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ABSTRACT: Human stress is a physiological tension that appears when a person responds to mental, 
emotional, or physical chal-lenges. Detecting human stress and developing methods to manage it, has 
become an important issue nowadays. Auto-matic stress detection through physiological signals may 
be a useful method to solve this problem. In most of the earlier studies, long-term time window was 
considered for stress detection. Continuous and a real-time representation of the stress level are usually 
done through one physiological signal. In this paper, a real-time stress monitoring system is pro-posed 
which shows the user a new signal for feedback stress level. This signal is the combination  of weighted 
features of galvanic skin response and photoplethysmography signals. The features are defined in 20-sec 
time windows. Correlation feature selection and linear regression methods are used for feature selection 
and feature combination, respectively. Furthermore, a set of experiments was conducted to train and test 
of the proposed model. The proposed model can represent the relative stress level perfectly and has 79% 
accuracy for classifying the stress and relaxation phases into two categories by a determined threshold.
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1- Introduction
Human stress is a physiological tension that appears when a 
person responds to mental, emotional, or physical challenges 
[1,2]. Unfortunately, in modern life, work stress, family 
and society problem, financial and econom-ic issues, and 
other external sources, put everyone in the stress situations. 
Recent studies have shown continuous contact with a stress 
situation increases the probability of cardiovascular diseases, 
HIV, cancer, depression and oth-er mental illnesses [2,3]. 
Therefore, identifying the human stress and providing 
techniques for managing it becomes a critical issue nowadays. 
Recognizing stress situations by a human is along a delay 
after the diseases effects and problems represent themselves. 
Thus, many objective methods for stress detection are 
widespread. Questionnaire and meetings with psychologists 
are some of the common methods that are time-consuming 
and costly and may not be accessible at all times [2-4]. Also, 
filling questionnaires needs a good memory and remem-
bering events well and is dependent on the ability of pa-tient 
that describe his/her mood. In some cases, the patient does 
not know about his/her stress or cause of it[4].
On the other hand, automatic stress detection through 
physiological signals can be a useful tool to solve this 
problem and make  many researchers interested in work-
ing in this field. Stress could be detected by monitoring 
many physiological changes, such as blood volume pres-
sure (BVP), heart rate (HR) that could be obtained through 
Electrocardiogram (ECG) and Photo-Plethysmograph (PPG), 
pupil diameter (PD), respiration (RESP), skin temperature 
(ST), galvanic skin response (GSR) as a consequence 
of sweat-gland activity, muscle activities measured by 

Electromyogram (EMG), and brain activities recorded 
through electroencephalogram (EEG) [5] . Previous studies 
used different combinations of phys-iological signals to  
measure the stress level. Table 1 shows a brief literature on 
different physiological signals applied in stress detection.

In spite of several findings in automatic stress detection, 
it is still an extremely challenging task to develop a 
practical human stress monitoring system for biofeedback 
applications. In biofeedback applications, a tradeoff between 
accuracy and the user inconvenience level should be made. 
Indeed, sensors with the least discomfort must be exerted 
on biofeedback systems. GSR and PPG sensors could set up 
on one hand (on the fingers or wrist) even as a ring tape or 
wristwatch, which are convenient and ease-of-use devices 
for subjects. However, almost all of biofeedback systems in 
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References Physiological signals
[6] HRV
[7] BVP, ECG, RESP, EEG and EMG
[8] GSR, ECG, ST, RESP
[9] BVP, RESP, ST, HR
[10] BVP, GSR, and ST
[11] ECG, EMG, GSR, and RESP

[1,12] BVP, GSR, PD
[13] GSR, BVP, PD, and ST

[3,14] HR, GSR, EMG, RESP
[15-17] GSR

[18] GSR, HR

Table 1: literature review on the physiological signals used for 
stress detection
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the market usually use only one signal to show a continuous 
and real-time representation of the subject’s stress level [19]. 
For example, “Biofeedback 2000” (made by SCHUHFEREID 
cooperation) records several signals such as GSR, temperature 
etc., but it does not combine them and uses only one of these 
signals to give feedback of the stress level of the subject 
during training games. “WILD DIVINE” that records GSR 
and PPG has the similar issues. “Stress Eraser” uses heart 
rate (by photoplethysmograph) to provide   a feedback signal 
for the subject. The aim of this paper is designing a real-time 
stress monitoring system by using a new signal produced by 
a combination of weighted features of GSR and PPG signals.
Stress detection from these physiological signals and feeding it 
back to the user, usually occurs during the pro-cedure illustrated 
in Fig. 1. This procedure consists of five stages as follows:

1) Making database: database is needed for the training 
and testing the algorithm 
2) Feature extraction: extracting features from signals.
3) Feature selection: selecting subsets of features that are 
useful to build a proper predictor.
4) Feature combination: combining selected features 
based on a model or equation.
5) Display: a perfect and user-friendly exhibition of the 
stress level for the test database[20].

In this paper, the procedure in Fig. 1 with the methods 
determined by red circular lines in feature selection and 
combination stages are applied to identify the stress. We 
design a set of experiments for recording the data during 
relaxation, neutral and stress situations which are induced by 
video clips. In the next stage, we extract proper fea-tures that 
are suitable for real-time monitoring. In the for-mer studies, 
varying types of features (in time and fre-quency domain) 
have been extracted from PPG or GSR signals, but most of 
them are calculated in a long-term time window that is at least 
about 1 minute. In this paper, a very smaller time window is 
considered for a real-time monitoring and within the window, 
a set of features is defined. Correlation feature selection is 

used to select op-timized subset of the features.
In the previous studies, different algorithms such as lin-
ear discriminated function (LDF), support vector machine 
(SVM), Naïve Bayes (NB), ANOVA analysis, Bayes clas-
sifier, k-NN, Fuzzy logic, etc. [5, 18, 20] have been used for 
integration of features. Since non-linear or chaotic analyses 
usually require a long-term signal monitoring, we use linear 
regression model for the real-time monitoring of stress. In 
addition, this model enables us to represent the subject’s stress 
level continuously (regarding   the bio-feedback requirement) 
while almost in all of the previous studies, representation of 
stress level was discrete and classified into two categories; 
stress or relaxation status. 
The organization of this paper is as follows. The details 
of the experimental study are described in section 2. The 
data analysis method, including feature extraction, feature 
selection, and information fusion algorithm, are introduced in 
section 3. The results of the analysis are   presented in section 
4, and section 5 includes the conclusion.

2- Experimental Study
A set of experiments was conducted to train and test the proposed 
model of human stress. A data collection device that could record 
PPG and GSR signals was used in these experiments. 

2- 1- Participants
16 subjects (seven men), 25-32 years old, voluntarily participated 
in the experiments. All subjects completed the informed consent 
form prior to the beginning of the experiments. They all had 
normal or corrected normal vision. Each subject took part in a test 
with Procedure1, including relaxation and stress phases. To test 
the model for biofeedback applications, five   subjects participated 
in a test with Procedure 2. Finally, 21 tests were recorded (five 
tests with procedure 2 and 16 tests with procedure 1).

2- 2- Data collection
To record GSR and PPG signals, a new device (Rav-antab) has 
been designed and developed in our research center (Advanced 
Technology K.N.Toosi) was used in the experiments (Fig. 2). 
Ravantab is a comfortable device designed for continuous, real-
time data (GSR and PPG signals) acquisition. This unit connects 
to the computer via a USB cable and converts analog input in 
the range of 0.3 to 3.7 volts to digital data with 125 Hz sampling 
rate. This data can be read and analyzed by MATLAB soft-ware.

2- 3- Procedure
According to previous studies, there are five major methods 
to induce or creat stress\relax states [5-, 18, 20];

• Displaying special pictures
• Showing videos with voice
• Showing videos without voice
• Designing a game
• Asking some questions in an interview format

We provide stimuli based on the five categories men-tioned 
above. Due to a survey of several subjects (includ-ing 
physiologist), we concluded showing videos with voice is the 
best way for producing stress/relax phases.
In our experiments, two procedures were pursued. Pro-cedure 
1 was designed for training and testing of the mod-el. Thus, 
it includes relaxation and stress phases. Proce-dure 2 was 
designed for testing of the model in biofeed-back applications.

Fig. 1. The procedure for stress detection through physi-ological 
signals. This procedure consists of five stages; 1) Making 

database, 2) Feature extraction, 3) Feature selec-tion, 4) Feature 
combination, 5) Display. CFT and LR are considered as feature 

selection and feature combination method in this paper.
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2- 3- 1- Procedure 1
Procedure 1 includes four phases (neutral, relaxation, neutral 
and stress phases) as shown in Fig. 3.

At   first, the participants were requested to clean their hands 
properly before starting the GSR recording. Then they sat in a 
chair and a monitor (20 inches) was located in front of them. 
The sensors were attached to their hands and they were asked to 
put their hands on the armrests of the chair. A brief description 
of the experiment’s phases was given to them. In neutral phase, 
a picture of nature was shown on the monitor for 1 minute 
and no voice was played. In the relaxation phase, a relaxing 
clip (about 6 minutes) was played and the participants were 
asked to try to relax themselves with it. A stressful clip was 
played (about 3 minutes) in the stress phase. Afterward, the 
sub-jects were requested to provide a self-report data on their 
state anxiety, perceived stress, and relaxation level. If the clips 
could not relax or stress them properly, the experi-ment was 
repeated again through the new more stressful or relaxing clips. 
Stressful clips were on various topics, including the chase and 
escape, falling off   a cliff and fight scenes. All subjects were 
relaxed with the relaxing sound of the sea.
The examiner evaluated the quality of the signals and inspected 
the behavior of the examinees during the test.

2- 3- 2- Procedure 2
Procedure 2 was performed after designing the model. In 
this procedure, the output of the model was transferred to an 
animation picture according to the biofeedback systems. For 
example, when the subject is more relaxed, a flower flourishes 
much more. The subjects were requested to see this animation 
and try to open the flower more and more. In other words, they 
attempted to relax more and more.

3- Data Analysis

3- 1- Signal Processing
At first, the PPG and GSR signals are filtered by a band pass 
and low pass filters, respectively. In feature extrac-tion, in 
addition to raw signals, standardized signals are helpful to 
remove characterizations related to the absolute value of the 
signals. Here, each signal is standardized using the median 
value of the signal and the signal’s inter-quartile range. The 
median is subtracted from each sample point and its value is 
scaled by the 75th-25th percentile (inter-quartile) range.
The cardiovascular signal collected from the plethys-mograph 
is actually a composite measure of two distinct phenomena: the 
overall volume of blood and the contraction-relaxations of the 
heart. These two phenomena differ greatly in their frequencies, 

the blood-volume changes over a few seconds while the pulse 
occurs about once or twice per second. Accordingly, separation 
of these phenomena will be useful for analysis. This process is 
done with an elliptic filter.
For extracting features related to heartbeat, HR signal is 
derived from the pulse signal (the PPG signal without blood 
volume). A heartbeat is defined as the time interval between 
adjacent diastolic tips. This value is assigned to all points in 
the interbeat producing a square-wave signal. The square-
wave signal is smoothed with the same filter used to split the 
cardiovascular signal. 

3- 2- Feature Extraction
The optimal size of the time window extracted in the features 
is an important issue in real-time stress monitor-ing. For a real-
time application, the time window for anal-ysis and processing 
should be as small as possible. How-ever, the amount of 
information for recognizing stress decreases as the window size 
decreases. Most of the previous studies used a long-term time 
window (about or longer than 1 minute) for stress detection. 
As shown in   recent papers[18], reducing the length of the 
time window to 17 seconds did not decrease the accuracy of 
detection stress by features mean and standard deviation of HR 
and GSR signals significantly.
In polygraph study, usually about 20 seconds, elapses between 
each stimulus to allow sufficient time for the different latencies 
of the various measures (including PPG and GSR signals) 
being recorded. According to this prin-ciple, we select 20s 
time window for feature extraction. Indeed, a virtual stimulus 
(internal or external stimulus) is assumed at the beginning of 
the window and reaction to that stressful stimulus (does not last 
more than the 20s) is computed. In order to sweep the time of 
a trail, 1s time step between each window is chosen. Thus, the 
windows have 19s overlap. 
A set of features is defined according to the former studies, 
which used PPG and GSR signals for stress recognition. In 
[21], these two signals were used to detect deception through 
the interview questions with the 20s interval between each 
question. 33 features from 441 features set were extracted by 
step method. These features are defined based on percentiles, 
time to percentiles and percentiles crossing. Since these 
features are aimed to discover the reaction of subjects to 
relevant questions or in other words, the stress of subjects to 
these questions can be used to determine stress level in a real-
time way. Features 1-25 in Table 3 present these features. In 
[22] only one feature is extracted from each signal to determine 
the amount of reaction to different questions (feature 28 and 
30). In many studies with the aim of stress detection in different 
conditions, features 26-34 were used but the time window for 
feature selection was at least 1 minute. According to the 20 
seconds time window criterion, some of the features used in 
the former studies are not used in this paper. For example, the 
number of GSR peak in 20 (sec) could not exceed three peaks. 
Thus, this feature does not have a significant difference in 
different windows.
In order to select a set of proper features from features 
reported in Table 3, correlation analysis is used. The proper 
features are those that have a significant correlation with the 
expected output of the model. The expected output of the 
model for the experimental data collected   with Procedure 
1 is shown in Fig. 4. Since different features have different 
values, all features are normalized between 0-1 according to 
the expected output. The features with significant correlation 
are marked with symbols * in Table 2.

Fig. 2. The data collection unit and its sensors (PPG and GSR).

Fig. 3. The phases of experiment with procedure 1. 
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Each test is divided into the windows with the length 20s and 
1s time step. Therefore, if a test lasts 600s, it is divided into 600 
windows. We used the features of half of all windows of nine tests 
(about 30% of all data) with procedure 1 as train data in feature 
selection stage and training the model. These windows were 
chosen stochastically and removed from test data. Thus other data 
(about 70% of all data) were used   neither in the feature selection 
nor training the classifier and considered as test data.

3- 3- Model
To combine the selected features, a linear regression model 
is suggested. Label 0 and 1 are used for relaxation and stress 

phase, respectively to train the model. 
To smooth the output signal, a moving average, de-fined as the 
mean of each window with five former win-dows is applied on 
the output of the model.

4- Results
We investigated the performance of the model in recog-nizing 
stress state, relatively and absolutely. To evaluate the ability of 
the model in tracking the stress level rela-tively, the output of 
the model for each test was plotted. Fig. 5 shows such plots for 
two tests. As these figures (and other plots) show, the output of 
the model represents the relative stress level, perfectly.

N Feature Symbol Time Processing  Signal
1. 85th percentile* DA85th 1.5 - 9.5 Derivative Cardio Tach
2. 90th percentile* DA90th 1.5 - 9.5 Derivative Cardio Tach
3. 95th percentile DA95th 1.5 - 9.5 Derivative Cardio Tach
4. Time to 45th percentile DT45th 1.5 - 9.5 Derivative Cardio Tach
5. Maximum DAM 1.5 - 9.5 Derivative Cardio Tach
6. Time to maximum DTM 1.5 - 9.5 Derivative Cardio Tach
7. 55th - 45th percentiles DA45-55th 1.5 - 9.5 Derivative Cardio Tach
8. 90th - 85th percentiles DA90-85th 1.5 - 9.5 Derivative Cardio Tach
9. Time between 50th and 25th Percentiles DT50-25th 1.5 - 9.5 Derivative Cardio Tach
10. 65th percentile* A65th 1.5 - 9.5 Cardio Tach
11. 70th percentile* A70th 1.5 - 9.5 Cardio Tach
12. 75th percentile* A75th 1.5 - 9.5 Cardio Tach
13. 80th - 75th percentiles T80-75th 1.5 - 9.5 Cardio Tach
14. 80th percentile A80th 1.5 - 9.5 Cardio Tach 
15. Time to 50th percentile T50th 1.5 - 9.5 Cardio Tach
16. Time between 95th and 5th Percentiles T95-50th 1.5 - 9.5 Cardio Tach
17. Minimum Am 1.5 - 9.5 Cardio Tach
18. 85th - 75th percentiles A85-75th 1.5 - 9.5 Cardio Tach
19. 85th percentile A85th 1.5 - 9.5 Cardio Tach
20. 70th percentile A70th 1.5 - 9.5 Cardio Tach
21. 65th - 15th percentiles* GA65-15th 1.5 – 20 GSR
22. Time between 75th and 50th Percentiles GT65-15th 1.5 – 20 GSR
23. Time to 35th percentile DGT13th 3 – 10 Derivative GSR
24. Time to 50th percentile DGT50th 3 – 10 Derivative GSR
25. Time between 75th and 50th Percentiles DGT50th 3 – 10 Derivative GSR

26. Power in low Frequency band (0.1-
0.15Hz) * LFE 0.5 – 20 FFT PPG

27. Power in low Frequency band (0.15-
0.3Hz) * HFE 0.5 – 20 FFT PPG

28. amplitude of the largest increase* GAM 0.5 – 20 PPG
29. Line Length* PLL 0.5 – 20 PPG
30. Mean of Peak to Peak* mPtop 0-20 PPG
31. Mean* Mgsr 0-20 GSR
32. Standard deviation* Vgsr 0-20 GSR
33. Mean* Mgsrn 0-20 Standardization GSR
34. Standard deviation* Vgsrn 0-20 Standardization GSR

Table 2. Features set. The selected features are indicated with * symbol.
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In addition, we normalized the output of the model for each 
test, between 0 and 1 and calculated the Pearson’s correlation 
coefficient between the observed output and the expected output 
of the model (Fig. 4). Table 3 shows the Pearson’s correlation 
coefficients for all tests. Correla-tion is significant at the 0.01 
level (2-tailed) for all tests.
To evaluate the performance of the model in represent-ing the 
absolute value of stress level, a threshold based on the training 
data is chosen to separate the stress and relaxation phases. Then, 
two methods, quantitative and qualitative analyses are used. In 
the quantitative method, the value of the output is compared 
to the threshold value and based stress or relaxation phase is 
labeled true or false. The data of neutral phase is not important in 
this analysis. In the qualitative method, a person investigated the 
plots and scored them between 0-3 based on a good separation 
of stress, and relax phase by the threshold and a good transition 
to neutral phase. The results are shown in Table 3. 

A comparison between our results and those   of former studies 
in the literature is provided in Table 4. These re-sults highlight 
the improvement achieved in this paper in comparison to other 
approaches. Although, the stress de-tection rate is about the 
average of other approaches, the improvements in term of 
continuous representation of stress (both in time and in level) 
and the number of physiological signals involved are the 
special improvements of this paper.
As Table 3 illustrates, the correlation between the ex-pected 
output and the observed output is highly significant for all 
tests. However, the accuracy of classifying is low in some 
of the tests. For example, Pearson’s coefficient for test 16 is 
0.882 while the accuracy of classifying is 50%. Fig. 6 shows 
the output of the model for this test. The output signal tracks 
stress state correctly, but in comparison with the threshold, all 
samples are under the threshold line and classified as relaxation 
categories.

Fig. 4. The expected output of the model for the tests with procedure 1

Table 3. The results of evaluating the model in represent-ing 
stress level absolutely (quantitative and qualitative analyses) 

and relatively (coefficient)

Fig. 5. The output of the model for two tests with proce-dure 1

Fig. 6. Comparison of the output of the model for test 16 and 
threshold obtained from the training data

Test Pearson’s 
coefficient

Qualitative 
method 
from 3

Quantitative 
method 

from 100%
1. 0.901 3 98%
3. 0.817 2 68%
5. 0.882 3 95%
7. 0.854 2 81%
9. 0.912 3 97%
11. 0.935 3 96%
13. 0.806 2 58%
15. 0.765 3 80%
17. 0.866 2 64%
19. 0.945 3 94%
21. 0.812 3 80%
23. 0.931 3 91%
25. 0.901 3 86%
27. 0.810 1 41%
29. 0.892 2 85%
31. 0.882 2 50%

0.870 2.5 79%
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Fig. 7 depicts the distribution of all data (train and test data) 
in relaxation and stress phases with procedure 1. Gaussian 
curves fitted to the density distributions are plot-ted in this 
figure. T-test analysis shows the difference be-tween two 
phases is significant.
Table 5 shows the mean, mode, maximum, minimum and 
standard deviation of data for two phases.

For all subjects who participated in Procedure 2, a de-creasing 
trend, representing relaxing during the time, was observed 
in the model output. The subjects illustrated that animation 
changed with their states real time.

5- Conclusion 
In this paper, a new model for real-time tracking the stress level 
was introduced. This model is proper for stress recognition, 
especially in biofeedback application for an-nouncing subjects 
about their stress level in real-time. A set of 34 features was 
defined in 20s time windows by 1s time step. The optimized 
features were selected by the correlation feature selection 
method and were combined by the linear regression model. 
Evaluating the output of the model showed that the model 
can represent relative stress level accurately. The mean of 
Pearson’s correlation coefficient between the expected output 
and the normal-ized observed output of the model for all tests 
with Proce-dure 1 (including relaxation and stress phases) was 
87%. In addition, according to the self-report of subjects and 
observation of the decreasing trend of the output signal during 
the relaxation exercise (Procedure 2) the output of the model 
provided a proper feedback of the subject’s state 

References Physiological signals continues/phasic Accuracy  discrete/ 
continues output population

[7] BVP, ECG, RESP, EEG and 
EMG phasic 62.2-88.2 discrete NA

[8] GSR, ECG, ST, RESP phasic 62.2-68.2 discrete 22

[11] ECG, EMG, GSR, and 
RESP phasic 97.4 discrete NA

[12] BVP, GSR, PD phasic 57.14-80 discrete 6

[1]
HRV, ST, GSR, PD and 
other physical signals 

(gaze, head move, facial 
expressions, …)

continues 86.2 continues 5

[13] GSR, BVP, PD, and ST phasic 78.65-90.14 discrete 32
[3] HR, GSR, EMG, RESP phasic 65.46-85.46 discrete 16

[15] GSR, ECG, RESP, 
HR,EMG phasic 85.6-90.53 discrete 16

[18] GSR, HR phasic 86.3-99.5 discrete 80
This Paper GSR, HR continues 87.0 continues 16

Table 4. The comparison of the proposed model’s characteristics and results with those of the former studies

Fig. 6. Comparison of the output of the model for test 16 and 
threshold obtained from the training data

Table 5. Statistic parameters of Gaussian curves fitted to density 
distributions for model’s outputs in two phases (stress and relaxation)

Fig. 7. Distribution of the model output for all data with 
procedure 1 in relaxation (dashed green line) and stress (dashed 
red line) phases. Gaussian curves fitted to density distributions 

are shown for two phases (red: stress and green: relaxation).

Parameter Mean Median Min max Std
Stress 
phase 6.8304 6.6594 -6.4620 15.2423 2.3742

Relaxation 
phase 2.5622 2.8984 -8.8662 9.9358 2.3615
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Increasing the output of the model during the neutral phase 
of Procedure 1 (before starting the stressful stimu-lus) was 
an interesting phenomenon in our observations. Indeed, the 
expectation of a stressful event may lead to increasing the stress.
The classifier accuracy in categorizing the data of stress and 
relaxation phases was 79%. It should be noted that measuring the 
absolute value of human stress with gener-alization capability 
is difficult, according to large inter-subject and inter-situation 
variation in physiological re-sponses. Previous studies [8, 23] 
have shown that the changes in physiological measurements are 
more indica-tive of the mental states’ transition than the absolute 
measurement values. Thus, a few former studies proposed the 
use of the neutral state of the subject to overcome this challenge. 
Our suggestion to improve the model in measuring the absolute 
value of stress for a specific person is performing a pretest with a 
protocol, including the highest stress and relaxation experiences 
by the subject, and retraining the model with this data. In this 
way, we can personalize the model for each subject.
Finally, the proposed model has the capability to re-place 
by single bio signal analyses, which are used in cur-rent 
biofeedback systems, by making the interface be-tween 
the output of the model and proper animation games for 
relaxation exercises (an example of this work is performed in 
Procedure 2 of our experiments). 
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