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ABSTRACT: Electricity demand is forecasted to double in 2035, and it is vital to address the economics 
of electrical energy generation for planning purposes. This study aims  to examine the applicability of 
Gravitational Search Algorithm (GSA) and the newly improved GSA (IGSA) for optimization of the 
mixed-integer non-linear electricity generation expansion planning (GEP) problem. The performance 
index of GEP problem is defined as the total cost (TC) based on the sum of costs for investment and 
maintenance, unserved load, and salvage. In IGSA, the search space is sub-divided for escaping from 
local minima and decreasing the computation time. Four different GEP case studies are considered to 
evaluate the performances of GSA and IGSA, and the results are compared with those from implementing 
particle swarm optimization algorithm. It is found that IGSA results in lower TC by 7.01%, 4.08%, 
11.00%, and 6.40%, in comparison with GSA, for the four case studies. Moreover, as compared with 
GSA, the simulation results show that IGSA requires less computation time, in all cases.     
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1- Introduction
Electrification plays a critical role in promoting economic 
growth and social welfare for all economies. Therefore 
significant resources from governments and international 
development agencies are allocated to generation expansion   
[1], which is expected to reach $6.8 trillion in 2030 [2, 3]. 
Total world primary energy demand grew by 26% from 2000 
to 2010 and it is projected to increase by 47% in 2035 [2, 3], 
mainly due to the expansion of rural electrification programs 
in countries with developing economies and higher utilization 
of electric appliances and heating in countries with developed 
economies [4].
Independent of the type of need for electrification, GEP is 
expected to resolve the problem of determining the type and 
the size of new generation units installed over the planning 
horizon with considering reliability criterion [5, 6]. 
As the electricity demand increases over the planning 
horizon, a small error in the planning phase can result in loss 
of the capital expenditure in addition to the social costs of 
unmet energy demand. The literature review indicates that 
there is a continuous interest in the development of more 
accurate techniques for optimization of the GEP problem. 
Various mathematical programming methods such as linear 
programming [7, 8], mixed-integer linear programming [9-
13], and non-linear programming [5, 6, 14] have been applied 
to optimize the GEP problem. For the large-scale mixed-
integer non-linear (MINL) programming GEP problem, a 
number of meta-heuristic optimization methods have been 
examined [7]. Park et al. applied genetic algorithm (GA) to 
solve the GEP problem, where an artificial creation scheme 
for an initial population was developed and a stochastic 

crossover technique to overcome some structural problems in 
the GA was proposed [15]. In that study, the planning horizon 
was considered as 14 and 24 years for two case studies. The 
results, as compared with GA, dynamic programming (DP), 
and tunnel-constrained DP (TCDP) algorithms, showed that 
improved GA achieved 1.1 and 0.21% less cost than GA and 
TCDP in one case study and 0.72 and 0.61% in the other one, 
respectively. Also, J. Sirikum et al. [16] used a GA-based 
heuristic methodology to solve the GEP problem which was 
applied to a test system with different planning horizons of 5, 
7, 10, 15, 20, 25, and 30 years and the findings were compared 
with those from LINGO software to demonstrate the ability 
of the proposed methodology. In a study by B. Alizadeh et al., 
the Benders decomposition and a novel heuristic reliability 
algorithm are employed for the optimization of GEP problem 
[17]. Z. Hejrati et al. applied honey bee mating optimization  
method to solve a case study with a six-year planning horizon 
and five types of candidate generation units [18]. In another 
study, the immune algorithm was improved by using tabu 
search algorithm to obtain the optimal GEP for a system with 
four candidate generation units [19]. In that study, the results 
were compared with those from GA and immune algorithms. 
Imperialist competitive algorithm (ICA) was used by 
Hedayatfar and Barjaneh to optimize the GEP problem for two 
test systems, one with 15 and 5 types of candidate generation 
units for a 14-year planning period, and the other, a practical 
long-term system with a 24-year planning period [20]. The 
results from that study showed that in both case studies, 
ICA provided a better solution than those of  TCDP and GA. 
Kothari and Kroese developed cross-entropy optimization 
method to solve the GEP problem for a test system with a 
10-year planning horizon [21]. In another study by Kannan 
et al., the application of particle swarm optimization (PSO) 
algorithm and its variants to the GEP problem was presented, 
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where a novel virtual mapping procedure was introduced to 
enhance the effectiveness of PSO algorithm [22]. In that study, 
PSO algorithm and its variants were applied to a synthetic 
test system of five types of candidate generation units with 
6- and 14-year planning horizons. It was determined that PSO 
technique produced the best result with a lower computation 
time, when compared with DP. In a study by Jadidoleslam 
et al., GEP problem was solved by shuffled frog leaping 
(SFL) algorithm [23]. In that study, to test the proposed SFL 
algorithm, two case studies were used for planning horizons 
of 10 and 20 years. Moreover, a modified SFL algorithm is 
proposed to solve GEP problem which is applied to a test 
system for two planning horizons of 12 and 24 years [24].
Although various optimization methodologies have been 
developed for the GEP problem, the complexity of the MINL 
GEP problem warrants the development of more efficient 
algorithms for better accuracy and lower computation time. 
While it has been demonstrated that GSA is comparable with 
other optimization algorithms [25], it has been applied for 
the analysis of power system, including unit commitment 
[26], voltage stability enhancement in optimal reactive 
power dispatch [27], and optimal power flow [28]. The goal 
of this study is to examine the applicability of GSA and the 
newly improved GSA (IGSA) for optimization of the MINL 
electricity GEP problem. To this end, in this paper, the GEP 
problem is formulated, and the solution methodology based 
on GSA and IGSA for four case studies is presented.
The remainder of this study is organized as follows. In the 
next section, GEP problem formulation is given. GSA and 
the improvements introduced in this study for IGSA are 
explained in section 3. Results and discussions are presented 
in section 4. Finally, the conclusions and recommendations 
are given in section 5. 

2- GEP formulation 

2- 1- Performance index
The performance index of MINL GEP problem is based on 
the total cost (TC) which is the sum of the investment cost of 
candidate generation units (Inv), operation and maintenance 
cost (including fixed and variable costs) of existing and 
candidate generation units (OM), energy not served cost 
(ENS), and salvage costs of candidate generation units (Sal). 
Mathematically, TC is optimized based on the following 
formulation [15, 23, 29]:

where T is the planning horizon in terms of the number of 
years and it is divided into several stages, denoted by t, where 
cost calculation is performed for each stage. Ut and Xt are 
the capacity addition of all candidate generation units and 
cumulative capacity of all existing and candidate generation 
units in the stage t, respectively. Xt is calculated based on

In Eq. (1), the cost components of TC are formulated based 
on consideration for discount rate, i, given by 

where Inv_Ck, F_Ck, and V_Ck are investment, fixed, and 
variable operating cost of unit k, respectively. Ut,k, Xt,k, 
and Gt,k  are the capacity of kth candidate generation unit, 
cumulative capacity of kth unit, and produced energy by kth 
unit in the stage t, respectively. The cost of energy expected 
not served in each stage (EENSt) is represented as ENS_C. 
In the formulation of TC in Eq. (1), it is assumed that the 
candidate generation units are added to the power system at 
the beginning of each stage, where OM and ENS costs are 
assumed to occur in the middle of each year.
To consider investments with the longer lifetimes than the 
planning horizon, the sinking fund depreciation method is 
utilized for the calculation of salvage factor (dk,t) in each 
stage [30],

where Lk is the lifetime of kth unit. Also, t` and T` are defined as

where S and t0 are the number of years in each stage and the 
number of years between the reference year for discounting 
and the first year of study, respectively.

2- 2- Constraints
For the optimization of GEP problem, five sets of constraints 
are considered. Due to physical limitations, the maximum 
installation units of jth candidate generation units in each 
stage is limited by

and the reserve in each year is bounded by maximum (Rmax) 
and minimum (Rmin) limits

The capacity limitations of each candidate generation unit 
based on its fuel types in each stage are

and the loss of load probability (LOLP) reliability criterion 
is bounded by

where Uj,t
max is the maximum available capacity of jth unit in 

stage t. Loadt denotes the peak demand in the stage t. Mmin
j 

and Mmax
j are the lower and upper bounds of jth fuel type in 
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stage t. Also, LOLP in each stage is limited by e.
It must be noted that determining the number of candidate 
generation units in each stage and their capacities pose the 
GEP problem as a mixed-integer type. In this study, the power 
capacities of each candidate generation unit are assumed to 
be dependent on the number of them, which must be treated 
as an integer in the GEP problem. The power capacities 
are calculated based on the merit order of each candidate 
generation unit in each stage. Also, the existence of Ut in the 
GEP formulation calculated by the products of the number 
of candidate generation units and their capacities makes the 
problem non-linear. In the next section, GSA and IGSA are 
discussed for optimization of the MINL GEP problem.

3- Proposed optimization algorithms 

3- 1- Gravitational search algorithm
GSA is a meta-heuristic optimization method introduced 
by Rashedi et al. [25] and is based on Newton’s law of 
gravity and mass interactions. GSA is initialized by random 
objects that are spread in the feasible solution space. The 
objects considered in GSA are identified based on their 
masses. Objects move due to the attraction between them 
by gravitational forces which cause their global movement 
towards the objects with heavier masses corresponding to 
the acceptable solutions. Objects with heavier mass impose 
higher forces on the other objects and move slower than the 
objects with relatively smaller mass. 
Similar to PSO, in GSA, it is assumed that each object is 
associated with two vectors, namely the position Yi and 
velocity Vi vectors [31]. Therefore, the ith object’s position in 
the search space can be represented by
in the N-dimensional space for i=1,...,K, where K is the 
number of objects and xi

d represents the position of ith object 
in the dth dimension. Also, each object has an inertia mass, 
shown by Mi, which is updated in each iteration of GSA, 
corresponding to the performance index value of each object, 
Performance(t).

where mi(t), the normalized value of performance index, is 
defined as

where besti(t) and worsti(t) are the best and the worst 
performance index values, respectively, among K objects in 
each iteration. 
The gravitational constant, G(t), is updated in each iteration 
based on  

where G0 is an initial gravitational constant in the first 
iteration (t0) and b is a constant parameter.
The forces between each object and the others are determined as

where Mj
a denotes the active gravitational mass related to the 

jth object. e is a small constant. Rij(t) indicates the distance 
between object i and j and randj is a uniform random variable 
in the interval [0,1]. Fij

d(t) is the force between ith and jth 

objects in direction d and Fi
d(t)  is the summation of all forces 

on the ith object.  
Based on the law of motion, the acceleration, ai

d, of the ith 

object in direction d is given by

Then, the velocity and position of ith object are updated by

This process is repeated until the convergence criterion is 
satisfied. The flowchart of GSA is depicted in Fig. 1.

3- 2- Proposed IGSA
Improving the performance of GSA has been the subject of 
several studies. For example, in a study by Rashedi et al., a 
new version of GSA for binary encoding was introduced [32]. 
In their study, the probability value for each element of the 
binary vector corresponded to the calculated forces of each 
element which determined the zero and the unity values of 
those elements. Also, a novel moving strategy in the search 
space of GSA, was introduced and applied for identifying the 
parameters of hydraulic turbine governing system by Li and 
Zhou [33].
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Fig. 1. Flowchart  of GSA [25].
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In GSA searching procedure, one object direction is calculated 
based on the overall force exerted by other objects and, as 
a result, the required computations are increased which 
consequently reduce the processing speed of the algorithm. To 
enhance the performance of GSA, Rashedi et al. hypothesized 
that considering a percentage of objects to calculate the forces 
of each object in each iteration can be effective to reduce the 
needed computations in each iteration, and, consequently, the 
processing speed of GSA was improved [32]. 

To formulate IGSA in this study, it is proposed to divide up 
the search space, similar to parallelization process in SFL 
algorithm [34], to accommodate for utilizing the strategy of 
considering a percentage of objects for calculating the forces 
in GSA. Therefore, the entire population of objects is divided 
into L groups where each group consists of m objects that 
conduct local exploration of feasible space. 
In each iteration of IGSA, to categorize the objects, their 

performance indices are calculated based on Eq. (1) and then 
the objects are sorted in a descending order according to their 
performance index values. Then, the first object is assigned to 
the first group and the second object is assigned to the second 
group, and so on until (L×µ)th object is assigned to the Lth group. 
For each group, the movement of all objects is calculated. 
The heaviest objects in each group can be candidates for local 
minima solutions. To find a better solution, the intra effect of 
objects in each group is considered. Next, based on parameter 
D, that is the percentage of the heaviest objects selected from 
each group, the movements of objects are calculated. Then, all 
objects are gathered and the next iteration begins. As shown 
in the flowchart of IGSA in Fig. 2, this process continues until 
a specified convergence criterion is satisfied.
As the force calculation functions were described by equations 
(17) and (18), they are extensively time-consuming in GSA. 
The number of calls to the noted equations is reduced by 

in each iteration of IGSA which is expected to result in 
considerably lower convergence time. The first term of  (22) 
represents all the calls in GSA (for calculation of the forces 
of each object on another). Also, the second and third terms 
in the brackets adjust the calls in extra and intra-groups in 
IGSA, respectively. In IGSA, the forces on each object stem 
from the objects in its own group while only the D percentage 
of objects of each group affects the D percentage of objects 
of the other groups.

3- 3- Applying GSA and IGSA
To apply GSA and IGSA to GEP problem, each object is 
defined as a 1×F vector where F is the product of time period 
(T) and candidate generation unit types (N). Figure 3 shows 
the model for objects used in GSA and IGSA where each 
element is an integer variable that corresponds to the number 
of each unit type in each stage. 
Each element of the object is initialized randomly with 
considering equation (10). Also, the constant parameters 
G0 and b in GSA and IGSA are assumed to be 100 and 
0.5, respectively. It must be noted that to satisfy the 
constraints of GEP problem, equation (10) is modeled as a 
hard constraint and the remaining expressed by equations 
(11) to (13) are assumed as soft constraints modeled by 
penalty factors. If the soft constraints are not satisfied, 
an additional cost corresponding to the penalty factor is 
added to TC of Eq. (1). 

4- Results and discussions
For the purpose of verification of simulation results and 
comparing the performances of GSA and IGSA, PSO 
algorithm is also used for optimization of the MINL GEP 
problem for four different case studies (Tables 1 to 4) ), as 
discussed in this section. The single-line diagram for all 

( 1)( 1) ( 1)100( 1) [( 1) ( 1) ]
100

× × −× − −= × − − × × − + × −
D m Lm L mDU m L m L L m (22)

Fig. 2. Flowchart of IGSA developed in this study.

Fig. 3. A model for objects used in GSA and IGSA.
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case studies is shown in Fig. 4. Also, comparison survey on 
other studies on the optimization of MINL GEP problem are 
provided in Table 5. 
For modeling purposes, the peak load in each step is 
considered as the load model which must be met by adding 
power plants in the planning horizon. This technique has been 
used in the most of GEP problems [23]. Moreover, it must 
be noted that the constraints of this study are divided into 
hard and soft constraints. The hard constraints are those that 
must be met without any penalty, which is associated with 
the maximum installation of each candidate generation units 
type in each stage (the equation (10)). The soft constraints 
are those that are penalized in the objective function (see 
(11) to (13)). It is noted that the penalty cost value affects the 
values by which the constraints are satisfied.  f the penalty 
cost value is lower than TC, the search algorithm prefers to 
ignore these constraints as they have small effects on the 
TC value and the corresponding penalty cost is paid. Thus, 
in this study, to assure that the soft constraints are met, the 
penalty cost value is chosen close to TC value.

4- 1- Case Study 1
A system with 15 existing and five types of candidate 
generation units [15, 23] is examined in Case Study 1. 
Technical and economic data of existing and candidate 
generation units are shown in Tables 1 (a) and (b) 
respectively. Moreover, the forecasted peak load for the 
planning horizon of 20 years is given in Table 1 (c).

The discount rate, LOLP criteria, and the lower and upper 
bounds for the reserve limit are assumed to be 8.5%, 0.0027, 
20%, and 50%, respectively. Lower and upper bounds of 
capacity limitations of each candidate generation units are 
considered as 0 and 30% for oil-fired units, 0 and 40% for 
liquid natural gas (LNG)-fired, 20 and 60% for coal-fired, 
and 30 and 60% for nuclear, respectively. Also, EENS cost is 
assumed to be 0.05 $/kWh [23]. 
For Case Study 1, the planning horizon of 20 years is 
composed of 10 two-year stages. Moreover, it is assumed that 
there is a two-year interval between the reference date of the 
cost calculations and the first year of study.
For PSO, GSA, and IGSA, the initial population size and 
the maximum number of iterations are 500 and 400 in each 
algorithm, respectively. To validate the results of GSA and 
IGSA, the results from application of SFL algorithm and GA for 

Case Study 1, examined by Jadidoleslam et al. [23], are used. 
The optimal solutions obtained from PSO, GSA, and IGSA 
applied to Case Study 1 are reported in Table 1 (d), and, it is 
found that IGSA achieves the lowest TC of $19163.31×106. 
It is determined that GA, SFL, PSO, and GSA result in a 
higher TC by 2.90, 2.75, 10.61 and 7.01%, respectively. Also, 
based on the results, the runtime of IGSA is less than GSA but 
higher than PSO algorithm.

For IGSA, all objects are divided into five groups and 
parameter D is assumed as 30%. The convergence curves of 
PSO, GSA, and IGSA for optimization of the GEP problem 
are shown in Fig. 5.
As shown in Tables 1 (e) and (f), IGSA performance is affected 
by the number of groups and values of D, respectively. It is 
observed that increasing the number of groups can improve the 
search ability of IGSA and, therefore, decrease TC. However, 
this decrease in TC continues for a specific number of groups 
and, thereafter, TC is increased. It is therefore determined that 
the number of groups must be tuned for applying IGSA.
Moreover, IGSA is applied for 10 runs for different values of 
D, where the positions of objects in each group change the 
optimal TCs (Table 1 (f)). 

Fig. 4. Single line diagram for all case studies.

Fig. 5. Case Study 1: convergences of PSO, GSA, and IGSA 
used for optimization of GEP problem.
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Table 1 (a): Case Study 1: technical and economic data of 
existing units [15, 23].

Fuel 
type

No. 
of 

units

Unit 
capacity 
(MW)

FOR 
(%)

Operating 
cost

($/kWh)

Fixed OM 
cost

($/kW-Mon)
Oil #1 1 200 7.0 0.024 2.25
Oil #2 1 200 6.8 0.027 2.25
Oil #3 1 150 6.0 0.030 2.13

LNG #1 3 50 3.0 0.043 4.53
LNG #2 1 400 10.0 0.038 1.63
LNG #3 1 400 10.0 0.040 1.63
LNG #4 1 450 11.0 0.035 2.00
Coal #1 2 250 15.0 0.023 6.65
Coal #2 1 500 9.0 0.019 2.81
Coal #3 1 500 8.5 0.015 2.81
Nuclear 

#1 1 1000 9.0 0.005 4.94

Nuclear 
#2 1 1000 8.8 0.005 4.63
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Candidate 
generation type

Availability 
upper limit

Unit capacity 
(MW) FOR (%) Operating 

cost ($/kWh)
Fixed

OM cost
($/kW-Mon)

Capital Cost 
($/kW)

Lifetime 
(yr)

Oil 5 200 7.0 0.021 2.20 812.5 25
LNG #2 4 450 10.0 0.035 0.90 500.0 20

Coal 3 500 9.5 0.014 2.75 1062.5 25
Nuclear #1 3 1000 9.0 0.004 4.60 1625.0 25
Nuclear #2 3 700 7.0 0.003 5.50 1750.0 25

Table 1 (b): Case Study 1: Technical and economic data of candidate generation units [15, 23].

 Table 1 (c): Case Study 1: forecasted peak load for the planning horizon of 20 years [23].

 Table 1 (d): Case Study 1: performances of GA, SFL, PSO, GSA, and IGSA.

Table 1 (e): Case Study 1: effects of a number of groups on 
optimal TC computed by IGSA (D = 30%).

Table 1 (f): Case Study 1: effect of variation of parameter D on 
optimal TC computed by IGSA with 5 groups.

Stage
(two years) 0 1 2 3 4 5 6 7 8 9 10

Year 2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030
Peak 

load(MW) 5000 7000 9000 10000 12000 13000 14000 15000 17000 18000 20000

Algorithm TC (M$) TC difference with 
optimal answer (%) Runtime (s) Iteration

GA [23] 19719.50 2.90 * *
SFL [23] 19689.87 2.75 * *

PSO 21196.30 10.61 308.23 137
GSA 20508.39 7.01 725.86 167
IGSA 19163.31 - 426.55 295

 *: These data were not available.

TC (M$) Number of groups
20150.23 2
20029.82 4
19163.31 5
20040.45 10
20720.45 20

TC (M$) D (%)
19571.68 10
20134.16 15
19884.79 20
19964.90 25
19163.31 30
20170.61 35

Unit types
Number of candidate generation unit types

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9 Stage 10
Oil 3 4 3 3 2 0 2 3 0 1

LNG #2 0 0 0 0 0 1 0 1 0 1
Coal 2 2 1 1 1 1 1 1 1 0

Nuclear #1 2 0 0 1 0 0 0 0 0 1
Nuclear #2 1 0 0 0 0 1 1 0 1 1

Table 1 (g): Case Study 1: optimal number of candidate generation units in each stage of GEP problem, based on IGSA.
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Unit types
Number of candidate generation unit type

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9 Stage 10
Coal 0 0 0 0 0 0 0 0 0 1

Oil #1 0 0 0 0 0 0 0 0 0 0
Oil #2 0 0 0 0 0 0 0 0 0 0
LNG 0 0 0 0 1 4 0 0 0 0
Gas 0 0 2 0 0 0 0 0 0 0

Name (fuel type) No. of units Unit capacity (MW) FOR (%) Operating cost ($/kWh) Fixed OM cost ($/kW-Mon)
Coal 1 1000 6.0 0.00421 1.0

Oil #1 1 300 8.0 0.01130 1.0
Oil #2 1 700 6.0 0.00924 1.0
LNG 1 300 8.0 0.00988 1.0
Gas 1 300 6.0 0.01216 1.0

Candidate 
type

Availability 
upper limit

Unit capacity 
(MW)

FOR 
(%)

Operating cost 
($/kWh)

Fixed
OM cost

($/kW-Mon)
Capital Cost 

($/kW) Lifetime (yr)

Coal 1 1000 6.0 0.00421 1.0 735 25
Oil #1 2 300 8.0 0.01130 1.0 341 25
Oil #2 2 700 6.0 0.00924 1.0 390 25
LNG 5 300 8.0 0.00988 1.0 400 20
Gas 2 300 6.0 0.01216 1.0 152 25

Stage
(one year) 0 1 2 3 4 5 6 7 8 9 10

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Peak load 

(MW) 1600 1760 1936 2129.6 2342.6 2576.9 2834.6 3118.1 3429.9 3772.9 4150.2

Algorithm TC (M$) TC difference with 
optimal answer (%) Runtime (s) Iteration

PSO 1537.87 13.45 248.17 113
GSA 1410.81 4.08 691.03 169
IGSA 1355.45 - 392.57 64

Name
(fuel type)

No. of 
units Unit capacity (MW) FOR (%) Operating cost 

($/kWh)
Fixed OM cost
($/kW-Mon)

Oil 1 350 2.0 0.02 0
Coal 2 650 4.0 0.01 0

Hydro 2 300 1.0 0.0013 0
Gas 2 100 1.0 0.026 0

 Table 2 (a): Case Study 2: technical and economic data of existing units [21].

 Table 2 (b): Case Study 2: technical and economic data of candidate generation units [21].

 Table 2 (c): Case Study 2: forecasted peak load for the planning horizon of 10 years [21].

 Table 2 (d): Case Study 2: comparison of performances of PSO, GSA, and IGSA.

Table 2 (e): Case Study 2: optimal number of candidate generation units in each stage of GEP problem, based on IGSA.

Table 3 (a): Case Study 3: technical and economic data of existing units [35].
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Candidate 
type

Availability 
upper limit

Unit capacity 
(MW) FOR (%) Operating cost 

($/kWh)
Fixed

OM cost
($/kW-Mon)

Capital Cost 
($/kW) Lifetime (yr)

Oil 2 350 2.0 0.02 0 500 25
Coal 3 650 4.0 0.01 0 650 25

Hydro #1 2 300 1.0 0.013 0 750 30
Hydro #2 2 600 1.5 0.002 0 900 30

Gas 6 100 1.0 0.026 0 250 25
Nuclear 2 900 5.0 0.004 0 1500 25

Table 3 (b): Case Study 3: technical and economic data of candidate generation units [35].

Stage
(five years) 0 1 2 3 4

Year 1990 1995 2000 2005 2010
Peak load 

(MW) 2000 3000 4200 5500 7000

Algorithm TC 
(M$)

TC 
difference 

with optimal 
answer (%)

Runtime 
(s) Iteration

PSO 2737.14 8.17 168.57 93
GSA 2808.78 11.00 418.76 110
IGSA 2530.43 - 215.02 134

Algorithm TC 
(M$)

TC 
difference 

with optimal 
answer (%)

Runtime 
(s) Iteration

PSO 4821.24 14.16 295.61 78
GSA 4481.52 6.40 752.55 127
IGSA 4211.96 - 417.9 170

Unit types
Number of candidate generation unit type

Stage 1 Stage 2 Stage 3 Stage 4
Oil 0 0 0 0

Coal 0 0 2 1
Hydro #1 0 0 0 0
Hydro #2 0 0 0 1

Gas 0 4 0 3
Nuclear 2 1 0 0

 Table 3 (c): Case Study 3: forecasted peak load for the 
planning horizon of 20 years [35].

 Table 3 (e): Case Study 3: optimal number of candidate 
generation units in each stage of GEP problem, based on IGSA.

Table 4 (a): Case Study 4: forecasted peak load for the planning horizon of 20 years.

 Table 4 (c): Case Study 4: Optimal number of candidate generation units in each stage of GEP problem, based on IGSA.

Table 3 (d): Case Study 3: performance comparison of PSO, 
GSA, and IGSA.

Table 4 (b): Case Study 4: performance comparison for PSO, 
GSA, and IGSA.

Stage
(two years) 0 1 2 3 4 5 6 7 8 9 10

Year 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
Peak 

load(MW) 2000 3000 3400 3750 4300 4670 5100 5630 6180 6590 7000

Unit types
Number of candidate generation unit types

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9 Stage 10
Oil 0 0 0 0 0 0 0 0 1 1

Coal 0 0 0 1 0 0 0 0 0 0
Hydro #1 0 0 1 0 0 1 0 0 0 1
Hydro #2 0 0 0 0 1 0 0 0 0 0

Gas 0 0 1 0 2 2 0 5 2 1
Nuclear 2 0 0 0 0 0 1 0 0 0



F .J. Ardakani and M. M. Ardehali, AUT J. Elec. Eng., 49(2)(2017)161-172, DOI: 10.22060/eej.2017.12123.5041

169

Based on IGSA resulting in lowest TC, the optimal number 
of candidate generation units for the GEP problem of Case 
Study 1 is shown in Table 1 (g).

4- 2- Case Study 2
This case is based on a test system with five existing and 
twelve types of candidate generation units, as described in 
Tables 2 (a) and (b) [21]. The peak load is 1600MW in the 
base year, 2010, with a 10% annual rise [21], as specified 
in Table 2 (c). The LOLP limit is assumed as 0.01 and the 
reserve margin in the lower and upper bounds are 15% and 
50% of the peak load, respectively. Also, the lower and upper 
bounds of capacity limitations of each candidate generation 
units are set 0%  and 40% for oil-fired, LNG-fired, and gas-
fired units and 20% and 60% for coal-fired, respectively. 
Other economic data are assumed to be the same as the test 
system in Case Study 1. 
The planning horizon is set 10 years which consists of one-
year stages. Also, the interval between the reference date of 
the cost calculations and the first year of this case study is 
one year.
For Case Study 2, the number of groups is 5 and the value 
of D is set at 19% for IGSA. Table 2 (d) shows that the TC 
calculated based on IGSA is lower than that of PSO and GSA 
by 13.45% and 4.08%, respectively, which demonstrates the 
superiority of IGSA to optimize the GEP problem. Table 2 (e) 
gives the optimal results of IGSA obtained with lowest TC, 
for Case Study 2. 

4- 3- Case Study 3
For Case Study 3, the system consists of four existing and 
six types of candidate generation units, as shown in Tables 3 
(a) and (b) [35]. The planning horizon extends over 20 years 
and it is divided into four stages. Moreover, there is a 5-year 
interval between the reference date of the cost calculations 
and the first year of this case study.
The forecasted peak load for these stages is given in Table 3 
(c). Some data such as the lifetime of candidate generation 
units and the limitation values, unavailable in Case Study 
3, are assumed similar to those of Case Study 1. Also, the 
fixed operation and maintenance cost of units are included in 
operating cost, thus the corresponding values in Table 3 (a) 
are shown as zero. 
The lower and upper bounds of capacity limitations of each 
candidate generation units are set 0% and 40% for oil-fired 
units, 20% and 60%  for coal-fired, 0% and 40% for hydro, 
0% and 40% for Gas-fired, and 20% and 50% for nuclear, 
respectively. 
For Case Study 3, the results for TCs based on the application 
of PSO, GSA, and IGSA for solving GEP problem for 10 
runs are reported in Table 3 (d). In this case study, IGSA 
achieves the best solution and the optimal number of 
candidate generation units in each stage is listed in Table 3 
(e). It must be noted that in this case study, for IGSA, the 
number of groups is 5 and the value of D is set at 35%.  

4- 4- Case Study 4
In this case study, the system is similar to Case study 3 with 

Table 5: Summary of studies for solving MINL GEP problem optimized based on different algorithms.

Ref. GEP horizon (yr) Generation system type Optimization algorithm

[15] 14, 24 15 existing and 5 types of candidate 
generation units Improved GA

[16] 5, 7, 10, 15, 20, 25, 30 5 existing and 16 types of candidate 
generation units GA

[18] 6 12 existing and 5 types of candidate 
generation units Honey bee mating

[18] - 4 types of candidate generation units Improved immune 
algorithm

[20] 14, 24 15 existing and 5 types of candidate 
generation units ICA

[21] 10 12 existing and 5 types of candidate 
generation units Cross entropy

[22] 6, 14
5 existing and 18 and 36 types of 

candidate generation units for two case 
studies

Improved PSO

[23] 10, 20 15 existing and 5 types of candidate 
generation units SFL

This study

20 12 existing and 5 types of candidate 
generation units

PSO, GSA, and IGSA
10 5 existing and 12 types of candidate 

generation units

20 4 existing and 6 types of candidate 
generation units

20 4 existing and 6 types of candidate 
generation units
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the difference that the number of planning stages is assumed 
to be 10 instead of 4. The peak load of each stage is shown 
in Table 4 (a). The GEP problem is optimized and the best 
TCs for GSA and IGSA are listed in Table 4 (b). The results 
show that IGSA achieves lower TC by 14.16 and 6.4% as 
compared with PSO and GSA, respectively, and the optimal 
combinations of candidate generation units are listed in Table 
4 (c). IGSA in this case study consists of two groups and the 
value of D is set at 23%. 
Based on the simulation results for four case studies, it is 
determined that IGSA reaches lower TC value as compared to 
those of  other algorithms due to the improved search ability 
of the algorithm in the feasible space. Moreover, the results 
show that by tuning the parameters of the percentage of D 
and the number of groups, IGSA can achieve a better optimal 
solution than GSA. 
5- Conclusions and recommendations
In this study, GSA is examined to solve MINL GEP problem. 
Also, GSA is improved and IGSA is introduced and 
implemented successfully. To validate the performance of 
GSA and IGSA for the optimization of MINL GEP problem, 
PSO algorithm is adopted  four different case studies. It is 
determined that GSA and IGSA produce more accurate 
results than PSO algorithm and also, the improvements of 
GSA are effective and IGSA achieves the lowest TCs. The 
results show that IGSA, which is two times faster than GSA 
on average, achieves a better performance, compared with 
GSA by 7.01, 4.08, 11.00, and 6.40% in the four case studies 
examined. It is concluded that the main advantage of IGSA, 
i.e. a specific grouping of objects and selecting a percentage 
of them in each group, results in a more accurate and faster 
performance.
For future works, applying of GSA and IGSA in the 
formulation of MINL GEP problem with considerations for 
the penetration of renewable energy resources such as wind 
power generation is suggested.  Also, IGSA can be considered 
to solve other MINL optimization problems. 

List of Acronyms
DP                      Dynamic programming
EENS                 Energy expected not served
ENS                    Energy not served
FOR                    Forced outage rate
GA                      Genetic algorithm
GEP                    Generation expansion planning
GSA                   Gravitational search algorithm
ICA                    Imperialist competitive algorithm
IGSA                  Improved gravitational search algorithm
LNG                   Liquid natural gas
LOLP                 Loss of load probability 
MINL                 Mixed-integer non-linear
PSO                    Particle swarm optimization
OM                     Operating and maintenance
SFL                    Shuffled frog leaping
TC                      Total cost
TCDP                 Tunnel-constrained dynamic programming

References
[1] F. Ardakani, M. Ardehali, Novel effects of demand 

side management data on accuracy of electrical energy 
consumption modeling and long-term forecasting, Energy 
Conversion and Management, 78 (2014) 745-752.

[2] EIA, World Energy Outlook (2013).
[3] EIA, World Energy Outlook (2009).
[4] I. Statistics, Energy balances of non-OECD countries in 

2011, Paris: International Energy Agency,  (2011).
[5] B. Alizadeh, S. Jadid, Reliability constrained coordination 

of generation and transmission expansion planning in power 
systems using mixed integer programming, IET generation, 
transmission & distribution, 5(9) (2011) 948-960.

[6] J.L.C. Meza, M.B. Yildirim, A.S. Masud, A multiobjective 
evolutionary programming algorithm and its applications to 
power generation expansion planning, IEEE Transactions 
on Systems, Man, and Cybernetics-Part A: Systems and 
Humans, 39(5) (2009) 1086-1096.

[7] G. Liu, H. Sasaki, N. Yorino, Application of network 
topology to long range composite expansion planning of 
generation and transmission lines, Electric Power Systems 
Research, 57(3) (2001) 157-162.

[8] L. Wenyuan, R. Billinton, A minimum cost assessment 
method for composite generation and transmission system 
expansion planning, IEEE Transactions on Power Systems, 
8(2) (1993) 628-635.

[9] C.H. Antunes, A.G. Martins, I.S. Brito, A multiple 
objective mixed integer linear programming model for 
power generation expansion planning, Energy, 29(4) 
(2004) 613-627.

[10] S. Majumdar, D. Chattopadhyay, A model for integrated 
analysis of generation capacity expansion and financial 
planning, IEEE transactions on power systems, 14(2) 
(1999) 466-471.

[11] H. Khodr, J. Gomez, L. Barnique, J. Vivas, P. Paiva, J. 
Yusta, A. Urdaneta, A linear programming methodology 
for the optimization of electric power-generation schemes, 
IEEE Transactions on Power systems, 17(3) (2002) 864-
869.

[12] H. Tekiner, D.W. Coit, F.A. Felder, Multi-period multi-
objective electricity generation expansion planning 
problem with Monte-Carlo simulation, Electric Power 
Systems Research, 80(12) (2010) 1394-1405.

[13] C. Unsihuay-Vila, J.W. Marangon-Lima, A.Z. De 
Souza, I. Perez-Arriaga, Multistage expansion planning 
of generation and interconnections with sustainable 
energy development criteria: A multiobjective model, 
International Journal of Electrical Power & Energy 
Systems, 33(2) (2011) 258-270.

[14] A. Ramos, I.J. Perez-Arriaga, J. Bogas, A nonlinear 
programming approach to optimal static generation 
expansion planning, IEEE Transactions on Power Systems, 
4(3) (1989) 1140-1146.

[15] J.-B. Park, Y.-M. Park, J.-R. Won, K.Y. Lee, An improved 
genetic algorithm for generation expansion planning, IEEE 
Transactions on Power Systems, 15(3) (2000) 916-922.

[16] J. Sirikum, A. Techanitisawad, Power generation 
expansion planning with emission control: a nonlinear 
model and a GA‐based heuristic approach, International 
Journal of Energy Research, 30(2) (2006) 81-99.

[17] B. Alizadeh, S. Jadid, A dynamic model for coordination 
of generation and transmission expansion planning in 
power systems, International Journal of Electrical Power 



F .J. Ardakani and M. M. Ardehali, AUT J. Elec. Eng., 49(2)(2017)161-172, DOI: 10.22060/eej.2017.12123.5041

171

& Energy Systems, 65 (2015) 408-418.
[18] Z. Hejrati, E. Hejrati, A. Taheri, Optimization generation 

expansion planning by HBMO, Optimization, 37(7) 
(2012) 99-108.

[19] S.-L. Chen, T.-S. Zhan, M.-T. Tsay, Generation expansion 
planning of the utility with refined immune algorithm, 
Electric Power Systems Research, 76(4) (2006) 251-258.

[20] B. HEDAYATFAR, A. BARJANEH, Least-Cost 
Generation Expansion Planning Using an Imperialist 
Competitive Algorithm, Life Science Journal, 10(8s) (2013).

[21] R.P. Kothari, D.P. Kroese, Optimal generation expansion 
planning via the cross-entropy method, in:  Winter 
Simulation Conference, Winter Simulation Conference, 
2009, pp. 1482-1491.

[22] S. Kannan, S.M.R. Slochanal, P. Subbaraj, N.P. Padhy, 
Application of particle swarm optimization technique and 
its variants to generation expansion planning problem, 
Electric Power Systems Research, 70(3) (2004) 203-210.

[23] M. Jadidoleslam, E. Bijami, N. Amiri, A. Ebrahimi, J. 
Askari, Application of shuffled frog leaping algorithm to 
long term generation expansion planning, International 
Journal of Computer and Electrical Engineering, 4(2) 
(2012) 115.

[24] M. Jadidoleslam, A. Ebrahimi, Reliability constrained 
generation expansion planning by a modified shuffled 
frog leaping algorithm, International Journal of Electrical 
Power & Energy Systems, 64 (2015) 743-751.

[25] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: 
a gravitational search algorithm, Information sciences, 
179(13) (2009) 2232-2248.

[26] P.K. Roy, Solution of unit commitment problem using 
gravitational search algorithm, International Journal of 
Electrical Power & Energy Systems, 53 (2013) 85-94.

[27] P. Roy, B. Mandal, K. Bhattacharya, Gravitational search 
algorithm based optimal reactive power dispatch for 
voltage stability enhancement, Electric Power Components 
and Systems, 40(9) (2012) 956-976.

[28] A. Bhattacharya, P. Roy, Solution of multi-objective 
optimal power flow using gravitational search algorithm, 
IET generation, transmission & distribution, 6(8) (2012) 
751-763.

[29] IAEA (International Atomic Energy Agency), Wien 
automatic system planning (WASP) package a computer 
code for power generating system expansion planning in, 
Vienna, 2001.

[30] G.M. Cole, Surveyor reference manual, fifth ed., 
Professional publications Inc. (PPI), 2009.

[31] M. Clerc, J. Kennedy, The particle swarm-explosion, 
stability, and convergence in a multidimensional complex 
space, IEEE transactions on Evolutionary Computation, 
6(1) (2002) 58-73.

[32] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, BGSA: 
binary gravitational search algorithm, Natural Computing, 
9(3) (2010) 727-745.

[33] C. Li, J. Zhou, Parameters identification of hydraulic 
turbine governing system using improved gravitational 
search algorithm, Energy Conversion and Management, 
52(1) (2011) 374-381.

[34] T.-H. Huynh, A modified shuffled frog leaping algorithm 
for optimal tuning of multivariable PID controllers, 
in: Industrial Technology, 2008. ICIT 2008. IEEE 
International Conference on, IEEE, 2008, pp. 1-6.

[35] A. David, Z. Rongda, An expert system with fuzzy sets 
for optimal planning (of power system expansion), IEEE 
Transactions on Power Systems, 6(1) (1991) 59-65.

Please cite this article using:

F .J. Ardakani and M. M. Ardehali, Optimization of Mixed-Integer Non-Linear Electricity Generation Expansion 

Planning Problem Based on Newly Improved Gravitational Search Algorithm, AUT J. Elec. Eng., 49(2)(2017)161-172.

DOI: 10.22060/eej.2017.12123.5041



F .J. Ardakani and M. M. Ardehali, AUT J. Elec. Eng., 49(2)(2017)161-172, DOI: 10.22060/eej.2017.12123.5041

172


