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ABSTRACT 

The time-optimal trajectory for an airplane from some starting point to some final point is studied by 
many authors. Here, we consider the extension of robot planer motion of Dubins model in three dimensional 
spaces. In this model, the system has independent bounded control over both the altitude velocity and the 
turning rate of airplane movement in a non-obstacle space. Here, in this paper a geometrization of time-
optimal trajectory of Dubins airplane is also obtained. More intuitively, the metric related to this 
phenomenon is described as a geometry in space. It is shown that the distance traveled in movement of an 
airplane obeys certain conditions of a well-known geometry called Finsler geometry. Moreover, it is proved 
that the geometry of movement of an airplane is a special Finsler metric known as Randers metric, and 
therefore, time-optimal paths are geodesics of Randers metric. 
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1.  INTRODUCTION 

One of the present authors in his previous works has 
studied geometry of time-optimal trajectories of an object 
pursuing a moving target, without any bounded control in 
a non-obstacle space, cf. [1]. Here we study geometry of a 
system which has independent bounded control over the 
altitude velocity as well as the turning rate of movement 
in a non-obstacle space. More intuitively, this 
phenomenon is described as a geometry in space. 

1.1 Geometrization of a Mathematical Model 
Euclidean geometry known as one of the oldest 

sciences, contributes greatly in the mathematical 
modeling of engineering problems. We may link a 
geometry to an optimization problem as follows. 
In the general sense, Optimization refers to choosing the 
best element from some set of available alternatives. If 
elements of this set are any kind of paths, we may   
correspond a metric to this set. This metric together with 
the space of all possible paths is called geometry of the 
model. 

In this case, the optimized trajectories are geodesics of 
the prescribed metric. We will refer to this observation as 
geometrization of a mathematical model.  

Once geometry of a movement is defined we will be able 
to use the deep notions of differential geometry to 
determine the optimized paths of the movement. 

It is noteworthy to remark that, despite of its 
appearance, these two phrases "Geometrization of a 
Model" and "Geometric Model" are quite different. In 
fact, the former fraise is described before, but the later 
one which is used frequently in optimization problems, 
refers to application of geometric laws to explain a 
mathematical model. 

1.2 Dubins Airplane Model 
Finding the best time-optimal trajectories for a simple 

Robot model has been first done by Dubins in 1957. 
Using a geometrical method, he proved that the shortest 
path for a car-like differential robot that can only move 
forward with a constant speed and its rotation radius to 
the left and right is bounded, are a mixture of circles with 
constant radius and straight lines. In 1990, this model was 
developed by Reeds and Shepp for a robot which is able 
to move backward and forward. 

In 1994, Reed and Shepp works was reviewed again, 
and using the method of finding the best controls, time-
optimal trajectories for Reeds and Shepp's car, that moves 
in a non-obstacle space, was presented. In 1995, a method 
for designing the shortest paths, in a position that there is 
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an obstacle on the surface of the motion, but with 
considering the limitation in the curvature of the motion's 
path was studied. Also in 1996, the paths of the shortest 
time of passage for a differential robot purchasing a 
moving target has been studied cf.  [4]. 

Other efforts, in relation to the time-optimal 
trajectories and the paths with the minimum number of 
rotation of the wheels for a differential robot have also 
been made cf. [5],[6] and [7]. 

In 2008, by extending Dubins method for an airplane 
moving in space without any obstacle heading for a 
specified target, time optimal paths is studied cf. [11]. 

Also in 2009, Hota and Ghose introduced a Dubins 
model based strategy to determine the optimal path of a 
Miniature Air Vehicle, constrained by a bounded turning 
rate, that would enable it to fly along a given straight line, 
starting from an arbitrary initial position and orientation. 
They used a modification of  Dubins path method to 
obtain the complete optimal solution to the problem in all 
its generality cf. [13]. 

Here, in this paper we use their methods to describe 
geometry of these optimal paths, and we show that the 
geometry of Dubins airplane Model is a special case of 
Finsler geometry called Randers geometry. Therefore, 
time optimal paths of the system are geodesics of a 
Randers space. 

2.  PRELIMINARIES CONCEPTS OF FINSLER GEOMETRY 

To measure the length of a smooth curve C  
parameterized by a map ( )c c t= ,a t b≤ ≤ , in a 

manifold M , it suffices to define a nonnegative scalar 
function ( ,.)F x  on every tangent space xT M . Then 

the length of C  is defined by, 

( ) ( ( ), ( )) .
b

F
a

L C F c t c t dt′= ∫  
(1)  

It is required that ( )FL C  be independent of 

parameterization. F must be positively homogeneous 
with degree one, 

( , ) ( , ), 0.F x y F x yλ λ λ= >  (2) 

Let nM =  be an n -dimensional C ∞  Euclidean 
space. Denote by xT M  the set of all tangent vectors at 

the point x M∈ , called tangent space, and by 
: x M xTM T M∈=∪  the set of all tangent spaces at 

x M∈ called tangent bundle.  Each element of  TM  
has the form ( , )x y consisting of the point x M∈  and 

the tangent vector xy T M∈ at the point x called 
respectively state (position) and direction of movement. If 

0y ≠  then the tangent bundle is denoted by 0TM . 

The natural projection :TM Mπ →  is given 
by ( , )x y xπ = . A vector field Y  on M  is a map 

:Y M TM→ with the property  
.MoY Idπ =  

Definition 2.1.  A Finsler structure on M  is a function, 
: [0, )F TM ⎯⎯→ ∞  

with the following properties: 
(i) Regularity condition: F is C ∞ on the slit tangent 

bundle 0TM . 

(ii) Positive homogeneity condition: for all 0,λ >   
( , ) ( , )F x y F x yλ λ= . 

(iii)  Strong convexity: The n n×  Hessian matrix 
2 2

( ) : ,
2ij i j

Fg
y y

∂
=

∂ ∂
 

is positive-definite at every point of 0TM .  

The pair ( , )M F  is called a Finsler space. 
According to the Fundamental Inequality theorem cf. 

[2] page 7, one can show that a Finsler structure defines a 
norm on the tangent space xT M  called Minkowski 
norm.  

In the original sense, a geodesic is a generalization of 
the notion of a "straight line" in Euclidean space. In the 
presence of a metric, rather than Euclidean metric, in the 
space, geodesics are no more straight lines. 

More precisely, a piecewise C ∞  curve 
:[ , ]a b Mσ →  with ( )a pσ = and ( )b qσ =  on the 

space M with the metric F is said to be a geodesic if it 
is a  minimal curve and if it has a constant velocity. 
Hence, geodesics are known to be (locally) the shortest 
path between points  in the space. 

Let : ijg g=  be a Finslerian metric on M , then it 

gives rise to an inner product (.,.) : .,.g =< >  on the 

tangent space xT M . In the local coordinate 

system{ , ( )}iU x , , xy z T M∀ ∈  we have 

( , ) i j
ijg y z g y z= .  

Each inner product defines a norm for a vector 

xy T M∈ with respect to the 

metric g , : .,. gy =< > . 

Hence a vector on the tangent space xy T M∈ , can 
have different kinds of norms, related to the different 
kinds of the metric g  defined on M . If the norm .  

on the tangent space xT M is related to a mathematical 

model, then the metric g  on M  determines the  
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geometry of the model and shortest paths are geodesics of 
g . This metric together with the space of all possible 
paths is called geometry of the prescribed mathematical 
model and this observation is called geometrization of the 
mathematical model. 

 2.1. Indicatrix and finding new metric by shifting it  
Given a Minkowski space ( , )V F , let 

: { : ( ) 1}.FS y v F y= ∈ =   (3) 

FS is a closed hypersurface around the origin, Which is 

diffeomorphic to the standard sphere 1n nS − ⊂ . FS  is 

called the indicatrix of F . Now we are going to construct 
Minkowski norms by shifting the indicatrix of a 
Minkowski norm.  Let ( , )V Φ  be a Minkowski space 

and let Vυ ∈ with ( ) 1υΦ − < . Then the shifted set, 

{ }S υΦ + , contains the origin of V .We can define a 

function [ ): 0,F V → ∞  as follows: for any 

{0}, ( )y V F y∈ − , is the unique positive number 

0t > such that 

{ },y S
t

υΦ∈ +  
(4) 

 

It is easy to see that F  has the following properties: 
(a) 0F > for any {0}y V∈ − . 
(b) ( ) ( )F y F yλ λ= for any 0λ > . 

(c) { }FS S VΦ= + . 

For any {0}, ( )y V F y∈ − can be determined by 
the following equation, cf. [3]. 

( ) ( ( ) ).F y y F y υ= Φ −   (5) 
 

F is called the Minkowski norm generated by ( , )υΦ . 

One can easily show that if ( )F F y=  is generated 

by ( , )υΦ , then ( )yΦ = Φ  is generated by ( , )F υ− .  

2.2.  Zermelo Navigation problem 
Consider an object moving in a metric space, such as 

Euclidean space, pushed by an internal force and an 
external force field. The shortest time problem is to 
determine a curve from one point to another in the space, 
along  which it takes the least time for the object to travel. 
This problem in some special cases was studied by E. 
Zermelo cf. [8], hence called the Zermelo navigation 
problem. 

Here we shall discuss the navigation problem in the 
most general case. Suppose that an object on a Finsler 
space ( , )M Φ  is pushed by an internal force U  with 

constant length, ( , )xx u cΦ = , and while it is pushed by 

an external force field V with ( , )xx V cΦ − < . The 

combined force at x is :x x xT U V= + . The 

condition, ( , )xx V cΦ − < , guarantees that the object 
can move forward in any direction. Due to the friction, the 
object moves on M  at a speed proportional to the 
combined force T . For the sake of simplicity, one may 
assume that 1c =  and the velocity vector at any point 
x M∈ is equal to xT . Given a pair of 

points ,p q M∈ , let C  be an arbitrary piecewise C ∞  

curve in M . Since ( , ) 1xx UΦ = , we have, 

( , ) ( , ) 1.x x xx T V x UΦ − = Φ =  (6)   
 

On the other hand, for any vector {0}xy T M∈ − , 

there is a unique solution ( , ) 0F F x y= >  to the 
following equation,  

( , ) 1.x
yx V
F

Φ − =  
(7) 

Observe that for any 0λ > , 

1 ( , ) ( , ).
( , ) ( , )x x

y yx V x V
F x y F x y

λ λ
λ λ

= Φ − = Φ −  
(8

) 

By the uniqueness, 
( , ) ( , ).F x y F x yλ λ=  (9) 

One can show that : |
xx T MF F=  is a Minkowski norm 

on  xT M . Thus ( , )F F x y= is a Finsler metric on 

M . Comparing (6) and (7), one can see that the 
combined force xT  has unit F -length, 

( , ) 1.xF x T =  (10) 

This observation leads to following Lemma, cf. [3] 
page 21. 

Lemma 1. Let ( , )M Φ  be a Finsler space and  

V be a vector field on M with ( , ) 1xx VΦ <  , for all 

x M∈ . Define [ ): 0,F TM → ∞  by (7). For any 

piecewise C ∞ curve C in M , the F -length of C is 
equal to the time for which the object travels along it. 

3.  GEOMETRIZATION OF DUBINS AIRPLANE MOTION        
BY  FINSLER GEOMETRY 

The control systems consider behavior of a system 
whose state at any instant of time is characterized by 

1xn ≥  real numbers 1,..., xnx x . The vector space of 

the system under consideration is called the phase space. 
It can naturally be assumed that the phase space is an xn -
dimensional smooth manifold. In other words; the phase 
space, is the space of all states that can happen for the 
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system. The vector 1( ) ( ( ),..., ( )),
xnx t x t x t= ( ) nx t ∈

 
represents the state (or phase) variables. It is assumed that 
the system can be controlled, i.e., the system is equipped 
with controllers whose position dictates its future 
evolution. These controlers are characterized by points 

1( ,..., ) , 1u

u

n
n uu u u n= ∈ ≥ , called the control  

variables cf. [9]. 
In the vast majority of optimal control problems, the 

values that can be assumed by the control variables are 
restricted to a certain control region ,U  which may be 

any set in un .  
A nontrivial part of any control problem is modeling 

the system. The objective is to obtain the simplest 
mathematical description that adequately predicts the 
response of the physical system to all admissible controls. 
We discuss about systems described by the ordinary 
differential equations in state-space form, 

0 0( ) ( , ( ), ( )); ( ) .x t f t x t u t x t x′ = =  (11) 

Here, t ∈ stands for the independent variable, usually 
called time. In the case where f does not depend 
explicitly on  t , the system is said to be autonomous. The 
vector ( )u t U∈ represents the control variables at the 

time instant t . The vector ( ) xnx t ∈ represents the 
state (or phase) variables which characterize the behavior 
of the system at any time instant t . A 
solution 0( , , (.))x t x u  of (11) is called a solution of the 

system, corresponding to the control (.)u , for the initial 

condition 0 0( )x t x= . 
A differential motor robot contains two main wheels, 

each joining a motor separately. The third wheel in a 
differential motor robot is a spheroid wheel that is able to 
rotate in any direction; its only role is to keep the robot 
stable. 

Dubins car is a simple model of a differential robot, 
moving forwards with the constant speed 1 and the 
minimum radius of rotating to left and right or 
equivalently its maximum curvature is equal to 1, cf. [10]. 
Consequently, the minimum rotating radius to left and 
right for Dubins airplane in the space is equal to the 
quantity of 1.  

The Dubins airplane is a 3-dimentional extension of 
Dubins car. In this case the parameter z of altitude is also 
added to the system. This plane is a simple cinematic real 
airplane. It always flies forward and the system has 
independent bounded control over the altitude velocity as 
well as the turning rate in the plane. The Dubins airplane 
is a four-dimensional system with its configuration 
variable denoted by    
                  3 1( , , , ) ,q x y z M Sθ= ∈ = ×    

In which ,x y and z are the coordinates of the airplane's 

position in the three-dimensional Euclidian space 3 . Let 

[ )0,2θ π∈ is the angle between x -axis of the frame 

and the airplane local line of site axis in x y − plane. 

Let / zdz dt u= , be the speed vector in the direction of 

z - axis, /d dt uθθ = , be the plane's rotation speed and 

/ rdr dt u= , the projection of speed vector on the 

( , , )x y θ -plane. 
The system has independent bounded control on 
, zu uθ and ru . In other words, the system is 

0 1 2 3( ) ( ) ( ) ( ),z rq f q u f q u f q u f qθ′ = + + +  (12) 

where 0f , 1f , 2f  and 3f  are vector fields in the tangent 

bundle TM of the configuration space. In this case, 0f , 

1f , 2f and 3f are, 

0 1 2 3

cos 0 0 0
sin 0 0 0

0 1 0 0, , .
0 0 1 0
0 0 0 1

f f f and f

θ
θ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
 
 

(13) 
 

In above equations, ( , , , )x y z θ are state variables and 

,zu uθ and ru the system’s control parameters. We 
assume the minimum turning radius and the maximum 
altitude velocity of the airplane are 1. For simplicity we 
assume the projection speed of the airplane on the 
( , , )x y θ -plane is constant and equal to 1, that is, 

0ru = .  We assume also that , 1zu uθ ≤ and 

0ru = . Thus, the control region is the square 
2[ 1,1]U = − and (0, , )zu u u Uθ= ∈ . 

3.1.  Introducing a new metric 
Suppose ( , )M Φ , is a Finsler space, we  put, 

( , ) : . . ,x v v v v v vΦ = = < > =  (14) 

Suppose an object (for example an airplane), travels 
throughout the vector  v  with unit speed. It is obvious 
that the time of traveling the length of the vector v , is 

equal to the v . Assume that an external factor ω  

produces an effect on M such that 1w < . For 

example, here we assume that w is summation of control 
parameters of the airplane where length of  w  is smaller 
than 1. When the vector field w  is present, the object 
(airplane) will travel through the resulting vector 
v u w= +  instead of u , in a unit of time. Before 
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considering effect of the vector field w , the unit tangent 
sphere in any xT M , includes all the tangent vectors u , 

so that 1u = . After considering effect of w , the 

sphere ,SΦ  with mapping u u w→ + , changes to a 
convex domain.  

This observation helps us to introduce a new norm or 
metric related to the new situation. This metric measures 
traveling time in presence of the control restrictions w . 
Let F  be a function that measures time of motion, then 

xv T M∀ ∈ we have  

( ) 1.F v =  

Let ( , )x uΦ  be the length of the vector u at the point 
x  defined in the section 2.2,  then if  length  of u is equal 
one we have 

( , ) . 1.x u u u uΦ = = =  (15) 

Therefore, (5), (6) and (7) imply 
2

( , ) 1 1.v vx w w
F F

Φ − = ⇒ − =  
(16) 

So we have, 
2

22 . 1,
F F
υ υ ω ω− + =  

(17) 

By multiplying 2F , we obtain 
2 22 (1 ) 2 . 0.F w v wF v− + − =  (18) 

     
Solving  above second order equation for F we have 

2 22

2 2

. (1 ). .
1 1

v w w vv wF
w w

< > + −− < >
= +

− −
 

 

 (19) 
It can be shown that F satisfies conditions of a Finsler 

metric called here, Randers metric, cf. [8], page 396. 
Now, we are in a position to study the airplane’s 

motion from Finsler geometry point of view. Dubins 
airplane always moves forward. When the airplane’s 
control parameters produce an effect on the system, they 
cause the plane to take off, get out of the straight line, 
climbs in the direction of z -axis and travel through the 
paths with radius of 1R ≥ , in any point, when moving. 
In other words; the airplane’s control parameters produce 
an effect on the system as an external factor. 
As it is remarked before, the Dubins airplane is a four-
dimensional system with its configuration variable 
denoted by    
                  3 1( , , , ) ,q x y z M Sθ= ∈ = ×    
In which ,x y and z are the coordinates of the airplane 
in the three-dimensional Euclidian space, and 

[ )0,2θ π∈ is the angle between x -axis of the frame 

and the airplane local longitudinal axis in x y − plane. As 
stated, the control parameters produce an effect on the 
system as an external factor. The control parameters of 
the airplane system are similar to that of Dubins car 
together with an additional parameter in direction of z -
axis. Without loss of generality we may assume, 
throughout this paper, which the initial configuration of 
the system at the point of beginning of the process of 
control of the airplane is (0,0,0,0) . We also denote the 

goal configuration by ( , , , )g g g gx y z θ . We distinguish 

three cases: low, medium, and high goal altitudes of the 
airplane. In fact, the final altitude plays a major role. In 
order to precisely define each case we give the following 
definitions. 

Definition 3.1.1. Let ∆ be the Dubins distance of 
( , , )g g gx y θ from (0,0,0) . More precisely, let 

∆ denote the duration, or equivalently the length of the 
shortest Dubins curve from (0,0,0) to ( , , )g g gx y θ . 

We call the final altitude low if gz ≤ ∆ , medium if 

2gz π∆ ≤ ≤ ∆ + , and high if 2gz π≥ ∆ +  ,cf.  

[11].  
For finding the time optimal paths, the cost functional 

J  to be minimized is time, that is
0

( ) :
T

J u dt= ∫ . For 

every pair of initial and goal configuration, we seek an 
admissible control, that is a measurable function 

: [0, ] ,u T U→  which minimizes J while transferring 
the initial configuration to the goal configuration. Thus, it 
is viable to use the Pontryagin Maximum Principle (PMP) 
for this problem. 
Let the Hamiltonian 4:H M U× × → be 

( , , ) ,H q u qλ λ ′=< >  (20) 

In which q ′ is given in (12). According to the PMP ,cf.  

[13], for every optimal trajectory ( )q t defined on 

[0, ]T and associated with control ( )u t , there exists a 

constant  0 0λ ≥  and an absolutely continuous vector- 

valued adjoint function 1 2 3 4( ) ( ( ), ( ), ( ), ( ))t t t t tλ λ λ λ λ= , 
which is nonzero if 0 0λ = , with the following properties 
along the optimal trajectory: 

,H
q

λ ∂′= −
∂

 
(21) 

( ( ), ( ), ( )) max ( ( ), ( ), ),
z U

H t q t u t H t q t zλ λ
∈

=  (22) 

0( ( ), ( ), ( )) .H t q t u tλ λ≡  (23) 
Definition 3.1.2. An extremal is a trajectory ( )q t that 

satisfies the conditions of the PMP ,cf. [13]. 



Amirkabir / Electrical & Electronics Engineering / Vol . 42 / No.1 / Spring 2010   
 
14 

In this section, let ( )q t  be an extremal associated with 
the adjoint ( )tλ and the control ( )u t . Equation (21) can 
be solved for λ to obtain 

1

2

3

1 2 4

( )

c
c

t
c

c y c x c

λ

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟− +⎝ ⎠

 

 
 

 (24) 

In which 1 2 3, , ,c c c and 4c are constants. Along an 
extremal, (22) yields the extremal control law 

3 3sgn( ) 0zu c if c= ≠  (25) 

3[ 1,1] 0zu if c∈ − =  (26) 

1 2 4 1 2 4sgn( ) 0u c y c x c if c y c x cθ = − + − + ≠  (27) 

1 2 4[ 1,1] 0u if c y c x cθ ∈ − − + =  (28) 
                           

If 3 0c = , then (25) implies that zu can have any 
value within [-1,1]. As it was stated, the final altitude 
plays a major role. So we distinguish three cases. We 
need following lemmas in the proof, 

Lemma 3.1.1.  For a low goal altitude, a time-optimal 
trajectory for the system (12) consists of the shortest 

Dubins curve with altitude velocity g
z

z
u =

∆
, cf.  [11].  

Lemma 3.1.2.  For a high goal altitude, a time-optimal 
trajectory for the system (12) is composed of two pieces. 
Along both pieces sgn( )z gu z= . The projection of the 

first piece on to the ( , , )x y θ -space is the shortest 

Dubins curve for ( , , )g g gx y θ . The second piece is a 

helix. The control is 
2

g

u
zθ

π
=

− ∆
 along the second 

piece, cf.  [11]. 
Theorem 3.1.1.  Let the Dubins airplane starts from 

the point 0 0 0 0( , , , )x y z θ in a non-obstacle space, in 

order to reach the point ( , , , )g g g gx y z θ . We assume 

that the system has independent bounded control over the 
altitude velocity as well as the turning rate in the plane. 
Then geometry of its movement is a special Finsler 
geometry called Randers geometry and time optimal paths 
are geodesics of a Randers metric.   

Proof. We consider three steps for the proof related to 
the low, medium and high goal altitudes of the airplane 
and calculate the metric of the airplane’s motion in each 
case. 

Step 1.  Low Goal Altitude   
As it is mentioned on [11], the shortest Dubins curve 

with an unsaturated altitude velocity is a time-optimal 
strategy for low goal altitudes. This case corresponds to 

3 0c = in the PMP analysis in (24). Note that the duration 

of such trajectory is ∆ . It is obvious that there exists no 
trajectory transferring the system faster from the initial 
configuration to the goal configuration. 
Using lemma (3.1.1), the extremal control low for low 
goal altitude is 

1 2 4
*

1 2 4

1 2 4

1 0
1 0
[ 1,1] 0

c y c x c
u c y c x c

c y c x c
θ

− + <⎧
⎪= − − + <⎨
⎪∈ − − + <⎩

 

(29) 

* g
z

z
u =

∆
 

(30) 

As it was mentioned before, the control parameters 
produce an effect on the system as an external factor. The 
control parameters of the airplane system are similar to 
that of Dubins car together with an additional parameter 
in direction of z -axis. The control parameter zu permits 

the airplane to increase or decrease the altitude and uθ  let 
it turns left and right. So we can consider the control 
parameters as a vector field w of class r , acting on the 
airplane. 

Hence, in a cylindrical coordinate, the external factor 
can be considered as 

( , , )r zw u u uθ= , 

Where for simplicity we have assumed that 0ru = . 
By (29) and (30), the extremal tangent vector (tangent 
vector on the extremal trajectory for low goal altitude) is 

*(0, , )gz
v uθ=

∆
, 

Therefore, presence of vector w causes the metric of the 
plane’s movement to changes from Euclidean to 
Finslerian, as follows. 

By replacing (0, , )zw u uθ= and *(0, , )gz
v uθ=

∆
 in (19), 

we have 

*, . g
z

z
v w u u uθ θ< >= +

∆
 

Also, 

 2 2* 2 2 2 2( ) ( ) , ( ) ( )g
z

z
v u w u uθ θ= + = +

∆
 

Consequently, Eq. (19) becomes 

 
* 2 2 * 2 2*

2 2 2 2

. . (1 )(( ) ( ) ). .
.

1 1

g gg
z zz

z z

z zz
u u u u u uu u u

F
u u u u

θ θ θ θθ θ

θ θ

+ + − − +− −
∆ ∆∆= +

− − − −
 

The resulting metric is a special Finsler metric known in 
the literature as Randers metric. So F , the metric of the 
airplane motion for low goal altitude, is the above 
Randers metric. 
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Step 2.  High Goal Altitude  
If the goal altitude is high, the system has enough time 

to follow a helix once it reaches the goal point in the 
plane and goal orientation. Hence, the shortest Dubins 
curve followed by a helix all with saturated altitude 
velocity is a time-optimal strategy in this case. This case 
corresponds to 3 0c ≠ in the PMP analysis in (25). The 

duration of such trajectory is gz . There exists no 

trajectory taking the system faster from the initial to the 
goal. 

The system first traverses the shortest Dubins curve 
with saturated altitude velocity along such time-optimal 
trajectory. It then traverses a helix,  that is a full circle in 
the plane with saturated altitude velocity.  

So according to the lemma (5.1.2), in the first part of 
the extremal path, the extremal control low for high goal 
altitude is  

 

1 2 4
*

1 2 4

1 2 4

1 0
1 0
[ 1,1] 0

c y c x c
u c y c x c

c y c x c
θ

− + <⎧
⎪= − − + <⎨
⎪∈ − − + <⎩

 

(31) 

* sgn( )z gu z=

 

(32) 

 
Hence, in a cylindrical coordinate, the external factor can 
be considered as 

 (0, , )zw u uθ= , 
By (31) and (32), the extremal tangent vector (tangent 
vector on the first part of the extremal trajectory for high 
goal altitude) is 

*(0, ,sgn( ))gv u zθ= , 

By replacing (0, , )zw u uθ= and *(0, ,sgn( ))gv u zθ= in 

(19), we have 
*, . sgn( )g zv w u u z uθ θ< >= +  

Also, 
 2 2* 2 2 2 2( ) (sgn( )) , ( ) ( )g zv u z w u uθ θ= + = +  
Consequently, Eq. (19) becomes 

*

1 2 2

* 2 2 * 2 2

2 2

. sgn( ).
,

1

. sgn( ). (1 )(( ) (sgn( )) )
.

1

g z

z

g z z g

z

u u z u
F

u u

u u z u u u u z

u u

θ θ

θ

θ θ θ θ

θ

− −
= +

− −

+ + − − +

− −

 

Similarly, for the second part of the extremal path, the 
extremal control low for high goal altitude is  
 

* 2

g

u
zθ

π
=

− ∆
 

(33) 

* sgn( )z gu z=  (34) 

So, Eq. (19) becomes 

2 2 2

2
2 2 2

2

2 2

2 sgn( )

,
1

2 4sgn( ) (1 )( (sgn( )) )
( )

.
1

g z
g

z

g z z g
g g

z

u z u
z

F
u u

u z u u u z
z z

u u

θ

θ

θ
θ

θ

π

π π

−
− ∆

= +
− −

+ + − − +
− ∆ − ∆

− −

 Consequently, for a high goal altitude, the time-optimal 
trajectory for the airplane is composed of two pieces. In 
the first part of path the metric of the airplane motion is 

1F and in the second part, 2F is the metric of the 

movement. Obviously, both 1F and 2F are Finsler metrics. 

Step 3.  Medium Goal Altitude    
If there is a path for the Dubins car from the initial 

configuration to the goal configuration in time gz , then 

the time-optimal trajectory for the system corresponds to 

3 0c ≠ in the PMP analysis in (25). In this case the 
altitude velocity is saturated. If there is no path for the 
Dubins car from the initial configuration to the goal 

configuration in time gz , then the time-optimal 

trajectory for the system must correspond to 3 0c = in the 
PMP analysis in (26). The altitude velocity is not 
saturated in this case. Thus, the projection of the time-
optimal trajectory on to the ( , , )x y θ -space is a Dubins 
time-extremal. Dubins time-extremals are composed of 
turn with minimum radius and straight line segments, cf. 
[11].  

Hence, for medium goal altitude, if there is a path for 
the Dubins car from the initial configuration to the goal 

configuration in time gz , a time-optimal trajectory for 

the system is composed of two pieces. The metric of the 
airplane’s motion in the first part of the path corresponds 
to 1F and in the second part corresponds to 2F . 

If there is no path for the Dubins car from the initial 

configuration to the goal configuration in time gz , the 

metric of the airplane’s motion corresponds to F .            
 

4.  CONCLUSIONS 

Using system control parameters of Dubins airplane as 
an external factor which affects the system, geometry of 
airplane’s movement was described and a metric was also 
found.  

This allowed us to study control system of Dubins 
airplane as a geometric problem and to use features of this 
geometry properly; i.e., geodesics of this metric are time 
optimal paths for Dubins airplane. 
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