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ABSTRACT: In order to provide an efficient conversion and utilization of solar power, solar radiation data 
should be measured continuously and accurately over the long-term period. However, the measurement of 
solar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence, 
several studies were proposed in the literature to find mathematical and physical models to estimate and 
forecast the amount of solar radiation such as stochastic prediction models based on time series methods. This 
paper proposes a hybridization framework, considering clustering, pre-processing, and training steps for short-
term solar radiation forecasting. The proposed method is a combination of a novel data clustering method, 
time-series analysis, and multilayer perceptron neural network (MLPNN). The proposed Transformed-
Means clustering method is based on inverse data transformation and K-means algorithm that presents more 
accurate clustering results when compared to the K-Means algorithm; its improved version and also other 
popular clustering algorithms. The performance of the proposed Transformed-Means is evaluated using 
several types of datasets and compared with different variants of  K-means algorithm. The proposed method 
clusters the input solar radiation time-series data into an appropriate number of sub-datasets which are then 
preprocessed by the time-series analysis. The preprocessed time-series data provide the input for the training 
stage where MLPNN is used to forecast the solar radiation. Solar time-series data with different solar radiation 
characteristics are also used to determine the accuracy and the processing speed of the developed forecasting 
method with the proposed Transformed-Means and other clustering techniques.
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1- Introduction
Solar radiation is the most important parameter in solar 
conversion, renewable energy, and especially photovoltaic 
(PV) systems [1, 2]. Different input data and forecasting 
models depend on the forecast horizon. Statistical models are 
appropriate for very short-term time scales ranging from 5 
min up to 6 h [3]. Moreover, in [4] is presented an overview 
of different approaches to forecast solar irradiance.
The references [5-12] present the forecasting of photovoltaic 
(PV) power generation. These techniques can be classified 
into two types as follows: 
First type is related to direct methods forecast according 
to the historical data, and associated weather information 
forecast PV power output. Support Vector Regression (SVR), 
ANN [10], and hybrid ANN methods [12] are the techniques 
used in the direct method forecasting. 
Second type is related to indirect forecasting methods, where, 
historical solar irradiance and weather data are used, and, 
then, they are converted to the PV power output. 
Some techniques adopted wavelet analysis [6], fuzzy logic 
method [5], artificial neural network [7], and hybrid Artificial 
Neural Network (ANN)-based methods [9]. In addition, 
ANN-based methods [11] are used for the classification and 
forecasting problems. 
In [13], a 1-day-ahead hourly forecasting method based on 
the combination of a Self-Organizing Map (SOM) [12], a 
Learning Vector Quantization (LVQ) network [13], SVR [14] 

method is developed. In [15] it is shown that ANN techniques 
have a better accuracy than other techniques such as the fuzzy 
approach and the nonlinear and linear ones. In addition, 
the applications of ANNs in renewable energies has been 
presented in [16]. Similarly, Adaptive Neuro-Fuzzy Inference 
systems (ANFIS) and ANN models of Ground-Coupled Heat 
Pump (GCHP) systems have been reviewed in [17]. 
In addition, Multi- Layer Perceptron (MLP) is used in [18] to 
forecast the daily horizon (d+1) of global irradiation. Their 
proposed model is compared with AR, ARMA, k-Nearest 
Neighbors (k- NN) and Markov Chains approaches. 
Clustering techniques have a great role in unsupervised 
pattern recognition [19]. This technique classifies the groups 
of data separately in the field of renewable energy forecasting, 
providing a better understanding of collected information. 
Furthermore, it improves the accuracy of the final forecast 
results. A new time series clustering technique for demand 
forecasting and renewable energy prediction is proposed in 
[20]. And also [21] developed a short-term PV generation 
forecasting model by employing SOM algorithms and 
wavelet neural networks. In [22], a method based on LVQ 
and the clustering is used to forecast solar irradiation. 
In reference [23], a combined Nonlinear Auto Regressive 
(NAR) and K-means clustering are introduced to forecast 
hourly solar irradiance.
The main contribution of this paper is given in the following. 
A hybrid method to forecast the solar radiation is proposed, 
which  includes clustering, preprocessing and training stages. 
A novel clustering method based on the inverse transformation The corresponding author; Email: m.ghayekhlou@aut.ac.ir
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of data is developed to provide more accurate clustering 
results. The proposed Transformed-Means clusters the input 
solar radiation data into an appropriate number of subsets 
which are then preprocessed by the time-series analysis. 
The preprocessed data provide the input to the training stage 
where Multilayer Perceptron Neural Networks (MLPNN) are 
used to forecast the solar radiation.
The rest of the paper is organized as follows. Section II 
provides a brief description of the K-means algorithm. It 
also explains the proposed clustering and the hybrid solar 
irradiance forecasting methods. Section III demonstrates a case 
study where the clustering errors are calculated for different 
algorithms. The performance of the developed forecasting 
method with different clustering algorithms is also evaluated 
in this section. Finally, section IV concludes the paper.

2- Methodology
A. Proposed clustering method
Transformed-Means is proposed in this section. The proposed 
clustering algorithm uses a combination of a new technique 
to select the initial cluster centroids and a new approach for 
the reverse transformation of the data in order for remedying 
the shortcomings of the existing K-means algorithms and 
providing a better performance. The steps of the Transformed-
Means algorithm are described in the following.
(i) Selecting initial centroids
Let X=[x1,...,xn] be a set of n data. The selection of K initial 
centroids is as follows.
1. Set a unique dataset X`=[(x`1,xr),...,(x`m,rm)] where ri is 
the repetition number for each non-repetitive data vector xi 
( 1 ≤ i ≤ m ≤ n ).
2. Calculate the variance of the unique dataset X’ by (1) and 
sort the data vectors in the dataset X’ in ascending order based 
on the Euclidean distance between each data vector and the 
variance of these data.

The Euclidean distance between each data vector x`i in the 
new dataset X’ and                                            , i.e. the variance of 
the input dataset X’ in the d-dimensional space Rd, is given by:

3. Divide the dataset X`, consisting of m data, into K sub-
datasets, with at most P=⌈m/k⌉ data, according to (3) such 
that the data elements of X` are distributed among the sub-
datasets X`1 to X`k.
4. Now, we have K sub-datasets, of which one is used to 
determine only one of the K initial centroids. (4) is used 
to consider a weight attribute w(x`i) for each data entry x`i 
with the repetition number ri in each of K subdatasets {X`1, 
X`2,..., X`k}.

where w(x`i)m is the weight attribute for x`i in the m-th sub-
dataset.
5. In each of the K sub-datasets, the data entry with the highest 
weight attribute is selected as the initial centroid.
As a result, in each of the K sub-datasets, a data point   
located at the densest concentration of the related sub-dataset 
is chosen as the initial centroid.
(ii) Inverse transformation
The inverse data transformation approach was first used in 
[24] to solve problems associated with the K-means clustering 
algorithm, see the Animator [25]. However, the approach 
presented in [24] suffers from a number of shortcomings 
such as the finding of a suitable artificial data structure, 
the performing of the mapping, and the controlling of the 
inverse transformations. This algorithm cannot generally 
guarantee an optimal result. In this paper, in some cases, the 
data transformation leads to the deviation of data towards 
the incorrect cluster centroids. In addition, this algorithm 
is not appropriate for clustering one-dimensional data sets 
and does not provide optimal results, and with regard to the 
evaluation results, it is preferable to the K-means algorithm. 
For the inverse transformation of data, first, we generate an 
artificial data X* as the input data with the same sizes, say n, 
and dimension, say d. Therefore data vectors are divided into 
distinct clusters, with K centroids, without any fluctuations. 
Then, we represent a one-to-one mapping from the input data 
onto the artificial data (X→X*). In the approach presented in 
[24], each data, in the artificial structure, is randomly placed 
in an initial centroid placement, where the K initial cluster 
centroids are distributed uniformly along a line. This random 
placement may break the clustering structure and deviate 
the data towards incorrect cluster centroids, consequently 
providing incorrect results. This may also affect the stability 
of the final algorithm results. To address these problems, 
after determining initial centroids, all the real data elements 
are placed in the vicinity of the initial centroid. In the next 
step, the inverse transformation of the artificial data the 
main data is done by a series of inverse transformation that 
gradually moves data elements to their real positions. During 
this process, K-means updates the clustering model after any 
change. By this procedure, data vectors move slowly to their 
original positions without breaking the clustering structure. 
The clustering algorithm suggested in this paper employs a 
different approach that minimizes the reported problems of 
K-means star. Here, the procedure of gradual movement of 
data is as follows. First, each initial centroid initCl (1<l≤k) 
must be placed into the position of the data vector di, which 
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has the minimum distance to the corresponding data. Then, 
using the inverse transformation they move back from 
artificial structure to their real positions. 
Generally, for a dataset D=[d1,...,dn] of n data vectors, the 
steps of gradual inverse transformation of data into their real 
positions obey the following procedure:

1. sort the real data vectors D=[d1,...,dn] in ascending 
order based on the Euclidean length of the vectors and 
store them into a new dataset,
2. to construct the artificial data structure, Dart, as the 
initial position of the data, place each initial centroid initCl 
(1<l≤k) in the position of the data vectors of the dataset 
D`, closer to that initial centroid (d`iinitCl) compared to 
their distance from other K-1 initial centroids. This forms 
the artificial structure Dart=[d1

art,..., dn
art] where dart∈initC. 

By doing this, in the artificial structure Dart, real data move 
into the location of initial cluster centroid that is closer to 
the actual position of related data,
3. sort the real data vectors D=[d1,...,dn] in descending 
order based on the Euclidean length of the vectors and 
store them to the new dataset,
4. determine the distance between initial artificial data 
(Dart) and sorted real data (D″), and cast them in the set 
Dist″=[dist1″, dist2″,..., distn″], where each element disti″ 
represents the distance of the i-th data vector (di

art) in the 
artificial dataset Dart from the position of the corresponding 
data (di″) in the dataset D″,
5. according to the number of iterations given by the user 
(Steps>1 ), divide each element of Dist″=[dist1″,...,distn″] 
by the value of steps and update the new values of the data 
elements in Dist″. Thus, we have:

6. steps of the inverse transformation of data f
7. or each iteration is given by (8):

where Dart is the position of data in the artificial structure, 
itrNum is the corresponding iteration number and Dist″ is 
the distance of the data sorted in descending order from 
the data positions in the artificial structure. We should 
note that D1

art is equal to the initial data positions in the 
artificial structure (initial artificial dataset). After any 
transformation in the artificial data, K-means runs the 
previous centroid and the transformed  artificial dataset 
Dart as the input. In the first step, the value of initC as the 
initial centroids, initC0, obtained in the first phase of the 
algorithm is fed to K-means algorithm as its input. After 
completing all steps, the real data positions are replaced 
by the artificial dataset (in ascending order), and the final 
centroid C is the output result for final centroids. Figure 1 
shows the flowchart for Transformed-Means.

B. Proposed Hybrid Solar Forecasting Method
This section develops a hybrid solar forecasting method that 
combines the time-series analysis, the Transformed-Means, a 
cluster selection algorithm, and MLPNN. Figure 4 shows the 
proposed forecasting method.
The proposed hybrid forecasting method consists of three 
stages of clustering, pre-processing, and training. Figure 2 
shows the proposed forecasting method.
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Fig. 1. Flowchart of Transformed-Means Algorithm

Fig. 2. Proposed Forecasting Method

Fig. 3. Structure of the Input and Output Time Series for the 
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The proposed Transformed-Means clusters the input data set 
into an appropriate number of subsets, say n. The  method, 
below, is used to determine the number of clusters [26]. The 
pre-processing stage uses the time series analysis to provide 
the most appropriate inputs for MLPNN. 
Figure 3 shows the structure of the time series for training and 
forecasting periods. P(sk,N) and M are the Nth data and the 
total number of data in the price subset k, respectively.
The average distance determines the subset  used to provide 
the forecast for a specific hour. To this end, the distance 
between that hour’s measurement and the average of the data 
within each subset is calculated for all clusters. The subset 
with the minimum distance is used in the pre-processing stage 
to provide the inputs for the MLPNN and forecast the price 
for a specific hour. The distance for subset k is calculated by:

where Pmeas. is the price measurement.

3- Case studies
This section evaluates the accuracy of proposed clustering 
method. The datasets used in the experiment are available 
online [27-29]. More information regarding this data collection 
is presented in Figure 6. Mean Absolute Error (MAE) is used to 
determine clustering errors by

where N is the number of data points in cluster k, and Xi
(k) 

is a data point in cluster k. The MAE values are calculated 
for different clustering techniques, namely the proposed 
Transformed-Means, K-means*, K-means++[30] , K-means, 
SOM  [13], and GTSOM   [31]. These data are given in Table 
I. The calculated MAE values show that Transformed-Means 
improves the quality of the clustering in comparison with 
other clustering methods.

A. Evaluation of proposed hybrid solar forecasting method
This section evaluates the developed hybrid solar 
forecasting method with the proposed Transformed-Means 
and other clustering techniques. The proposed forecasting 
is tested on several different solar datasets to provide a 
comprehensive performance analysis. MLPNNs are trained 
using 80 percent of the solar data and the remaining data are 
used for the test. MLP with three layers provide the solar 
forecast for one hour-, twenty four hour-, and forty eight 
hour-ahead prediction. The hidden and output layers use 
tansig and purline functions. The number of inputs for each 
MLP is equal to the length of the lagging window N=15. 
The structure of the network consists of six hidden and one 
output neurons.
The datasets are from different stations with different solar 
radiation characteristics  [20]. Mean Absolute Percentage 
Error (MAPE) is used as the accuracy performance indicator 
and is given by:

where N is the total number of hours. In (11), Ŝ(n) and 
SActual(n) are the solar radiation forecast and the actual solar 
radiation for the Nth hour, respectively.
The performance of the proposed forecasting method with 
Transformed-Means is compared to the results of the same 
forecasting method with different clustering techniques. 
Table II provides MAPE values and the processing time 
of the proposed forecasting method using each clustering 
technique on June 27th, 2013. The accuracy performance of the 
forecasting method with the Transformed-Means algorithm 
is better than those  with other clustering algorithms. 
The proposed forecasting method with Transformed-
Means clustering has a faster processing time compared 
to the forecasting with K-means++ and K-means* and it 
competes with SOM and GTSOM methods. The forecasting 
processing time with Transformed-Means is higher than that 
of K-means algorithm. This is due to the number of steps 
that the proposed method executes the K-means algorithm 
sequentially for the inverse data transformation. Table III 
provides the performance indicators of the forecast with 
the proposed Transformed-Means for different forecast 
horizons (1-hour, 24-hour and 48-hour ahead) on January 
2nd, 2013.
Figures 4 to 6 show the performance of the proposed 
forecasting method with Transformed-Means in different 
weather conditions of sunny, cloudy and rainy. A one-
week interval is considered for each weather condition: 
08/25/2013 - 08/31/2013 the sunny week, 12/01/2013 - 
12/07/2013 the cloudy week, and 04/09/2013 - 04/15/2013 
the rainy week. The figures demonstrate the efficiency of 
the proposed method to forecast the solar radiation with 
different characteristics and variations. It can also be 
inferred from MAPE values calculated for the sunny, cloudy 
and rainy weeks, that are 3.8560%, 6.1616%, and 7.7580%, 
respectively.

4- Conclusions
The hybrid forecasting method proposed in this paper 
consists of three stages of clustering, pre-processing, and 
training to predict solar radiations. Time-series analysis 
is used in the pre-processing stage to provide the most 
appropriate inputs for NNs. Then, MLPNN is used to train 
the NNs and forecast the solar radiations. The proposed 
Transformed-Means clustering provides the clusters that 
give a higher resolution in preparation for the input into 
an MLPNN.  Training is done using the MLPNN which is 
then used to predict solar radiation for that particular hour. 
The performance of the proposed Transformed-Means is 
evaluated using several different datasets and compared 
with K-means, K-mean++, K-mean*, SOM, and GTSOM 
algorithm. Our results demonstrate the enhanced efficiency 
of the proposed clustering algorithm in comparison with 
that of  other clustering techniques. The performance of 
the proposed forecasting method is evaluated using solar 
datasets with different characteristics and variations to 
determine the accuracy and the processing speed of the 
proposed forecasting method with Transformed-Means and 
other clustering techniques. The comparison demonstrates a 
significant improvement in the forecast accuracy.
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Dataset 
Transformed-means K-means* K-means++ K-means SOM GTSOM

MAE MAE MAE MAE MAE MAE
IRIS 0.276 0.282 0.371 0.282 0.282 0.284

Magic 0.057 0.059 0.059 0.059 0.06 0.059
Bridge 0.0302 0.0305 0.0312 0.0314 0.0323 0.033
Thyroid 0.164 0.171 0.171 0.176 0.171 0.17
Shuttle 0.0134 0.0178 0.0177 0.0177 0.0206 0.0281
Pendigit 0.0874 0.092 0.0938 0.0925 0.0922 0.0932

Yeast 0.0823 0.0871 0.0886 0.0882 0.0874 0.0902
M.Libras 0.0801 0.0825 0.0839 0.0821 0.0823 0.0828
Spambase 0.0079 0.0138 0.0101 0.0101 0.0096 0.0092
Ames.solar 0.0587 0.0602 0.0674 0.0736 0.0681 0.206

Average 0.0857 0.0896 0.0994 0.0913 0.0906 0.1056

Table 1. MAE Measures for Different Clustering Techniques

Table 2. MAPE Measures and the Processing Time for the Proposed Forecasting Method with Different Clustering Algorithms

Table 3. Performance Indicators for Forecast with Transformed-Means and Different Horizons

Dataset

Proposed Forecasting with

K-means K-means++ K-means* SOM GTSOM Transformed-Means

MAPE 
(%)

TIME 
(S)

MAPE 
(%)

TIME 
(S)

MAPE 
(%)

TIME 
(S)

MAPE 
(%)

TIME 
(S)

MAPE 
(%)

TIME 
(S)

MAPE 
(%)

TIME 
(S)

Calmar 9.1504 3.4183 14.0135 208.8255 13.5207 185.1354 4.8961 10.9337 9.7382 11.6271 4.3884 18.505

Ames 6.5181 3.284 5.4013 179.6701 12.7408 70.8081 5.1879 10.7655 7.6717 11.6987 5.683 17.3066

Castana 9.3901 6.5178 15.3609 167.8548 19.5436 85.6386 6.17 11.476 15.9441 17.1637 3.9738 18.7752

Cedar Rapids 6.0561 3.4172 15.0728 178.3335 20.7103 78.1649 6.5241 9.2266 18.1845 12.7802 6.0908 16.8523

Chariton 7.273 4.6392 8.5269 161.3657 7.3104 56.1865 4.8451 10.4359 9.7728 12.8222 4.7236 16.7573

Crawfordsville 11.066 4.0127 7.7033 137.9742 7.0627 74.1403 5.3383 12.9632 7.5057 12.2886 5.6961 19.9653

Gilbert 9.7371 4.2676 11.6963 137.5263 8.8621 75.741 4.4 13.067 4.0131 12.2541 3.9322 15.6152

Lewis 7.6904 5.5625 13.5705 141.4503 7.1955 56.3463 5.8014 9.5478 5.9993 11.578 5.0457 13.9992

Muscatine 15.336 3.5019 10.810 167.46 8.8842 58.154 8.2512 10.8511 12.958 12.735 3.9061 15.3278

Nashua 7.103 5.0785 7.1265 163.67 4.6086 57.221 6.8671 10.898 10.077 13.151 4.0297 16.4659

Sutherland 17.3624 4.5716 27.501 106.5261 7.9467 73.826 7.3993 10.655 12.1469 11.7123 5.2679 15.2902

Average 9.6985 4.2065 12.434 159.149 10.762 79.214 5.971 10.983 10.364 12.710 4.7034 16.8054

Dataset
Forecast Horizon

1 hour 24 hour 48 hour
MAPE (%) TIME (S) MAPE (%) TIME (S) MAPE (%) TIME (S)

Calmar 3.1491 7.8608 3.9026 9.019 7.081 8.809
Ames 4.9079 9.7218 7.2025 7.372 8.2645 7.5425

Castana 4.889 9.526 4.4832 8.1952 5.5724 9.7542
Cedar Rapids 4.6938 9.0656 4.5938 8.0892 5.8605 8.8066

Chariton 2.354 8.8705 3.6352 7.9829 4.9314 8.8969
Crawfordsville 3.4381 9.7724 5.5753 10.1221 5.0063 11.6164

Gilbert 3.9741 8.2319 3.786 8.2241 3.379 8.5127
Lewis 2.6104 7.8469 4.5813 7.9123 4.7763 9.9176

Muscatine 3.9652 8.9005 4.1495 7.9697 6.2414 8.6616
Nashua 4.3548 8.4111 4.1003 9.6412 4.7808 8.4708

Sutherland 3.7997 7.8414 4.0242 8.7442 6.3851 7.9678
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5- Nomenclature
PV: Power system
SVR: Support vector regression 
HDD: Heating degree days.
LVQ: Learning vector quantization
SOM: Self-organizing map
ANFIS: Adaptive neuro-fuzzy inference systems
GCHP: Ground-coupled heat pump
MLP: Multi-layer perceptron
KNN: K-Nearest Neighbors
NAR: Nonlinear autoregressive
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