to build 
efficient data warehouses. These algorithms have various 
parameters and are suitable for different applications. For 
each application, it should be selected the efficient one to 
have a quick query response. 

In this paper, we introduced the parameters to classify 
view selection algorithms, and then the algorithms were 
classified based on these parameters. If a new algorithm is 
presented, its class should be identified based on the 
values of the introduced parameters. Then, we introduced 
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the parameters to classify applications, and presented the 
roadmap to select the most suitable algorithm for view 
selection based on both these parameters and different 
types of algorithms. We tested and evaluated the proposed 
roadmap for a database and its queries as instance and 
calculated its improvement, and showed that this roadmap 
is suitable to select the most suitable algorithm for 
different applications. 

9.  APPENDIX 

Appendix 1: List of Notation 
a: the probability to access a materialized view. 
A: the smallest father of view v in materialized views. 
C: the number of clusters. 
c(x): the actual benefit of materializing a view, when we 
have a set of materialized views, minus the cost of re-
materialization. 
C(v,M): the cost materialization a view v, when we have a 
set M of materialized views. 
d: the number of dimensions. 
fq: the frequency of query q. 
fuq: the frequency of the update statement. 
fP: the frequency of the property P in input queries. 
G: graph of input queries. 
h: the depth of local minimum. 
i: the number of iterations in a genetic algorithm. 
k: the number of the selected views to materialize. 
l: the number of layers in the lattice of cuboids and is 
equal to d+1. 
M: the set of materialized views. 
m: the number of nodes in a graph of input queries. 
n: the number of nodes in a lattice of cuboids and is equal 
to 2d. 
NC: the number of cuboids which can be used to calculate 
a view v. 
Nq: the number of queries that can be answered through v. 
nc: the average number of views in clusters. 
P: the total number of properties in all dimensions. 
Q(q,M): the cost of answering query q through M. 
qn: the number of input queries. 
Rows(v): the number of rows in v. 
r: the number of the materialized views which should be 
deleted. 
s: the number of combinations of views to materialize. 
Sv: the size of view v. 
SP: the space required to materialize the partitioned view 
through property P. 
T: the time required to execute all queries. 
UC(v,M): the cost of updating view v when we have the 
set M of materialized views. 
 
Appendix 2: Input Queries to Sell Database 
Select sum(price), year, item_id   
from Sell  
group by year, item_id                       (1) 
Select sum(price), year, quarter, item_id   
from Sell  

group by year, quarter, item_id   
where quarter=2 and item_id=40                   
(2) 
Select sum(price), year, month, item_id, customer_age   
from Sell  
group by year, month, item_id, customer_age   
where month=1 and item_id=40                   (3) 
Select sum(price), year, month, quarter, item_id   
from Sell  
group by year, month, item_id                    
(4) 
Select sum(price), year, item_id, customer_age   
from Sell  
group by year, item_id, customer_age                
(5) 
Select sum(price), year, item_id, shop_id   
from Sell  
group by year, item_id, shop_id                   (6) 
Select sum(price), item_id, seller_id   
from Sell  
group by item_id, seller_id                     (7) 
Select sum(price), year, quarter,  month, item_id, shop_id   
from Sell  
group by year, month, item_id, shop_id            (8) 
Select sum(price), year, quarter, item_id, shop_id   
from Sell  
group by year, quarter, item_id, shop_id  
where quarter=2                         (9) 
Select sum(price), year, item_id, seller_id   
from Sell  
group by year, item_id, seller_id                (10) 
Select sum(price), year, month, type, region   
from Sell,Item, Shop  
group by year, month, type, region  
where type=’clothes’ and month=12           (11) 
Select sum(price), type, customer_age   
from Sell, Item, Customer  
group by type, customer_age  
where type=’electric’                     (12) 
Select sum(price), year, month, quarter, item_id, region   
from Sell, Shop  
group by year, month, item_id, region              
(13) 
Select sum(price), year, item_id, nationality   
from Sell, Customer  
group by year, item_id, nationality               (14) 
Select sum(price), year, month, quarter, type, shop_id   
from Sell, Item  
group by year, month, type, shop_id           (15) 
Select sum(price), year, month, type, seller_age   
from Sell, Item, Seller  
group by year, month, type, seller_age          (16) 
Select sum(price), size, customer_age, region   
from Sell, Item, Customer, Shop  
group by size, customer_age, region           (17) 
Select sum(price), year, month, quarter,  item_id, 
seller_age   
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from Sell, Seller  
group by year, month, item_id, seller_age              (18) 
Select sum(price), year, month, size, customer_age   
from Sell, Item  
group by year, month, size, customer_age                  (19) 
Select sum(price), year, quarter, size, region   
from Sell, Shop, Item  

group by year, quarter, size, region                  (20) 
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