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ABSTRACT: This paper provides a review of deep learning-based methods for fault diagnosis of 
electrical motors. Electrical motors are crucial components in various industrial applications, and their 
efficient operation is essential for maintaining productivity and minimizing downtime. Traditional fault 
diagnosis methods have limitations in accurately detecting and classifying motor faults. Deep learning, a 
subset of machine learning, has emerged as a promising approach for improving fault diagnosis accuracy. 
This review discusses various deep learning methods, such as convolutional neural networks, recurrent 
neural networks, autoencoders, transfer learning, and transformers that have been utilized for motor fault 
diagnosis. Additionally, it examines different datasets and features used in these methods, highlighting 
their advantages and limitations. The paper also discusses challenges and future research directions in 
this field, such as data augmentation, transfer learning, and interpretability of deep learning models. 
Based on the findings, it is concluded that deep learning-based technologies are replacing manual expert 
involvement as the new norms in this field. Besides, methods are getting more standard, and official 
benchmarks are being created. A summarized table is provided at the end of the paper and numerous 
methods have been reported.
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1- Introduction 
Electrical motors play a pivotal role in various industrial 

applications, ranging from manufacturing and transportation 
to energy production and robotics. These motors are crucial 
components that drive the machinery and systems, ensuring 
smooth operations and productivity. However, over time, 
electrical motors are susceptible to various faults and failures, 
which can lead to significant downtime, costly repairs, and 
potential safety hazards. Effective fault diagnosis and early 
detection of these issues are paramount to maintaining the 
efficiency and reliability of motor-driven systems. While fault 
detection is the process of detecting the presence of a fault, 
fault diagnosis is more comprehensive than fault detection 
and it aims to identify the nature and source of the fault. 
Both are vital for motor reliability and safety, particularly 
in sensitive applications such as aerospace and automotive 
operations.

Deep learning (DL) has had a significant impact on almost 
every industry. One of the fields that has been significantly 
impacted by it is control engineering. DL is now regarded as 
one of the most advanced branches of artificial intelligence. 
In contrast to traditional machine learning algorithms, which 
require the feature to be extracted manually, this task can 
be performed automatically. As an example, convolutional 
neural networks (CNNs) begin with a convolution layer 
that serves as a feature extraction tool [1]. Because of this 

powerful mechanism, 1D CNN can handle noisy signals, 
because it only captures the necessary information and thus 
omits the unwanted data.

Utilizing deep learning methods in fault diagnosis and 
fault severity monitoring is one of the latest available trends. 
Fault diagnosis methods can be divided into three main 
categories: model-based, signal-based [2], knowledge-based, 
and hybrid fault diagnosis methods [3]. Among these methods, 
knowledge-based methods are the ones that utilize AI-based 
algorithms [4]. It should be mentioned that knowledge-based 
methods are also referred to as data-driven methods. The 
fundamental goal of this paper is to examine the most recent 
knowledge-based studies, particularly those that used deep 
learning. Other studies that use model-based and signal-based 
paradigms are reviewed for comparison reasons.

Artificial intelligence and machine learning methods do 
not have many of the difficulties and problems of conventional 
analytical methods. In deep learning methodology, the 
equations and system parameters do not affect the performance 
of the algorithm. The most crucial part is the data i.e., inputs 
and outputs of the system. For example, in fault detection, 
the inputs can be in the range of different motor current 
frequencies, and the output can only be labeled as a fault 
occurring. What is important in the machine learning process 
is that the need for analysis is significantly reduced. If the 
network is properly trained, the feature extraction process is 
done in successive layers in a completely automated manner. 
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Particularly, in the current frequency example, the network 
learns which frequencies change when a fault occurs. If the 
process is done manually by a field expert, it will be very 
complex and time-consuming. 

Deep learning networks have a substantially higher 
computational cost than other analytical methods due to their 
inherent complexity. A trained network consumes a large 
amount of memory space, which in many cases exceeds 
the entire microcontroller memory, making most methods 
practically impossible to implement. On the other hand, 
the method’s comprehensiveness is important. Almost all 
classical fault diagnosis methods were designed for a certain 
state or type of fault. Linear or nonlinear load, motor power 
range, and simultaneous fault diagnosis are all conditions that 
are only partially supported by any conventional method. DL, 
on the other hand, has the capacity to consider all of them. 
It replaces the if/else structure found in traditional methods. 
Instead of addressing all of the different modes analytically 
in the method, a fault diagnosis model that contains all of the 
specific states can be constructed by gathering data containing 
the above states and training the network with them.

Numerous direct and indirect fault detection methods 
based on machine learning have been proposed thus far. 
AI-based fault diagnosis methods are not limited to only 
electrical machines. There are various papers reporting 
fault diagnosis of different components of power systems, 
as seen in [5], where fault diagnosis of high voltage circuit 
breakers is investigated. However, here we only limit the 
scope of the paper to fault diagnosis of electrical machines. 
First, a brief introduction to deep learning is provided. Then a 
comprehensive review of the most recent works on electrical 
machine fault diagnosis is presented, covering a wide range 
of fault types. This review concludes that deep learning is 
the dominant trend in the scientific literature. Similar to 

the computer vision and natural language processing fields, 
official datasets and benchmarks are established. The well-
known motor bearing dataset from Case Western Reserve 
University (CWRU) [6] is an example.

2- Deep Learning Introduction
Traditionally, machine learning algorithms largely depend 

on the features of the input dataset. In other words, the ability 
of the field expert in feature extraction is one of the key 
factors in the performance of the classifier, not the algorithm 
itself. This procedure is not only prone to human errors but 
also needs its preprocessing procedure for every different 
problem. According to [7], this procedure has been illustrated 
in Fig.  1. It can be seen that the feature extraction module can 
be implemented in the following three ways: Hand-crafted, 
automatic learning, and hybrid. However, this procedure 
was revolutionized by the advent of deep learning methods. 
Deep learning, at its core, tries to replace hand-crafted feature 
extraction algorithms with automatic ones.

Deep learning networks were developed initially as a 
response to this demand for automatic feature extraction. The 
majority of the architectures in fault diagnosis fall under the 
category of convolutional neural networks (CNN). Whether 
the raw signals are used or 1D to 2D preprocessing is used, 
the CNNs can be either 1D or 2D. A simple 1D CNN with 
two input channels is demonstrated in Fig. 2. Consecutive 
windows of a signal are extracted and undergo convolution 
operation with a specific filter size. Note that although only 
one convolution layer is shown

in Fig. 2, usually several back-to-back convolution layers 
are utilized in the networks. After the convolution layers, 
pooling layers are used to reduce the size of feature maps. 
Then the resultant vectors are fed into a fully connected 
artificial neural network for the classification part.

 

Fig. 1. Feature extraction methodologies in classification problems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Feature extraction methodologies in classification problems
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Convolution can be best explained through a discrete 2D 
example. A Simple 2D convolution has been explained in [8] 
and shown in Fig. 3. In this simple example, a 2x2 Kernel 
moves over an image. The result for each position of the 
Kernel is the sum of products of numbers that are placed in the 
same location. In the above-mentioned example, convolution 
results have been depicted for the 6 different positions of the 
Kernel.

Most of the time, signals are augmented with noise to 
make the model more robust and prevent overfitting. In 
terms of 1D input signals, this noise augmentation is usually 
reported with a signal-to-signal-to-noise (SNR) ratio. Noise 
augmentation of two signals with three levels of SNR is 
shown in Fig. 4. This method not only increases the number 
of samples, it also teaches the network to denoise the input 
and extract the relevant features.

3-  Faults in Electrical Motors
3- 1- Electrical Faults
3- 1- 1- Stator/rotor winding short circuit

Most following reported faults fall under the category 
of interturn short circuit fault (ISCF). However, phase- to-
ground and phase-to-phase faults can also be observed. In 
model-based fault diagnosis methods, some performance 
aspect of the machine is estimated. This estimated value 
can be a system state or a parameter. Either way, the fault 
is detected via the difference between the estimated output 
and the measured output [3]. Mathematical modeling of the 
system is a requirement in this type of diagnosis. The Kalman 
filter is utilized in

[9] for ISCF diagnosis of switched reluctance motors. 
The proposed method belongs to the class of model-based 
methods. In addition to the state vectors, the Kalman filter 

 

Fig. 2. Structure of a 2-channel, 1D convolutional neural network (1D-CNN) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Structure of a 2-channel, 1D convolutional neural network (1D-CNN)

 

Fig. 3. 2D Convolution operation in discrete format [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. 2D Convolution operation in discrete format [8].
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estimates phase resistance. The difference between the 
estimated phase resistance and the phase resistance in normal 
operating conditions, referred to as the residual signal, is 
used to diagnose the fault. It has been demonstrated that 
the increase in the residual signal is considerably greater in 
ISCF occurrence than the increase in sudden load changes. 
A time-efficient equivalent circuit for ISCF diagnosis of 
PMSMs [10], ISCF diagnosis of PMSM using moving 
horizon observer [11], ISCF diagnosis using zero sequence 
voltage [12], the weighted linear combination of three-phase 
currents for ISCF diagnosis of BLDC motors [13], measuring 
six impedances in a stationary d-q plane of induction motors 
(IMs) [14], measured torque’s DC offset for five-phase 
interior PMSM [15], and extended Park’s vector approach 
(EPVA) modeling of PMSM [16] are among other model-
based methods reported in the literature.

Flux monitoring as a promising fault diagnosis tool with 
low false alarms is suggested in the literature [17], [18]. 
Gyftakis et al. have focused on low-severity ISCF of IMs, 
which is a more challenging task compared to high-severity 
cases [19]. It has been stated that most classical diagnosis 
methods are not sensitive enough to detect low-severity 
scenarios. The method is visualized in Fig. 5, whereas the 
fault severity increases, the locus of stray flux components 
becomes more elliptical.

A support vector machine (SVM) classifier is used in [20] 
to detect ISCFs in inverted-fed induction motors. As input 
features, the Euclidean norms of the wavelet coefficients of 
the three-phase currents are selected. It has been reported that 
when the fault severity grows, the Euclidean norm for the 
faulty phase rises. The approach has high sensitivity and can 
identify ISCF faults with as little as 350 mA of fault current.

 

Fig. 4. 1D noise augmentation of two signals with three different SRN levels 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. 1D noise augmentation of two signals with three different SRN levels
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Fig. 5. Full-load (left) and no-load (right) fundamental component of stray flux for healthy motor (black), 0.25 fault index 

(blue), and 0.5 fault index (red) [22]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Full-load (left) and no-load (right) fundamental component of stray flux for healthy motor (black), 
0.25 fault index (blue), and 0.5 fault index (red) [22].

One of the less explored topics in the literature is the 
location of the defective stator winding. Two support vector 
machine (SVM) models have been proposed in [21], focusing 
on faulty phase detection in ISCF and phase-to-ground faults. 
The method primarily relies on stator current signature 
analysis (SCSA), but the extracted signatures use Stockwell 
transform decomposition. This indicator has only ever been 
used to identify faults. Using this indicator, the fault type 
(ground fault or turn fault) is identified, and the faulty phase 
is then detected using the SVM model. The three-phase 
currents’ standard deviation for a particular bandwidth serves 
as one of the SVM classifier’s features. Zero sequence current 
has been employed as the indicator to identify ISCF from 
phase to ground fault. Other similar methods with manually 
extracted features are reported in [22]–[25]. SCSA is also 
used for rotor asymmetry fault detection in wound rotor IMs 
and has been shown that it can provide higher resolution 
and lower computational complexity in comparison to Fast 
Fourier Transform (FFT)-based approaches [26].

An algorithm for ISCF diagnosis of brushless doubly 
fed induction motor (BDFIM) based on power winding 
current spectrum has been proposed in [27]. There are two 
magnetically coupled stator windings in a brushless doubly-
fed induction machine BDFIM: power winding (PW) and 
control winding (CW). By monitoring a specific set of 
frequency components in the PW current spectrum, ISCF in 
either PW or CW can be identified. The proposed method 
is only suitable for the steady-state operation of the motor. 
Signal-based indicators such as leakage flux-linkage [28] and 
DC offset of measured torque [15] are among other noticeable 
studies.

Wang et al. [29] suggested an auto-encoder with a 
softmax classifier for detecting ISCF. Multiple time steps of 
three-phase currents are fed into the AE. The classifier’s input 
features are obtained from one of the AE’s hidden layers, 
which contains two neurons. It has been stated that the model 
requires less data and processing resources than CNNs or 
Deep Belief Networks (DBN).

An emerging trend in ML is federated learning (FL). In an 
FL setting, a single model is trained on multiple distributed 
nodes. Then each node’s parameters are sent back to a 
central server, where a global model is generated using these 
distributed models. This process is done without accessing the 
data on each node. The process is shown in Fig. 6. In terms of 
fault diagnosis, it helps with the problem of unbalanced data. 
We can deploy a model on multiple fault diagnosis systems 
and train locally on them. Then we can aggregate these 
models on a central server. In a way, this model is trained on 
multiple datasets, so it has a high generalization ability. This 
approach is investigated in [30], in which a Siamese network 
is trained on multiple nodes for ISCF fault diagnosis.

3- 1- 2- Drive system faults
Although fault diagnosis of the drive system is not in the 

scope of this paper, it should be mentioned that learning-based 
methods are also used in that area. The pattern of incipient 
fault in the inverter switches of inverter-fed induction motors 
has been investigated in [31]. The method, just like any other 
learning-based method, has been tested against parameter 
variance and different load situations. The method can 
identify the location of the faulty switch in a three-legged 
inverter. The mean current vector has been used as the main 
time-domain feature and the SVM has been selected as the 
classifier.

3- 1- 3- Hall effect sensor
Fault diagnosis in the hall effect sensor of BLDC motors 

and reconstructing them has been implemented in [32]
the fault tolerant control (FTC. A counter system has been 
proposed for the fault detection of the sensor. The counter 
resets every time one of the hall effect signals changes. The 
counter increments with a sampling rate much higher than 
the commutation rate. If the counted samples of one state are 
less or more than a threshold, the fault is identified. Then, 
the faulty sensor signal is reconstructed, and the motor can 
continue its operation without any interruption.
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3- 2- Magnetic Faults
Local demagnetization fault diagnosis is another less 

investigated topic. In [33], this topic is investigated in linear 
PMSMs. B-emf has been selected as the fault indicator signal. 
The high-level features of the time-frequency representation 
of the b-emf signal have been extracted with S-Transform. 
The 14 fault types have been classified with the modified 
version of the SVM algorithm.

3- 3- Mechanical Faults
Mechanical fault diagnosis is attributed to a wide area 

of faults. This paper covers the broken rotor bars, gear and 
bearing faults, and rotor eccentricity faults.

3- 3- 1- Broken Rotor Bars
Induction motor stray flux monitoring has been suggested 

as a method [34].  This method depends on the placement of 
Hall-effect sensors on some external coils. Using a frequency 
spectral subtraction analysis method, the method can identify 
rotor bar breakage faults in both adjacent and non-adjacent 
bars. According to [35],the Hall-effect signal’s statistical 
(time-domain) features and FFT features have both been 
used to diagnose the broken rotor bars fault. This method 
can function well in low slip ranges and does not rely on slip 
estimation, in contrast to conventional analytical diagnosis 
methods like motor current signature analysis (MCSA). 
Additionally, it has been claimed that the proposed method 
requires significantly fewer samples than MCSA, which 
results in lower memory needs and computational constraints.

The MCSA is the standard algorithm used in broken rotor 
bar fault detection. One of the problems with this approach 
is that the signature frequency components appear in low 
frequencies, mostly near the fundamental component. This 
is the reason that a rather long time window is needed for 
calculations of these low-frequency components. A more 
lightweight solution to this problem has been proposed in 
[36].In the proposed method, first, the complex envelope of 

the current signal has been calculated using a Taylor-Kalman 
filter. Then, the signal envelope has been downsampled and 
fed to another Taylor-Kalman filter, which is responsible 
for calculating the amplitude and frequency of the fault 
components. Every stage is only responsible for one 
frequency component, so it has been stated that this method 
can perform much faster than the traditional one.

The distinction in the method has been suggested in [37], 
in which the transient mode of the fault indicator signal has 
been analyzed, instead of the steady-state mode. It has been 
claimed that the patterns appearing in the transient mode are 
unique to the fault phenomena, and do not appear in non-
faulty scenarios. As a result, false detections can be prevented. 
Measurements of three coil sensors have been used for the 
fault indication.

Multivariate relevance vector machine (MRVM) has been 
proposed in [38]a multivariate relevance vector machine with 
multiple Gaussian kernels (MKMRVM as the BRB fault 
classifier. The supported fault states are healthy, 1 broken 
rotor bar to 4 broken rotor bars and the fault indicator signal 
is stator current. Similar to the SVM, Kernel parameters are 
crucial in the performance of the classifier, so an intelligent 
optimization method called the Levy fight mechanism is used 
for Kernel parameter optimization. Since each dimension of 
the features vector has its own Kernel parameter, the proposed 
method shows competent accuracy.

3- 3- 2-  Gear faults
A CNN-based gear fault diagnosis method has been 

presented in [39]. Unlike other deep learning-based methods, 
a shallow neural network (one convolution layer and one fully 
connected layer) has been selected. Vibration, torque, acoustic 
pressure, stator voltage, and stator current are the signals that 
have been considered as the fault detection features. The 
reason behind the selection of a shallow network is explained 
using the class manifolds. In other words, it has been shown 
with only three types of gear faults, the geometry of data is 

 

Fig. 6. Overview of ISCF diagnosis under FL framework [32]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Overview of ISCF diagnosis under FL framework [32].
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already well separated and no deep representation is needed 
for classification.

3- 3- 3- Bearing faults
The most naive methods in this section start with [40], 

where every time sample of the vibration signal is used as 
the input nodes of a deep stacking network. The labels are 
encoded into binary values to make them sparser and avoid 
overfitting.

More sophisticated studies use preprocessing methods 
such as Kernel local characteristic-scale decomposition 
(KLCD) to stationary wavelet packet transform (SWPT) in 
their framework. In [41], the raw vibration signal has been 
fed to the Kernel local characteristic-scale decomposition 
(KLCD) method, which decomposes the signal into multiple 
intrinsic scale components (ISC). The envelope spectrum 
of these components has been fed to the extreme learning 
machine (ELM) classifier. In [42], optimized SWPT (Op-
SWPT) is applied on the stator current because of the low 
required sampling frequency. Artificial immune system (AIS) 
nested within support vector machines (SVM) was chosen as 
the classifier.

Principal component analysis (PCA) is a very popular 
feature extraction methodology in this type of fault [43]–[45]. 
In [43], the fault is diagnosed by applying PCA on multiple 
signals such as vibration, temperature, and shaft speed. The 
proposed method not only detects the fault by screening 
the PCA-extracted features but also identifies the signal 
responsible. In [44] and [45], PCA is applied to the spectral 
kurtosis and space-mapped versions of the vibration signals 
to reduce the dimensionality. Manifold learning is another 
methodology that is used by Zhao et al. [46] to learn a low 
representation manifold of different fault patterns and reduce 
dimensionality.

In [47] and [48] raw vibration signals are converted to 
images using the short-time Fourier transform (STFT). STFT 
is a non-stationary, time-frequency analysis method suitable 

for transient regimes [49]. Then the inputs are classified using 
a transformer neural network. The proposed methods need a 
1D to 2D image transformation. It should be noted while 2D 
transformation has its benefits in transfer learning and using 
pre-trained image networks, it will complicate the method and 
add more computational complexity to the model. 1D models 
are extremely beneficial in terms of both the training and the 
inference time. So, they can also be used in real-time fault 
diagnosis. In [50], and [51]  raw vibration and current signals 
have been used respectively, and no 1D to 2D transformation 
is used. The former proposes bearing fault diagnosis while the 
latter is focused on ISCF diagnosis. Hoseintabar Marzebali et 
al. [52] proposed using both LSTM and 1D CNN as back-
bone models for feature extraction of raw current signals. 
The resultant feature vector and a softmax classifier show an 
accuracy of 95.8% for bearing fault diagnosis.

Lu et al. [53] proposed the use of a well-known AlexNet 
network in bearing fault diagnosis. With the help of transfer 
learning, the parameters of the first few layers of AlexNet are 
kept constant, while the last nine layers of the network are 
trained specifically for this task. 1D to 2D transformation of 
vibration signals have been with Non-Uniform Fast Fourier 
Transform (NFFT) with Hamming window. As a result, 
spectrograms (RGB images) have been generated from 
vibration signals.

As deep learning models used in fault diagnosis continue 
to increase in complexity, processing predictions on edge 
devices becomes impractical. This is precisely where IoT-
based methods come to play. Two IoT-based fault diagnosis 
methods have been presented in [54], and [55]. In multi-source 
methods such as[54], leakage flux and vibration have been 
down-sampled and mixed, while in [55] only the vibration 
signal is compressed before transmitting. Then, the received 
signal can be separated and processed to detect bearing 
faults. Bluetooth and LoRa are the preferred communication 
technologies selected by the authors. An overview of these 
methods is illustrated in Fig. 7.

 

Fig. 7. Schematics of the IoT-based fault diagnosis methods proposed in [55] using Bluetooth (a) and [54] using LoRa (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Schematics of the IoT-based fault diagnosis methods proposed in [55] using Bluetooth (a) and [54] using LoRa (b).
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Transfer learning is one of the active topics in the fault 
literature. The motivation behind this is the large size of data 
required in the deep learning models. A transfer learning 
approach for the bearing fault diagnosis has been proposed in 
[56]. The network has been transferred from the well-known 
ResNet network. In addition, a modified distance metric has 
been introduced so that the Kernel parameter robustness and 
learning efficiency can be achieved. A similar approach with 
ResNet-50 as the model and continuous wavelet transform as 
the preprocessing step is proposed in [57]. 

Auto-encoders have been used for the task of deep transfer 
learning of bearing fault diagnosis in [58]. Three layers of 
autoencoders have been trained separately using the source 
dataset. Then, the classifier has been trained with the source 
dataset. After that, the whole network has been fine-tuned 
using both the source dataset and the target domain dataset. 
This fine-tuning has been utilized by adding the MMD metric 
to the loss function. The present paper uses the famous 
bearing fault dataset of Case Western Reserve University. 

Karnavas et al. [59]have encoded the vibration signal’s 
global and local content into a single feature vector. The 
convolution and attention mechanisms are used to extract the 
local features, while two consecutive dense layers are used to 
extract the global features. The global features are extracted 
in parallel with the former network using two consecutive 
dense layers. Two resulting feature vectors are concatenated 
and fed to the classification network. Validation results on two 
famous bearing datasets of Paderborn University and CWRU 
show more than 99% accuracy for both of the datasets.

3- 3- 4-  Eccentricity
Almost all of the recent studies are either model or 

signal-based. Static eccentricity fault detection of BDFIMs is 
investigated in [60] in which by monitoring a specific set of 
harmonics in the power winding, the static eccentricity fault 
has been detected. Also, the severity of the fault is also evident 
in the magnitude of the proposed frequencies. Masoumi 
et al. [61] proposed two faulty and healthy dq models for 
synchronous generators and used estimated eigenvalues as 
the fault indicators.

3- 4-  Multiple types of faults
The application of machine learning in fault diagnosis 

has enabled the development of systems capable of detecting 
various fault types originating from different sources, 
including electrical, mechanical, and magnetic origins. For 
instance, in induction motors, three common fault types—
broken rotor bars, unbalanced shaft rotation, and bearing 
faults—have been investigated in [62]. These studies have 
leveraged methods such as harmonic spectra analysis, 
analysis of variance (ANOVA), and p-value tests to select 
fault indicators, as well as surface fitting for calculating fault 
signatures of untested scenarios. Additionally, the use of 
CNNs has demonstrated superior accuracy when employing 
time-frequency images of vibration signals as input compared 
to traditional time series or Fourier transform approaches 
[63]. This CNN-based method also offers interpretability 
through Layer-wise Relevance Propagation.

For mechanical faults, vibration signals have been 
transformed into images using wavelet transformation, 
coupled with a deep CNN architecture that utilizes low-
level features extracted from the VGG-16 network [64]. The 
efficiency impact of rotor bar failures and bearing faults on 
induction motors has been quantified in [65], highlighting the 
significance of adjacent rotor bar faults. Further investigations 
have extended to other fault types, such as eccentricity, local 
demagnetization, and load unbalance in PMSMs [66].The use 
of analog signals from hall effect sensors has been proposed 
for distinguishing these fault types accurately.

Some approaches, like the one presented in [67], 
have focused solely on the time-domain representation of 
vibration signals for fault detection, demonstrating improved 
performance and lower dimensionality by employing RNN-
based autoencoders. Another study emphasizes the use of 
Sinc convolution, a non-traditional approach, in the first 
layer of a 1D CNN for bearing fault and broken rotor bar 
fault detection, leading to more interpretable feature maps by 
extracting certain frequency components [68].

For signals with varying frequency content over time, 
like non-stationary signals, novel methods like Rational-
Dilation Wavelet Transform (RADWT) have been introduced 
to provide better frequency resolution and improved fault 
detection in various scenarios, including single-phase open-
circuit, bearing, and broken rotor bar faults [69]. The research 
has demonstrated that different fault types can be diagnosed 
by estimating the torque value based on changes in the 
acoustic signal produced by the machine’s output.

In petrochemical units, the transformation of 1D vibration 
time-series signals into 2D images using the Gram matrix 
has been explored for fault detection [70], as shown in Fig. 
8. Additionally, the combination of winding currents and 
vibration signals has been employed in a broad learning 
algorithm [71]. This approach allows for retraining until 
satisfactory accuracy is achieved. A similar broad learning 
method with acoustic and current signals as the input has 
been proposed to facilitate the retraining process [72].

The application of CNNs for BLDC motor fault diagnosis 
has been addressed in various studies, such as [73]. 

For BLDC motors, fault diagnosis has also been achieved 
through a combination of current and vibration signals 
[74]. These studies emphasize feature selection, employing 
methods such as Complete Ensemble Empirical Mode 
Decomposition (CEEMD) to enhance accuracy. Real-time 
diagnosis of demagnetization and bearing faults has been 
proposed, utilizing stator current analysis and comparing the 
performance of wavelet packet transform (WPT) with 1D 
CNNs [75]. Diagnosis of bearing faults and demagnetization 
faults with no additional sensor has been proposed in [76].
The bearing fault has been detected via the DWT of motor 
speed and the demagnetization fault has been diagnosed via 
the kurtosis index of the output of the Hall Effect sensor.

In the context of an oil pump, deep belief networks have 
been used for feature extraction and fault classification based 
solely on current signals [77]. These networks require fewer 
labels and shorter training times compared to traditional 
back-propagation-based networks.
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Model-based strategies have been introduced for fault 
diagnosis, addressing various sensor faults, including speed-
sensor, voltage-sensor, current-sensor, open-phase, and 
open-switch faults [78]. The method leverages harmonic 
content analysis of current signals and other methods such as 
estimation of speed and voltage model-based observers.

To address the issue of dataset distribution differences 
between source and target domains, a regularization term 
has been proposed to align high-level features in CNNs, 
enhancing the fault detection accuracy of transferred models 
[79].

A comparison of different machine learning algorithms 
for induction motor fault diagnosis has been presented, 
highlighting the significance of feature extraction methods 
like discrete wavelet transform and matching pursuit 
[80]. For imbalanced classification scenarios, weakly 

supervised learning has been introduced as an alternative to 
synthetic samples [81], promoting better generalization by 
incorporating unlabeled data [82]. Fig. 9 compares the two 
approaches.

Some more popular criteria have been listed in [83. 
According to that, signature frequencies in different fault 
indicator signals can be summarized in Table 1. Where  is the 
supply frequency,  is a positive integer,  is the number of stator 
slots,  is the number of pole pairs,  is the rotor frequency,  is 
the inner raceway

fault frequency, fORF is the outer raceway fault frequency,  
fBF is the ball fault frequency, fCF is the cage fault frequency, 
DB is the ball diameter, DP is the pitch diameter, NB is a 
number of rolling elements and θ is the ball contact angle. 
Also, a summary of the latest methods/technologies used in 
the literature has been reported in Table 2.

 

Fig. 8. Time-series 1D to 2D transformation using Gram matrix [69]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Time-series 1D to 2D transformation using Gram matrix [69].

 

Fig. 9. A simplified illustration of imbalanced data (a) along with the two solutions: synthetic data generation (b) and labeling 

unlabeled data using weakly-supervised learning [80]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. A simplified illustration of imbalanced data (a) along with the two solutions: synthetic data generation (b) and 
labeling unlabeled data using weakly-supervised learning [80].
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Table 2. A summary of methods used in fault diagnosis of electrical machines

Ref. Signal Motor Method 
Studied Faults 

ISCF PI DMG ECC RC Gear Bearing 

[3] Current PMSM Model-Based (Kalman Filter) ✓       

[9] Current SRM Model-Based (Kalman Filter) ✓       

[10] Unknown PMSM Model-Based ✓       

[11] Unknown PMSM Model-Based (Moving Horizon 
Observer) ✓       

[12] Voltage Unknown Model-Based (Zero Sequence 
Voltage) ✓       

[13] Current BLDC Model-Based (Weighted Linear 
Combination) ✓       

[14] Impedances IM Model-Based (Stationary d-q 
Plane) ✓       

[15] Torque 5-Phase Interior 
PMSM Model-Based ✓       

[16] Unknown PMSM Model-Based (EPVA) ✓       

[18] Airgap and 
stray Flux IM Signal-based, STFT     ✓   

[19] Flux IM Flux Monitoring ✓       

[20] Current Inverted-Fed IM SVM ✓       

[21] Current Unknown MCSA and SVM ✓ ✓      

[22] Current IM MI, DT, MLP ✓       

[23] Flux 
linkage Sync. Gen. RBF, ANN ✓       

[24] Current LSPMSM CNN ✓       

[25] Current LSPMSM ANN ✓       

[26] Current Wound Rotor IM MCSA     ✓   

[27] Current BLDFIM Current Spectrum Analysis ✓       

[29] Current Unknown Auto-encoder with Softmax 
Classifier ✓       

[30] Current Unknown Siamese Network (Federated 
Learning) ✓       

[32] Unknown BLDC Counter System        

[33] B-emf Linear PMSMs S-Transform   ✓     

[34] Hall-effect Induction Motor External Coils with Frequency 
Spectral Subtraction     ✓   

[35] Hall-effect Induction Motor Statistical and FFT Features     ✓   

[36] Current Unknown 
Taylor-Kalman Filter 

(Amplitude and Frequency 
Calculation) 

    ✓   

Table 1. Signature frequencies of different types of faults in electric motorsTable 1. Signature frequencies of different types of faults in electric motors 

Motor Fault type Fault indicator Frequency component 

PMSM 

Inter-turn Current 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑓𝑓𝑖𝑖 (1 ± 𝑘𝑘 𝑧𝑧
𝑝𝑝) 

Eccentricity Current 𝑓𝑓𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 = 𝑓𝑓𝑖𝑖 (1 ± 2𝑘𝑘 − 1
𝑝𝑝 ) 

Demagnetization Current 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑖𝑖 (1 ± 𝑘𝑘
𝑝𝑝) 

Any 

Inter-turn, 3∅ asymmetry Vibration 2𝑓𝑓𝑖𝑖, 4𝑓𝑓𝑖𝑖, 8𝑓𝑓𝑖𝑖 

Bearing Vibration 

𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑁𝑁𝐵𝐵
2 𝑓𝑓𝐼𝐼 (1 + 𝐷𝐷𝐵𝐵 cos 𝜃𝜃

𝐷𝐷𝑃𝑃
) 

𝑓𝑓𝑂𝑂𝐼𝐼𝐼𝐼 = 𝑁𝑁𝐵𝐵
2 𝑓𝑓𝐼𝐼 (1 − 𝐷𝐷𝐵𝐵 cos 𝜃𝜃

𝐷𝐷𝑃𝑃
) 

𝑓𝑓𝐵𝐵𝐼𝐼 = 𝐷𝐷𝑃𝑃
2𝐷𝐷𝐵𝐵

𝑓𝑓𝐼𝐼 (1 − 𝐷𝐷𝐵𝐵
2cos2𝜃𝜃
𝐷𝐷𝑃𝑃

2 ) 

IM Rotor cage Vibration 𝑓𝑓𝐶𝐶𝐼𝐼 = 1
2 𝑓𝑓𝐼𝐼 (1 − 𝐷𝐷𝐵𝐵 cos 𝜃𝜃

𝐷𝐷𝑃𝑃
) 
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Ref. Signal Motor Method 
Studied Faults 

ISCF PI DMG ECC RC Gear Bearing 

[3] Current PMSM Model-Based (Kalman Filter) ✓       

[9] Current SRM Model-Based (Kalman Filter) ✓       

[10] Unknown PMSM Model-Based ✓       

[11] Unknown PMSM Model-Based (Moving Horizon 
Observer) ✓       

[12] Voltage Unknown Model-Based (Zero Sequence 
Voltage) ✓       

[13] Current BLDC Model-Based (Weighted Linear 
Combination) ✓       

[14] Impedances IM Model-Based (Stationary d-q 
Plane) ✓       

[15] Torque 5-Phase Interior 
PMSM Model-Based ✓       

[16] Unknown PMSM Model-Based (EPVA) ✓       

[18] Airgap and 
stray Flux IM Signal-based, STFT     ✓   

[19] Flux IM Flux Monitoring ✓       

[20] Current Inverted-Fed IM SVM ✓       

[21] Current Unknown MCSA and SVM ✓ ✓      

[22] Current IM MI, DT, MLP ✓       

[23] Flux 
linkage Sync. Gen. RBF, ANN ✓       

[24] Current LSPMSM CNN ✓       

[25] Current LSPMSM ANN ✓       

[26] Current Wound Rotor IM MCSA     ✓   

[27] Current BLDFIM Current Spectrum Analysis ✓       

[29] Current Unknown Auto-encoder with Softmax 
Classifier ✓       

[30] Current Unknown Siamese Network (Federated 
Learning) ✓       

[32] Unknown BLDC Counter System        

[33] B-emf Linear PMSMs S-Transform   ✓     

[34] Hall-effect Induction Motor External Coils with Frequency 
Spectral Subtraction     ✓   

[35] Hall-effect Induction Motor Statistical and FFT Features     ✓   

[36] Current Unknown 
Taylor-Kalman Filter 

(Amplitude and Frequency 
Calculation) 

    ✓   
Ref. Signal Motor Method 

Studied Faults 

ISCF PI DMG ECC RC Gear Bearing 

[37] Current Unknown Transient Mode Analysis        

[38] Current Unknown MRVM (Multivariate 
Relevance Vector Machine)     ✓   

[39] Vibration Torque Acoustic Pressure      ✓  

[40] Vibration Unknown Deep Stacking Network       ✓ 

[41] Vibration Unknown KLCD and ELM       ✓ 

[42] Current IM Op-SWPT, AIS, SVM       ✓ 

[43] 
Temperatur

e Speed 
Vibration 

IM DIPCA, RBC, CNN    ✓   ✓ 

[44] Vibration IM SK, PCA, GMM       ✓ 

[45] Vibration IM PCA, DCN       ✓ 

[46] Vibration DC Manifold Learning, Semi-
supervised, MDELM    ✓   ✓ 

[47] Vibration IM STFT, TNN       ✓ 

[48] Vibration IM STFT, ViT       ✓ 

[50] Vibration IM TNN       ✓ 

[51] Current PMSM TNN ✓       

[52] Current IM LSTM, 1D CNN       ✓ 

[53] Vibration IM AlexNet, TL, NFFT       ✓ 

[54] 
Vibration, 
Leakage 

flux 
PMSM SEC, IoT       ✓ 

[55] Vibration BLDC SEC, IoT       ✓ 

[56] Vibration IM Regularized TL, ResNet-50       ✓ 

[57] Vibration IM CWT, fine-tuned ResNet-50       ✓ 

[58] Vibration IM AE, TL       ✓ 

[62] Various IM Harmonic Spectra Analysis    ✓ ✓  ✓ 

[63] Vibration IM CNN with Time-Frequency 
Images    ✓    

[64] Vibration IM DWT, fine-tuned VGG-16    ✓ ✓  ✓ 

[67] Vibration BLDC RNN-AE    ✓    

[68] Vibration IM Sinc Convolution, 1D CNN     ✓  ✓ 

[69] Acoustic IM RADWT     ✓  ✓ 

Ref. Signal Motor Method 
Studied Faults 

ISCF PI DMG ECC RC Gear Bearing 

[3] Current PMSM Model-Based (Kalman Filter) ✓       

[9] Current SRM Model-Based (Kalman Filter) ✓       

[10] Unknown PMSM Model-Based ✓       

[11] Unknown PMSM Model-Based (Moving Horizon 
Observer) ✓       

[12] Voltage Unknown Model-Based (Zero Sequence 
Voltage) ✓       

[13] Current BLDC Model-Based (Weighted Linear 
Combination) ✓       

[14] Impedances IM Model-Based (Stationary d-q 
Plane) ✓       

[15] Torque 5-Phase Interior 
PMSM Model-Based ✓       

[16] Unknown PMSM Model-Based (EPVA) ✓       

[18] Airgap and 
stray Flux IM Signal-based, STFT     ✓   

[19] Flux IM Flux Monitoring ✓       

[20] Current Inverted-Fed IM SVM ✓       

[21] Current Unknown MCSA and SVM ✓ ✓      

[22] Current IM MI, DT, MLP ✓       

[23] Flux 
linkage Sync. Gen. RBF, ANN ✓       

[24] Current LSPMSM CNN ✓       

[25] Current LSPMSM ANN ✓       

[26] Current Wound Rotor IM MCSA     ✓   

[27] Current BLDFIM Current Spectrum Analysis ✓       

[29] Current Unknown Auto-encoder with Softmax 
Classifier ✓       

[30] Current Unknown Siamese Network (Federated 
Learning) ✓       

[32] Unknown BLDC Counter System        

[33] B-emf Linear PMSMs S-Transform   ✓     

[34] Hall-effect Induction Motor External Coils with Frequency 
Spectral Subtraction     ✓   

[35] Hall-effect Induction Motor Statistical and FFT Features     ✓   

[36] Current Unknown 
Taylor-Kalman Filter 

(Amplitude and Frequency 
Calculation) 

    ✓   
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Ref. Signal Motor Method 
Studied Faults 

ISCF PI DMG ECC RC Gear Bearing 

[37] Current Unknown Transient Mode Analysis        

[38] Current Unknown MRVM (Multivariate 
Relevance Vector Machine)     ✓   

[39] Vibration Torque Acoustic Pressure      ✓  

[40] Vibration Unknown Deep Stacking Network       ✓ 

[41] Vibration Unknown KLCD and ELM       ✓ 

[42] Current IM Op-SWPT, AIS, SVM       ✓ 

[43] 
Temperatur

e Speed 
Vibration 

IM DIPCA, RBC, CNN    ✓   ✓ 

[44] Vibration IM SK, PCA, GMM       ✓ 

[45] Vibration IM PCA, DCN       ✓ 

[46] Vibration DC Manifold Learning, Semi-
supervised, MDELM    ✓   ✓ 

[47] Vibration IM STFT, TNN       ✓ 

[48] Vibration IM STFT, ViT       ✓ 

[50] Vibration IM TNN       ✓ 

[51] Current PMSM TNN ✓       

[52] Current IM LSTM, 1D CNN       ✓ 

[53] Vibration IM AlexNet, TL, NFFT       ✓ 

[54] 
Vibration, 
Leakage 

flux 
PMSM SEC, IoT       ✓ 

[55] Vibration BLDC SEC, IoT       ✓ 

[56] Vibration IM Regularized TL, ResNet-50       ✓ 

[57] Vibration IM CWT, fine-tuned ResNet-50       ✓ 

[58] Vibration IM AE, TL       ✓ 

[62] Various IM Harmonic Spectra Analysis    ✓ ✓  ✓ 

[63] Vibration IM CNN with Time-Frequency 
Images    ✓    

[64] Vibration IM DWT, fine-tuned VGG-16    ✓ ✓  ✓ 

[67] Vibration BLDC RNN-AE    ✓    

[68] Vibration IM Sinc Convolution, 1D CNN     ✓  ✓ 

[69] Acoustic IM RADWT     ✓  ✓ 

Ref. Signal Motor Method 
Studied Faults 

ISCF PI DMG ECC RC Gear Bearing 

[70] Vibration IM 2D Transform, Gram Matrix       ✓ 

[71] Acoustic, 
Current IM Broad Learning Algorithm ✓ ✓  ✓ ✓  ✓ 

[72] Acoustic, 
Current IM Broad Learning Algorithm ✓ ✓  ✓ ✓  ✓ 

[73] Vibration BLDC B2LS, 2D CNN    ✓   ✓ 

[74 Current, 
Vibration BLDC CEEMD, ANN ✓    ✓   

[75] Current PMSM WPT, 1D CNN   ✓    ✓ 

[76] Speed BLDC DWT, Kurtosis Index   ✓    ✓ 

[77] Current Oil Pump Deep Belief Networks        

[78] Current PMSM Voltage observer  ✓      

[79] Vibration IM MMD regularized CNN    ✓ ✓  ✓ 

[80] Current, 
Vibration IM Matching Pursuit, DWT, SVM, 

KNN     ✓  ✓ 

[82] Vibration CNC machine Incorporating Unlabeled Data, 
SVM, BGRU        

Abbreviations: PI, phase imbalance, DMG, demagnetization, ECC, eccentricity, RC, rotor cage, SEC, signal 
enhancement and compression, IoT, internet of things, NFFT, non-uniform fast Fourier transform, STFT, short-time 
Fourier transform, ViT, Vision Transformer, MDELM, multi-manifold deep extreme learning machine, DCN, deformable 
convolution networks, GMM, gaussian mixture model, DIPCA, dynamic incremental principal component analysis, MI, 
mutual information, DT, decision tree, MLP, multi-layer perceptron. 

 

 

 

 

 

 

 

 

 

 

 

Ref. Signal Motor Method 
Studied Faults 

ISCF PI DMG ECC RC Gear Bearing 

[3] Current PMSM Model-Based (Kalman Filter) ✓       

[9] Current SRM Model-Based (Kalman Filter) ✓       

[10] Unknown PMSM Model-Based ✓       

[11] Unknown PMSM Model-Based (Moving Horizon 
Observer) ✓       

[12] Voltage Unknown Model-Based (Zero Sequence 
Voltage) ✓       

[13] Current BLDC Model-Based (Weighted Linear 
Combination) ✓       

[14] Impedances IM Model-Based (Stationary d-q 
Plane) ✓       

[15] Torque 5-Phase Interior 
PMSM Model-Based ✓       

[16] Unknown PMSM Model-Based (EPVA) ✓       

[18] Airgap and 
stray Flux IM Signal-based, STFT     ✓   

[19] Flux IM Flux Monitoring ✓       

[20] Current Inverted-Fed IM SVM ✓       

[21] Current Unknown MCSA and SVM ✓ ✓      

[22] Current IM MI, DT, MLP ✓       

[23] Flux 
linkage Sync. Gen. RBF, ANN ✓       

[24] Current LSPMSM CNN ✓       

[25] Current LSPMSM ANN ✓       

[26] Current Wound Rotor IM MCSA     ✓   

[27] Current BLDFIM Current Spectrum Analysis ✓       

[29] Current Unknown Auto-encoder with Softmax 
Classifier ✓       

[30] Current Unknown Siamese Network (Federated 
Learning) ✓       

[32] Unknown BLDC Counter System        

[33] B-emf Linear PMSMs S-Transform   ✓     

[34] Hall-effect Induction Motor External Coils with Frequency 
Spectral Subtraction     ✓   

[35] Hall-effect Induction Motor Statistical and FFT Features     ✓   

[36] Current Unknown 
Taylor-Kalman Filter 

(Amplitude and Frequency 
Calculation) 

    ✓   
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4- Conclusion
This paper provided a review of machine learning-based 

fault diagnosis methods of electrical machines. Recent trends 
in all types of faults (electrical, mechanical, and magnetic) 
have been reviewed. However, attention to some specific 
categories of faults such as stator ISCF or bearing faults is 
much higher than other types. First, a high-level introduction 
to deep learning and the related methods is provided. Then 
the advantages of each method have been stated individually, 
but also an overall analysis is provided as a guide for future 
studies. The following conclusions can be drawn from the 
reviewed literature:

Challenges:
1.Real-time and low-latency prediction: There is a 

significant need for real-time and low-latency prediction. 
Obtaining fast replies in fault diagnosis remains a significant 
problem, particularly in applications such as aerospace and 
automotive, where rapid decision-making is required.

2.Online Learning Capabilities: There is a clear need for 
online learning capabilities. Adapting models, in real-time, 
to dynamic, evolving scenarios is critical for maintaining 
accuracy and relevance in fault diagnosis systems.

3.High-Quality Labeled Data: Obtaining high-quality 
labeled data remains a challenge. Obtaining sufficiently 
annotated datasets that effectively represent the complexities 
of electrical machine faults is a constraint in the advancement 
of machine learning models.

4.Demanding Computational Infrastructure: The 
resource-intensive nature of deep learning models requires 
extensive computational infrastructure. Overcoming this 
obstacle is critical to enable wider use of these advanced fault 
diagnostic systems.

Future research directions:
1.End-to-end methodologies popularity: We 

anticipate a paradigm shift away from manual feature 
extraction and toward methods that require minimal 
expert interaction, automating preprocessing, and 
eliminating the requirement for intermediary signal 
estimate in future investigations.

2.Integration of Multiple Fault Sources: It is worth 
noting the expanding trend of studies focused on fault 
diagnosis from multiple sources (electrical, magnetic, and 
mechanical). Deep learning methods demonstrate the ability 
to identify numerous fault types through current or vibration 
data, paving the way for full fault diagnosis systems.

3.Transfer Learning Advancements: The direction 
toward transfer learning to improve performance and reduce 
computing burden suggests a viable option. Transfer learning 
is a potential solution to increased accuracy on target datasets, 
from using early layers of known vision networks in simple 
approaches to including regularization terms in fine-tuning 
for advanced studies.

4.Synthetic Dataset Generation: There is a significant 
gap in the development of synthetic datasets for fault 
diagnosis. With the emergence of generative AI, there is 

the potential for massive amounts of high-quality data to be 
generated, providing a significant resource for training and 
testing machine learning models across a wide range of fault 
types.
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