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A Hierarchical SLAM/GPS/INS Sensor Fusion with 
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ABSTRACT 
In this paper, we present the results of a hierarchical SLAM/GPS/INS/WLFP sensor fusion to be used in 

navigation system devices. Due to low quality of the inertial sensors, even a short-term GPS failure can 
lower the integrated navigation performance significantly. In addition, in GPS denied environments, most 
navigation systems need a separate assisting resource, in order to increase the availability and reliability of 
the device. When the GPS service/information is available, the integrated SLAM system arranges for a 
landmark-based map using a GPS/INS feature. But in case of inaccessibility of GPS information, the latest 
formerly produced map plays an important role in decreasing the INS errors. In addition, a Wireless 
Fingerprinting (WLFP) mechanism helps us limit the errors in the system. The results of the proposed 
method decreases the average estimation precision on the order of 2.6m, without any performance 
degradation and in different experiments, which is the maximum sustainable error (below 2.66m) for flyer 
landing on the base. The mentioned method could be used in computer networks to schedule the services too.  
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1. INTRODUCTION 

The Global Navigation Satellite System (GNSS) is a 
space-borne, radio navigation system with world-wide 
coverage, accessibility, and high accuracy. Its paired 
characteristics to the Inertial Navigation Systems (INS) 
make it a brilliant assisting basis for INS. There are 
theoretic and useful research activities aiming at the 
Integration of Global Positioning System (GPS) and INS 
to improve the accuracy and decrease the price of 
navigation systems [1]-[4]. Wireless signals can be also 
used in the environment as a fingerprint to ensure the 
correct position estimation of the control system. The 
current trends are incorporating a lower cost or 
equivalently a lower quality, inertial sensor with a higher 
performance GNSS sensor. The low-cost, light, and 
compact-sized GPS/INS/WLFP system is an ideal 
navigation system for the Unmanned Autonomous 
Vehicle (UAV) platform, which requires a high 
maneuverability, and a limited payload capacity. 

The GPS/INS based systems are more reliable on the 
accessibility and quality of GPS data. Even a short period 
of satellite signal blockage can cause significant 
deviations in navigation results. You can imagine the 
conditions such as the Iceland’s volcanic eruption and 

also the conditions in movie recoding by small 
helicopters in the cities or even national disasters that can 
happen in megacities like Chicago, NY or LA. When our 
flying autonomous robot for Search and Rescue (SAR) 
gathers the data of the disaster scenes, it has to fly about 
30 feet above the ground and pass through tall buildings 
in which there would be poor GPS signals, or move in 
the shadow of the buildings to look for things of interest 
and there may not be any GPS signals at all. In this 
situation, the GPS subsystems suspend the data delivery 
and report less than 4 (needed for the altitude) or 3 
communicable satellites (only for the coordinates without 
altitude) and the integrated system needs other sensors. 
The smoke and dust also deny image processing in such 
conditions also.  

The Terrain Aided Navigation System (TANS) can 
decrease the dependency on GNSS. This type of 
navigation systems typically makes use of onboard 
sensors and a preloaded terrain database [5][6]. For 
example, a Terrain Contour Matching (TERCOM) 
system has been applied in missile navigations. The 
airborne 6DoF SLAM algorithm was firstly demonstrated 
in [7]. The ability to estimate both the vehicle location 
and the map is due to the statistical correlations that exist 
within the estimator between the vehicle and the 
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landmarks. 
Here the SLAM algorithm uses the GPS/INS and 

WLFP navigation system to provide more consistent 
INS/WLFP aiding information in GPS-denied situations. 
Figure 1 presents the SLAM/GPS/INS/WLFP integration 
architecture. The sensor fusion filtering works as either 
landmark-tracking filter or SLAM filter depending on the 
accessibility of GNSS observation. If GNSS provides 
unfailing observations, then the on-board vision or radar 
observations are used to build the landmark map and the 
SLAM/GPS/INS/WLFP filter estimates the errors in INS 
and map, which results in a landmark (or target)-tracking 
system. However, in the GPS-denied condition, the 
vision or radar observations are solely used to estimate 
the errors in INS and the map, which has consequences in 
the SLAM system [8][9].  

 

 
Figure 1: SLAM/GPS/INS/WLFP integrated system 
 

The sensor fusion is a widespread and useful method 
used by several researchers such as [10]-[12]. In [10], 
Weiss and et al. used the sensor fusion of GPS and laser-
scanner to restrict the location of vehicle. Their laser-
scanner looks like the BTS landmarks in our research, but 
their vehicle moves on the earth and only needs the yaw 
rotation, in contrast the fliers (such as our case) have two 
other rotations, roll and pitch. Weiss also did not consider 
the GPS denial situations in their studies. In 2007, 
Miettinen and et al. [11] studied the forest harvesters 
using 2D and 3D laser-scanners that differs from our 
approach both in dimensions and obstacle avoidance and 
that they not deliberate the GPS denial conditions. 

There is also another fascinating research by 
Schleicher and et al. [12] based on stereovision and GPS 
fusion. In their method, they used 3D imaging and mixed 
it with 3D GPS data. Although they included the GPS 
uncertainty in their study, they only treated it as a 
computational error in the formula, which differs from 
ours in the GPS denial situation where the data is totally 
noisy and out of action. 

Nowadays, there has been a growing deployment 
wave of wireless local area networks (WLANs) by many 
individuals and organizations inside their homes, offices, 
buildings, and campuses. The acceptance of WLANs 
opens a new opportunity for extending the location 
fingerprinting in location-based services. This type of 
positioning system does not require specialized hardware 

other than the common wireless network interfaces with 
received signal strength measurement capability; thus, it 
is relatively simple to deploy compared to other 
techniques. Any existing WLAN infrastructure can be 
reused for this positioning system. Such positioning 
systems are viewed as the most effective and feasible 
solution for the indoor environments [13]-[15], and have 
thus become the main focuses of many explores.  

2. ERROR ANALYSIS 

Here, the inertial navigation equation can be expressed 
as [16]: 
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(2)  

nr : the derivative of coordinates, 
nv : the derivative of velocities, 
n
bC : the derivative of accelerations, 

and M, N are radii of curvature in the meridian and prime 
vertical, and they considered as constant.  

The error analysis utilizes perturbation methods to 
linearize the nonlinear system differential equations [17]. 
For example, the perturbation of the position, velocity, 
altitude, and gravity can be written as: 

nnn rrr δ+=ˆ  (3)  
nnn vvv δ+=ˆ  (4)  

( ) n
b

nn
b CEIC −=ˆ  (5)  

nnn gg δγ +=  (6)  

The hat ^ denotes the calculated value, δ represents 
the error, nγ  is the normal gravity vector and nE  is the 

skew symmetric (7) (or cross product) form of the 
attitude errors. 
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A. Position Error Dynamics 
The linearized position error dynamics can be 

obtained by perturbing the dynamics equations for the 
geodetic positions. Since the position dynamics equations 
are functions of position and velocity, the position error 
dynamics equations can be obtained using the partial 
derivatives: 
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where from [7]: 
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and 
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(8.2)  

B. Velocity Error Dynamics 
The velocity error dynamics equations have been 

derived in [16] and the Fvv and Fvr are defined as: 
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b
nnn

vv
n

vr
n fCfvFrFv δεδδδ +×++=  (9)  

=vrF  (9.1)  
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C. Attitude Error Dynamics 
The attitude error dynamics equation can be written as 

[16]: 
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3. GPS/INS KALMAN FILTER 

A continuous system equation can be expressed as:  
uGxFx +=  (11)  

where F is the dynamics matrix, x is the state vector, G is 
a design matrix, u is the forcing vector:  
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The elements of u are white noise whose covariance 
matrix is given by: 

( ) ( )[ ] ( ) ( )τδτ −= ttQutuE T  (12)  

where the operator δ denotes the Direc delta function 
whose unit is 1/time [18]. Q is called the spectral density 
matrix and has the form: 

( )222222
zyxazayaxdiagQ ωωω σσσσσσ=  (13)  

where 
aσ and 

ωσ are standard deviations of 
accelerometers and gyroscopes, respectively. Because 
strap down inertial systems are usually implemented with 
sampled data, (11) is transformed into its discrete time 
form: 
( ) ( ) ( ) ( ) ( ) ( )∫

+

+++ Φ+Φ= 1 ,, 111
k

k

t

t kkkkk duGttxtttx ττττ  (11.5)  

or in an abbreviated notation 
kkkk xx ω+Φ=+1  (14)  

where Φk is the state transition matrix, and ωk is the 
driven response at tk+1 due to the presence of the input 
white noise during the time interval (tk,tk+1). Because a 
white sequence of zero-mean random variables that are 
uncorrelated time wise, the covariance matrix associated 
with ωk is [19]: 
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ki
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E kT
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=
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,0
,

{ωω  (15)  

The analytical method to find the state transition 
matrix is:  

( )[ ]11 −− −=Φ FsILk
 (16)  

where L-1 represents the inverse Laplace transform and s 
is the Laplace transform parameter. However, for the 
implementation of INS, because the sampling time 
interval ∆t=tk+1-tk is very small, the following simple 
numerical approximation is preferred:  

( ) tFItFk ∆+≈∆=Φ exp  (17)  

In this research Qk is calculated using the first order 
approximation of the transition matrix as [20]: 
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tGQGQ T
k

T
k ∆ΦΦ≈  (18)  

If the norm of Qk is larger than the true one, the Kalman 
filter trusts the measurements more than the system. 
Then, the resulting estimates will be noisy due to the free 
passage or the measurement noise. However, the estimate 
does not have time lag. If the norm of Qk is smaller than 
the true one, the time lag will show up. When the norm of 
Qk is much smaller than the true one, the filter diverges, 
which results in numerical instabilities. Hence, for low 
cost inertial systems, Qk must be selected pessimistically 
so that the trajectory can follow that of the GPS. In this 
paper, the elements of Qk are increased until the filter is 
stabilized and the trajectory follows that of the GPS. 
Adaptive calculation methods can be applied to help in 
the tuning of Qk [21], [22]. The derivation of the Kalman 
filter - a recursive, unbiased and minimum-variance 
estimator - starts from the random process model, and the 
following observation equations:         

kkkk exHz +=  (19)  

where zk at time tk as a linear combination of the state 
vector, xk, plus a random measurement error, ek [19]. The 
covariance matrices for the ωk and ek are given by: 
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The implementation of the Kalman filter can be 
divided into two stages, the update stage and the 
prediction stage. In the former, the Kalman gain Kk is 
computed first, and then the state and the covariance are 
updated using the prior estimate, kx̂ , and its error 
covariance, 

kP :  
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T
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( )kkkkkk xHzKxx ˆˆˆ −+=  (23)  

( ) kkkk PHKIP −=  (24)  

In the prediction stage, the estimate and its error 
covariance are projected ahead: 

kkk xx ˆˆ 1 Φ=+  (25)  

k
T
kkkk QPP +ΦΦ=+1

 (26)  
The position and velocity from the GPS can be 
considered as measurements. The straightforward 
formulation or the measurement equation can be written 
as: 

⎥
⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢
⎢

⎣ −
−
−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

=

n
GPS

n
INS

GPSINS

GPSINS

GPSINS

n
GPS

n
INS

n
GPS

n
INS

k

vv
hhvv

rrz λλ
φφ

 

(27)  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

×

×

×

×

×

×

33

33

33

33

33

33

0
00

0 I
I

Hk
 (28)  

However, this approach causes numerical instabilities 
in calculating ( ) 1−

+ k
T
kkk RHPH for the Kalman gain, Kk 

because Φ and λ are in radians and therefore they are 
very small values. This problem can be resolved if the 
first and second rows are multiplied by (M+h) and (N+h) 
cosΦ, respectively. Hence, the measurement equation 
will take the form [16]: 
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and the following measurement noise matrix will be 
used:          

( )222222
vdvevnhk diagR σσσσσσ λφ=  (31)  

which can be obtained from the GPS processing. To start 
a Kalman filter, the initial estimation uncertainty standard 
deviations must be first given. If an Inertial Measurement 
Unit (IMU) is initialized in stationary mode, the position 
uncertainly will be that of the GPS solution and the 
velocity uncertainty will be almost zero. The attitude 
uncertainty is totally dependent on the accelerometer and 
gyroscope biases. The GPS and IMU measurements are 
usually made in different times. So, the IMU's position 
and velocity can be interpolated using the data before and 
after the GPS measurements made to compose the vector 
Zk. Let us assume that IMU measurements are made at tk-1 
and tk and the GPS measurement is made at tGPS . Then, 
the following simple linear interpolation equation can 
been applied (from a previous implemented version in the 
system) to get the position and velocity of IMU at the 
GPS measurement time (that is appropriate for real time 
implementation): 
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For high dynamic applications, a higher order 
interpolation is needed. For example, the Lagrange 
interpolation equation can be used [23]: 
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where 2m + 1 is the order of interpolation. When m=0, 
(34) and (35) are identical to (32) and (33), respectively. 
Since both sensors cannot be installed at the same place 
in the host vehicle, the position and velocity of the IMU 
are different from those of the GPS. This is called the 
level-arm effect. The level-arm correction for the position 
and velocity, considering ∆rb as the offset vector of the 
GPS antenna from the center of the IMU in the body 
frame, we will have:  
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4. LANDMARK MODEL 

When the flying Robo-SearchAndRescue has to gather 
the data and flies through tall buildings or stop in the 
shadow of the buildings. The Buildings may block the 
GPS signals. So the GPS suspends the data delivery and 
report less than 4 (needed for the altitude) or 3 (only for 
the x-y coordinates without altitude) so the integrated 
system has to refer to other sensors. There can be some 
landmarks or wireless signals that can be used to guess 
the true location. Hence the ith landmark simply becomes: 

( ) ( )1−= kmkm n
i

n
i

. If a new landmark is observed, this 
external map is the dynamically augmented with new 
landmark position. 

5. COMPLEMENTARY ALGORITHM 

Now we focus on the complementary 
SLAM/GPS/INS/WLFP Algorithm. In this work, the 
Kalman Filter (KF) is used as the state estimator and the 
WLFP will be explained in the next section. 

A. Augmented Error State  
In the paired SLAM, the state is now defined as the 

error state of the vehicle on the map: 

( ) ( ) ( )[ ]Tmv kxkxkx δδδ ,=  (37)  

The inaccurate state of the vehicle δxv(k) comprises the 
errors in the INS indicated position, velocity and attitude 
expressed in the navigation frame:  

( ) ( ) ( ) ( )[ ]Tnnn
v kkvkpkx Ψ= δδδδ ,,  (38)  

The error state of the map δxm(k) includes the errors in 
3D landmark positions in the navigation frame. The size 
of state is also dynamically changes with the new 
landmark error after the start, 

( ) ( ) ( ) ( )[ ]Tn
N

nn
m kmkmkmkx δδδδ ,...,, 21=  (39)  

where N is the current number of registered landmarks 
and each one consists of a positioning error in 3D [24]. 
 

B. SLAM Error Model  
The linearized SLAM system in discrete time can be 

written as: 
( ) ( ) ( ) ( ) ( )kwkGkxkFkx +=+ δδ 1  (40)  

where δx(k) is the error state vector, F(k) is the system 
transition matrix, G(x) is the system noise input matrix 
and w(k) is the system noise vector with noise variance 
Q(k). The continuous time SLAM/Inertial error model is 
based on misalignment angle dynamics and stationary 
landmark model which is a random constant [25]:  
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where fb and ωb are acceleration and rotation rates 
measured from IMU, δfb and δωb are the associated errors 
in IMU measurement, n

bC is the direction cosine matrix 
formed from the quaternion. The matrices F(k), G(k) and 
Q(k) are given by: 
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(42)  

with σδf and σδω representing noise variance of 
acceleration and rotation rate respectively [26]. 

C. Observation model 
The linearized observation model can be obtained in 

terms of the observation residual, or measurement 
differences, δz(k) and the error states, δx(k),  

( ) ( ) ( ) ( )kvkxkHkz += δδ  (43)  

with H(k) being the linearized observation Jacobian and 
v(k) being the observation noise with noise strength 
matrix R(k). The error observations are generated by 
subtracting the measured quantity, z(k), from the INS 
predicted quantity ( )kẑ : 

( ) ( ) ( )kzkzkz −= ˆδ  (44)  

The onboard sensor provides relative observations 
between vehicle and landmarks. The non-linear 
observation equation relates these observations to the 
state as follows: 
( ) ( ) ( )( )kvkxhkz ,=  (45)  

where h(.) is the non-linear observation model at time k, 
v(k) and is the observation noise vector. Since the 
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observation model predicts the range, bearing, and 
elevation for the ith landmark, it is only a function of the 
ith landmark and the vehicle state. Therefore (45) can be 
further expressed as: 
( ) ( ) ( ) ( )( )kvkxkxhkz imivi ,,=  (46)  

with zi(k) and vi(k) being the ith observation and its 
associated additive noise in range, bearing and elevation 
with zero mean and variance of R(k). The initial 
landmark position in the navigation frame is then 
computed: 

( ) ( ) ( ) ( ) ( )kpCkCpkCkpkm s
sm

b
s

n
b

b
bs

n
b

nn
i ++=  (47)  

where ( )kpb
bs

 is the lever-arm offset of the sensor from the 
vehicle's center of gravity in the body frame, b

sC is a 
direction cosine matrix which transforms the vector in the 
sensor frame (such as camera installment axes) to the 
body frame, and ( )kps

sm
 is the relative position of the 

landmark from the sensor expressed in the sensor frame 
which is computed from the observation:  
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(48)  

with ρ, φ and ν being the range, bearing and elevation 
angle respectively, measured from the onboard sensor. 
Hence the predicted range, bearing and elevation between 
the vehicle and the ith landmark in (46) can now be 
obtained by rearranging (48):  
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(49)  
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(50)  

The observation model is non-linear and has two 
composite functions; a coordinate transformation from 
the navigation frame to the sensor frame, and a 
transformation from Cartesian coordinates to polar 
coordinates. By calculating Jacobian of this equation, a 
linearized discrete model is obtained. 
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(51)  

If vision or radar information is available, δz(k) is 
obtained by subtracting the range, bearing and elevation 
of the sensor from the INS indicated range, bearing and 
elevation, then it is fed to the integrated fusion filter to 
estimate errors in the vehicle and on the map. If the GPS 

position/velocity observation is used, the observation 
model simply becomes a linear form with: 

( ) ( ) ⎥
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2
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m kR
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(52)  

If the GPS information is available, δz(k) is formed by 
subtracting the position and velocity of the GPS from the 
INS indicated position and velocity, then they are fed to 
the fusion filter to estimate the errors in the vehicle and in 
the map [24] . 

D. Kalman Filter Prediction 
With the state transition and observation models 

defined in (40) and (43), the estimation procedure is then 
performed. The state and its covariance are predicted 
using the process noise input. The state covariance is 
propagated using the state transition model and the 
process noise matrix by: 
( ) ( ) ( ) 01|11| =−−=− kkxkFkkx δδ  (53)  

( ) ( ) ( ) ( ) ( ) ( ) ( )kGkQkGkFkkPkFkkP TT +−−=− 1|11|  (54)  

E.  Kalman Filter Estimation 
When an observation occurs, the state vector and its 

covariance are updated according to 
( ) ( ) ( ) ( ) ( ) ( )kvkWkvkWkkxkkx =+−= 1|| δδ  (55)  

( ) ( ) ( ) ( ) ( )kWkSkWkkPkkP T−−= 1||  (56)  

where the innovation vector, the Kalman weight, and the 
innovation covariance are computed as, 
( ) ( ) ( ) ( ) ( )kzkkxkHkzkv =−−= 1|δ  (57)  

( ) ( ) ( ) ( )kSkHkkPkW T 11| −−=  (58)  

( ) ( ) ( ) ( ) ( )kRkHkkPkHkS T +−= 1|  (59)  

Once the observation estimation has been processed 
successfully, the estimated errors are now fed to the 
external INS loop and the map for correction. 

6. LOCATION FINGER PRINTING WITH RBF NETWORK 

The approximation of functions is one of the most 
general uses of artificial neural networks. A radial basis 
function (RBF) neural network is usually trained to map 
one vector into another vector, where the pairs form the 
training set. From this point of view, learning is 
equivalent to finding a surface in a multidimensional 
space that provides the best fit to the training data. 
Generalization is therefore synonymous to interpolation 
between the data points along the constrained surface 
generated by the fitting procedure as the optimum 
approximation to this mapping. The principle of RBF 
networks is to fit a weighted sum of radial function ϕ to 
the function f to approximate. Such function ϕ depends 
only on the norm of the difference between their 
argument and a center called cancroids, and they 
generally can be tuned by a width factor: 
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( ) ( )∑
=

−=
p

j
jjj uxwxf

1

ϕ  (60)  

The most common radial function in practice is a 
Gaussian Kernel given by (61) where σj is the width 
factor of kernel j. 

( )
( )

2

2

j

jux

jj eux σϕ
−−

=−  

(61)  

Generally in location fingerprint, a fingerprint f is labeled 
with location information l. The location fingerprints and 
their labels (e.g., location information) are maintained in 
database and are used during the on-line phase to 
estimate the location. The label and fingerprint are 
usually denoted as a tuple of (l, f). It is commonly 
acknowledged that the radio signal strength (RSS) is the 
simplest and most effective RF signature for location 
fingerprints because it is readily available in all WLAN 
interface cards. The RSS [13] is more location-dependent 
than the signal-to-noise ratio (SNR) because the noise 
component is rather random in nature. However, the RSS 
itself fluctuates over time for each access point and 
location [13]. Each RSS element can be considered as a 
random variable; therefore, it can be captured by 
recording its descriptive statistics parameters.  

Battiti et al. [27] point out that the location 
information l for indoor location can be recorded in two 
forms as either a tuple of coordinates (Regression) or an 
indicator variable (Classification). The tuple of real 
coordinates can vary from one dimension to five 
dimensions which include the three dimensions for space 
and two dimensions for orientation variables expressed in 
spherical coordinates [15]. For instance, a location 
information of a two-dimension system with an 
orientation could be expressed as a triplet l = {(x, y, d) | 
x, y∈R2, d∈{North, East, South, West}}. In the case of 
indicator variable, the scope of location covers a wide 
area. An example is given by l = {-1, 1} [27]. With 
inclusion of the above parameter in (60), the output can 
be expressed by: 

( ) ( )∑
=

−=
p

j
jjj ufwfL

1

ˆ ϕ  (62)  

and 

( )
( )

2

2

j

juf

jj euf σϕ
−−

=−  

(63)  

where f : R x Q matrix of Q input measures of RSS signal 
vectors and l : S x Q matrix of Q target location vectors. 
In our method we consider the following parameters: the 
number of the samples in the training set, the spread of 
Gaussian Kernel, and the number of kernels that could be 
designed by user. According to these parameters the 
parameter uj and wj will change and get adjusted in such a 
way that the global mean-squared error between the 
desired outputs li and the estimated outputs ( )ifL̂  would 

decrease to less than a desired objective value (the 
default objective parameter value is 0).  

( )( )∑
=

−=
Q

i
ji fLLGoal

1

2ˆ5.0  (64)  

To effectively evaluate the application of RBFN 
approach for location fingerprinting, the data set of 
Wilma project was used [27],[28]. This system was based 
on a wireless LAN using the IEEE802.11b (Wi–Fi) 
standard. The LAN was composed of six AVAYA WP-II 
E access points, equipped with external omni directional 
antennas. The RSS measurements consist of 257 
sampling points [29]. Therefore, the fingerprint is a 
vector of RSS measured from six access points for each 
location and the location vector arranged by two 
coordinates (x,y). We use these vectors for regression 
analysis, and adapt them to location vector indicator for 
classifier. We use Leave-One-Out method in which every 
other samples are skipped in each row of grid points, 
making a new data set (training set) with others, and the 
RBFN is trained with this training set and examined by 
the skipped sample fingerprint. Then implementation 
results for location by RBF network (RBFN) are 
compared with real values of location to compute the 
error. 

A. Evaluation 
As we mentioned earlier, the data set in Wilma Project 

was used to implement several experiments using the 
proposed methods. Earlier, several basic methods in 
location fingerprinting were fed with this data set by 
which we can evaluate our methods and outcomes. Five 
different previous studies with the same data set are 
chosen to compare with our methods and to evaluate the 
proposed models in all dimensions. The first algorithm is 
called the SVM (Support vector machine) which benefits 
from the SRM (structural risk minimization) principle, by 
minimizing a boundary on the basis of VC-dimension 
(Vapnik-Chervonenkis dimension, interested reader can 
refer to [30] for a details). The next algorithm is called 
WKNN (weighted K nearest neighbors) which follows 
the following steps for location fingerprinting:  

(1) Find within the training set the k indices i1, ..., ik 
whose radio strength arrays: fi1, … ,fik that are nearest 
(according to a given radio space metric) to the given f 
vector.  

(2) Calculate the estimated position information by the 
following average, weighted with the inverse of the 
distance between signal strength tuples. 

( ) ( )

( )∑

∑

=

=

+

+
= k

j ji

k

j ji

ji

dffd

dffd
l

fL

1 0

1 0

,
1

,ˆ  
(65)  

where d(fi j, f) is the radial distance between the two n-
tuples (for example the Euclidean distance) measured in 
dBm, and d0 is a small real constant (d0 = 0.01dBm in our 
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tests) used to avoid division by zero. Another approach 
was implemented before on the data set is the Bayesian 
modeling (BAY), which is a method based on the 
conditional probability estimation, and it requires the 
knowledge of the signal propagation model, either in the 
form of an empirical distribution from repeated 
observations on each physical point in a given set, or by 
selecting a suitable radio propagation model and by 
estimating its parameters on the basis of empirical 
observations [34]. The following model was implemented 
on this data: 

( ) ( ) ( ) ( ) ( )fwbfdbbl
ii AP

i
AP

ii
i 210 ++=  (66)  

where dAPi(f) represents the vector of distances of the 
physical point y from the access points (logarithms are 
computed component wise ), wAPi(y) represents the 
number of walls and b0 becomes a constant term. This 
probability distribution can be used in turn to calculate 
the position in many ways. The derived results for 
comparing, achieved by two possible position estimators 

be used to determine the users location estimate L̂ , 
namely the average position (67) and the maximum 
likelihood estimator (68) [27]. 

( )flPL f |argmaxˆ
max =  (67)  

∫= )|(ˆ flfdpLAverage  
(68)  

For the last method, Multi-layer Perceptron (MLP) with 
three-layer model was used, where the first layer (input) 
has six neurons, the second (hidden) layer has 8 neurons 
and the third (output) has two neurons in the regression 
problem. To have a fair evaluation, we designed four 
different algorithms for location fingerprinting on the 
basis of signal strengths. First, we provided a model 
based on nearest neighbor algorithm, applied it to each 
sample, picking the location of sample j from data set that 
has the shortest signal distance with it. So, the selected 
sample j has the condition: 

Dis(f,sj) < Dis(f,sk)  jK ≠∀  (69)  

Another approach that we employed on this data set is the 
standard k nearest neighbors that instead of picking only 
the location of the closest sample, the average of K 
nearest neighbors' samples are selected. To find the best 
K, we apply the algorithm for different k values and 
compare the results according to the least average and the 
value for different k values. 

B. Regression results 
In the regression state, the location is a vector of real 

coordinates and the network trained by location vector of 
samples with two real coordinates (x,y). The network first 
trained for achieving the optimum parameter according to 
the mean error of all samples.  

Figure 2 illustrates the result of experiments based on 
the changes in mean errors with respect to these 

parameters. To come up with the results, the parameters 
are chosen as: number of samples in data set=257, 
spread=45 and number of neurons=30. As it can be seen 
in Figure 2-a, it is possible to reduce the data set to 70 
samples or less without significant changes in the average 
error. Therefore, a combination of RBFN with the nearest 
dataset approach is proposed. In this approach, we design 
the neural network with a reduced number of samples. 
For each sample in the testing process, we arrange the 
training data set with samples that have the shortest RSS 
distance with an index (picking) sample. Like before, we 
calculate the optimum parameters and in the result, the 
following parameters are derived: number of samples in 
data set=70, spread=12 and number of neurons=10. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 2: the change mean error with a) the size of data set, b) 
the neurons, c) the spread of radial basis function 
 

Figure 3 and Table 1 provide statistics regarding the 
error distribution of the aforementioned techniques for 
the regression state. The first five data rows report 
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experimental results of the previous known techniques 
[27] and the last four rows list the results of our methods. 
It is obvious that the proposed approaches outperform the 
other techniques, more specifically, the combinational 
approach of the RBFN with the K nearest data set. This 
method also presents an improvement in execution time 
due to the smaller training data set. The tests also showed 
that the Weighted K Nearest Neighbors and the Support 
Vector Machine (SVM) outcomes are comparable, and 
the two global models: neural networks and Bayesian 
inference (BAY) models suffer more than 30% 
performance degradation in compared with the best 
results. Although the average estimation precision is in 
the order of 2.6m, quantities reported in Table 1 show 
that three measures out of four have an error below 3.4m, 
and only one in 20 has an error higher than 5.5m with the 
RBF method with K nearest data set. 

7. CONCLUSION 

The model exploration showed that the SLAM system 
with a range, behavior, and elevation sensor can 
constraint the INS errors effectively, performing an on-
line map building in unknown terrain environments. The 
SLAM augmented GPS/INS system possesses two 
capabilities of landmark tracking and mapping using GPS 
information, and more importantly, aiding the INS under 
GPS-denied situation. As a result, the SLAM augmented 
low-cost GPS/INS system can be effectively applied to 
various GPS-denied situations, such as urban canyons, 
indoor, or even underwater using multi-level location 
estimation system, by other context signals such as 
wireless finger printing [31]. The same sensor fusion 
approach could be used to schedule the services in the 
pervasive environment by combining the measured 
network parameters. 

 
TABLE 1 

LEAVE-ONE-OUT ESTIMATION ERROR DISTRIBUTION 
ALGORITHM AVERAGE 50% 75% 90% 95% PROPOSED 
SVM 3.04 ±0.10 2.75 3.96 5.12 6.09 Ref[27] 
WKNN 3.06 ±0.10 2.84 3.93 5.16 5.79 Ref[27] 
BAY (Average likelihood) 3.35 ±0.11 3.04 4.39 5.61 6.61 Ref[27] 
MLP 3.18 ±0.11 2.82 4.01 5.4 6.73 Ref[27] 
BAY (max. likelihood) 3.83 ±0.15 3.42 5.14 6.83 8.42 Ref[27] 

RBF 2.85 ±0.10 2.61 3.85 5.21 6.09 Main method of this 
article 

Nearest neighbors 3.61 ±0.10 3.81 5.28 6.11 7.4 Implement in this article 
for comparing 

K Nearest neighbors (k=4) 3.1 ±0.10 2.99 4.02 5.11 5.77 Implement in this 
article for comparing 

RBFN with K Nearest Data Set
(K=70) 2.6 ±0.10 2.56 3.34 4.42 5.53 Main method of this 

article 
 

 

 
Figure 3: Leave-one-out estimation error distribution for the different algorithms 
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