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ABSTRACT: This article deals with the design of an adaptive controller for switched non-strict 
feedback nonlinear systems. In the studied system, the switching signal is arbitrary, the states are not 
measurable, and the signs of the control gain functions that describe the control directions are completely 
unknown. First, the unknown nonlinear functions in the switched system are approximated using the 
universal approximation theorem. Then, the unmeasured states are estimated using the linear state 
observer, and the controller is designed through an adaptive back-stepping design procedure. Due to the 
appropriate change of coordinates, 1) neither fuzzy nor radial basis function is used in the design of the 
controller, 2) only one adaptation law is designed to estimate the unknown parameters in the switched 
non-strict feedback nonlinear system, and 3) there is no Nussbaum function in the proposed adaptive 
controller so, the large control signal in the initial stages and the consequent damage to the actuators 
can be prevented. These features can lead to the simplicity of controller design and the reduction of 
computational burden. Therefore, the proposed method can be used for practical systems. The stability 
of the closed-loop system is proved using Lyapunov stability theory. It is shown that, in addition to the 
semi-globally uniformly ultimately boundedness of all closed loop signals, the tracking error converges 
to a small neighborhood around zero. In the end, the efficiency of the proposed control method is 
confirmed through the simulation results of an example.
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1- Introduction
Many technological systems can be modeled by switched 

systems due to their multi-mode property. Hence, the 
motivation for studying the switched systems derived from 
the fact that some practical systems such as networked 
control systems, power systems, and chemical processes are 
inherently multimodal in the sense that several dynamical 
systems are needed to explain their behavior. A switched 
system as a typical hybrid system consists of a limited number 
of subsystems, with a switching law arranging the switching 
between them [1, 2]. The classification of switched systems 
leads to two general categories: event-driven and time-driven 
switched systems. The switching strategy separates these two 
categories [3]. In the event-driven system, the switching law 
is affected by system states satisfying particular predefined 
conditions, while the time-driven systems describe the system 
that is switched according to a time sequence.

In many nonlinear systems, detailed information on 
nonlinear functions describing the structure of the system is 
not available. Hence, the use of an adaptive control strategy 
for systems with unknown nonlinear functions has attracted 
much attention [4]. Adaptive back-stepping design procedure 
is one of the most useable adaptive control strategies for 

nonlinear systems. However, in this method, the problem 
of “explosion of complexity” caused by the repeated 
differentiations of the virtual control signal is not negligible. 
Dynamic surface control (DSC) method has been introduced 
to eliminate this problem [5]. 

Recently, much attention has been paid to controller 
design for non-strict feedback nonlinear systems, because 
many practical systems, such as ball and beam systems, 
hyperchaotic oscillation circuit systems, and motor-driven 
single-link manipulator models, are in non-strict feedback 
form [6]. It should be noted that nonlinear functions in 
strict feedback nonlinear systems, are functions of partial 
state vector. But, in the non-strict feedback form, nonlinear 
functions contain all the state variables. If the control method 
applied to strict feedback systems is also used for non-strict 
feedback systems, the algebraic loop problem can appear [7]. 
It means that the virtual control signal can be the function of 
the whole state vector.

Many adaptive back-stepping control methods have 
investigated various non-strict feedback nonlinear systems 
[8, 9]. In [8], a class of non-strict feedback nonlinear systems 
with input delay has been studied, and by applying the 
adaptive back-stepping method, a state-feedback controller 
has been developed. An adaptive neural tracking control 
problem has been studied in [9] for non-strict feedback *Corresponding author’s email: e.ovaysi@ec.iut.ac.ir
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nonlinear systems with full-state constraints. On the other 
hand, practical systems often encounter switching behavior. 
So, many researchers have been interested in designing 
adaptive controllers for switched non-strict feedback nonlinear 
systems [10, 11]. An adaptive controller for switched non-
strict feedback nonlinear systems with time-varying full state 
constraints and unmeasurable states has been designed in 
[10]. For a class of switched non-strict feedback nonlinear 
systems under arbitrary switching, an adaptive fuzzy output-
feedback control method has been studied in [11].

For the unknown nonlinear functions that are not linearly 
parameterized, employing the universal approximation 
theorem [12] can be useful to approximate these functions. 
So, the adaptive back-stepping design procedure incorporated 
with fuzzy logic systems (FLSs) or neural networks (NNs) 
has received more attention [13-15]. In [14], an adaptive 
neural-networked control method is investigated to solve 
the problem of adaptive control for a class of switched pure-
feedback nonlinear systems under arbitrary switching. The 
adaptive fuzzy state feedback and observer-based output 
feedback control design techniques have been considered in 
[15] for single-input-single-output (SISO) non-strict feedback 
nonlinear systems. For the switched nonlinear systems with 
unknown external disturbance and performance requirements, 
a composite adaptive fuzzy finite-time controller has been 
investigated in [16]. Also, with the help of this control 
method, the tracking error converges to a preassigned area 
with a finite time. An adaptive finite-time tracking control 
issue has been studied in [17] for switched nonlinear systems 
with time-varying delay under average dwell time switching. 
An event-triggered fixed-time adaptive fuzzy controller has 
been designed for a class of switched non-strict feedback 
nonlinear systems in [18], where, different event-triggered 
adaptive fuzzy controllers for different subsystems have been 
constructed.

When the adaptive control procedure is utilized, several 
adaptive parameters will be produced that should be 
estimated. To tackle this issue, the approximation-based 
adaptive control methods were proposed in [19-21], in which 
the number of adaptation parameters was greatly reduced. On 
the other hand, the global Lipschitz conditions as a severe 
constraint for nonlinear systems are required in most systems 
to obtain global stability. However, this condition has been 
relaxed in [22, 23].

For many applied nonlinear systems, a priori knowledge 
about the sign of the gain multiplying the control input or 
the sign of the control gain function is unknown. The motion 
direction of the system is determined through this sign, 
which is called control direction. For nonlinear systems 
with unknown control directions, designing the adaptive 
controllers can be challenging. To deal with unknown control 
directions, Nussbaum functions have been widely employed 
[24-26]. In [26], to deal with the problem of state-feedback 
regulation for a class of switched nonlinear systems with 
unknown control directions, a control method has been 
studied using the Nussbaum functions. An adaptive fault-
tolerant control scheme is considered in [27] for a class of 

switched nonlinear systems in which the control directions are 
unknown. An adaptive control method using the Nussbaum 
function has been introduced in [28] for a class of nonlinear 
systems with unknown control directions, in which a 
command filter is used to resolve the explosion of complexity 
problem. Based on the fuzzy back-stepping procedure and 
using the Nussbaum gain technique, an adaptive dynamic 
surface controller has been proposed in [29] to settle the 
issue of unknown control direction for a class of non-strict 
feedback systems. In [30], an adaptive control procedure has 
been developed to guarantee global exponential stability of 
parameter-varying nonlinear systems with unknown control 
direction. To overcome difficulties associated with unknown 
control directions in nonlinear interconnected high-order 
systems, an adaptive fixed-time control method utilizing the 
Nussbaum gain functions has been proposed in [31].

However, the mentioned literature deals with the problem 
of unknown control directions, there is not enough attention to 
eliminate the very large control signals at the primary stage. It 
is necessary to state that many actuators are affected by these 
large control signals and are hurt. In this paper, an adaptive 
control design procedure is proposed for a class of switched 
non-strict feedback nonlinear systems, which prevents the 
increase of the control signals in the initial stages. The main 
innovations are stated here.

Compared to the previous results, the method presented in 
this paper does not involve the use of any Nussbaum function. 
Hence, it prevents the increase of the control signal in the early 
stages and the consequent damage to the actuators. Therefore, 
the proposed method can be used for practical systems.

Despite the existence of unknown nonlinear functions, 
unmeasured states of the system, and unknown control 
directions, in the proposed method, only one adaptive law 
needs to be designed. Also, there isn’t any fuzzy or radial basis 
function in the controller design. These significant features 
are achieved due to the use of the proposed design procedure 
and can lead to the reduction of computational burden and 
simplicity of controller in design and construction.

This paper is categorized as follows. The plant model 
and some preliminaries are introduced in section II. The 
next section presents control design and stability analysis. In 
section IV, simulation results are given. Section V includes 
the conclusions of this paper.

2- Problem Statement
A class of switched non-strict feedback nonlinear systems 

is modeled as
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input and the system output, respectively. The functions 
( ) ( )t

if xσ  and ( ) ( ) , 1, ,t
ig x i nσ = …  are unknown smooth 

nonlinear functions. Also, the signs of the control gain 
functions ( ) ( ) , 1, ,t

ig x i nσ = …  are unknown. The signal 
( ) [ { } : 0, )  1, 2, ,t sσ +∞ → = …   specifies the switching 

signal, which is a piecewise right continuous function. When 
s th subsystem is active, the switching signal is ( )  t sσ = ∈ . 

Control objective. The purpose of the control followed 
in this article is to design an adaptive output-feedback control 
method for switched nonlinear system (1) with unknown 
control directions such that all the signals in the closed-loop 
system are semi-globally uniformly ultimately bounded, and 
the output of the system y  tracks the reference signal ry  
well.

Definition 1 [32]. The solution of system (1) is semi-
globally uniformly ultimately bounded (SGUUB), if for any 
compact subset of nR  such as Χ  and all ( )0 0x t x= ∈Χ
, there exist a 0µ >  and a number ( )0,N xµ  such that 
( )x t µ<  for all 0t t T> +  .
To achieve the goal of control, it is necessary to consider 

two assumptions as follows.
Assumption 1. The reference signal ry  and its first and 

second-time derivatives are continuous and bounded.
Assumption 2. The nonlinear functions ( ) ( ) ,1 t

ig x i nσ ≤ ≤  
and their signs are unknown, and there exist two constants 

,  ,0 i m i Mg g< <  such that ( ) ( ), ,  ,  t i
i m i i Mg g x g x Rσ≤ ≤ ∀ ∈ .

Lemma 1 [33]. Consider that ( )f x  is a continuous 
function defined on a compact set Ω . Then, for a defined 
level of accuracy 0ε > , there exists a fuzzy logic system 

( )T xθ ϕ  such that 

 

( ) ( )
1

( ) ( )

1

( ) ( ) ,         1,..., -1

( ) ( ) ,                                 

,                                                              

t t
i i i i

t t
n n n

x f x g x x i n

x f x g x u

y x

 

 

   



 

 

  

(1) 

 

    
Ω

sup  .T

x
f x x  


    

 

1

1

( ) ,                     1,..., -1

( ) ( ) ,                                 

,                                                       

s
i i i

s s
n n n

x F x x i n

x F x g x u

y x

   



 

 

 

(2) 

 

   *

Ω
arg min sup | ,ˆ

i

s s
i i i iU x

F x F x


 
 

    
 (3) 

 

        * * | , ˆ  s s
i i i i i ix F x F x x       (4) 

 

1 1 1

1 1

1

ˆ ˆ ˆ( ),          1,..., -1

ˆ ˆ( ) ,                                 

ˆ ˆ ,                                                      

i i i

n n

x x k x x i n

x k x x u

y x


    



  

 

 

(5)  

 

      ,   s se Ae F x G x u    (6) 

 

 

 

 

3- Main results
For the th active subsystem of the switched nonlinear 

system (1), it can be rewritten 
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where 
( ) ( ) ( )1 1   , 1, , 1s s s

i i i i iF x f x x g x x i n+ += − + = … −  
and ( ) ( )s s

n nF x f x= . In accordance with the 
universal approximation theorem and lemma 1, 
the nonlinear functions ( ) , 1, ,s

iF x i n= … can be 
approximated by a FLS as ( ) ( ) 1ˆ | , , ,s T

i i i iF x x i nη η ϕ= = …  
The ideal weight vector *

iη  is defined as
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where U and Ω  denote the compact regions for iη  and 
x , respectively. The approximation error is determined as
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where *
iε  is a positive design parameter.

In this paper, all the system states except ( )1x t  are 
unmeasured. Therefore, the following linear state observer is 
created to have a feedback control strategy. One can get
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Vector [ ]1, , T
nK k k= …  is selected such as matrix  A is 

Hurwitz. Then, for any symmetric positive definite matrix Q
, there is a symmetric positive definite matrix 0TP P= >  
such that .
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Also, sU  is the compact set for ω . The approximation 
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*ε  is a positive parameter. Through (8)-(11), it is 
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In which, ( )m Qλ  is the indication of the minimal 
eigenvalue of the matrix Q . In accordance to Young’s 
inequality [34], one gets
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where l  is a positive constant, ( ) ( )0 1Tx xψ ψ< ≤  , and  
* *2

ϑ ω= .
In the following, the adaptive back-stepping design 

procedure is presented, in which the change of coordinates as
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is employed, where 1z  and iz  determine the tracking 
error and the surface error, respectively. Also, iλ  denotes the 
error between d

iβ  and 1iβ − . The definition of the variables
d
iβ  and 1iβ −  will be presented later.

3- 1- Adaptive back-stepping design procedure
The back-stepping design scheme is extended as follows.
Step1. Consider the Lyapunov function  1V  as
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where 1γ  is a positive design parameter, *
1 1 1̂θ θ θ= −  and 

1̂θ  is the estimate of *
1 1

2*θ η= . Considering (2)-(5), (14) and 
(15), the time derivative of the Lyapunov function  1V  is
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In accordance to the Young’s inequality, one can obtain
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where ( ) ( )1 10 1Tx xϕ ϕ< ≤ , and 1α  is a positive design 
parameter. From (12), (13), (17) and (18), we have 
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Now, the first virtual control signal 1β  and the only 
adaptive law 1̂θ  are selected as follows

  2
1

*
1 1 1 1 1 1

*3
2

2  

( )
4

ˆ( )

m

r

V

z z

l

z

Q

y

e
l



  


    

  




  

1

2
1 1 1

* 2 2 2
1 2 2

1 1
1

( )  1 1 ˆ  .
2 4 2 2

zz     
 

       
(19) 

 

 1 1 1 1 1 1 1̂2  ,rc z z z y        (20) 

 2
1 1 1 1 1 1
ˆ ,ˆz       (21) 

 

  1
2

2 2
2 2 1

1 1 1

2
1 1

1

3
2

  

( )

ˆ +  ,
2 2

m Q zV e c

z     


    

 
 (22) 

 

* 2*
* 1

1
1

( ) 1 
4 2 4

l
l




      

 

1
d d

i i i i       ,          10 0 .d
i i    (23) 

 

 1 .d i
i i i i

i

N  
      ,        (24) 

 

 2 2
1

1 1  .
2 2i i i iV V z     (25) 

 

 (20)

  2
1

*
1 1 1 1 1 1

*3
2

2  

( )
4

ˆ( )

m

r

V

z z

l

z

Q

y

e
l



  


    

  




  

1

2
1 1 1

* 2 2 2
1 2 2

1 1
1

( )  1 1 ˆ  .
2 4 2 2

zz     
 

       
(19) 

 

 1 1 1 1 1 1 1̂2  ,rc z z z y        (20) 

 2
1 1 1 1 1 1
ˆ ,ˆz       (21) 

 

  1
2

2 2
2 2 1

1 1 1

2
1 1

1

3
2

  

( )

ˆ +  ,
2 2

m Q zV e c

z     


    

 
 (22) 

 

* 2*
* 1

1
1

( ) 1 
4 2 4

l
l




      

 

1
d d

i i i i       ,          10 0 .d
i i    (23) 

 

 1 .d i
i i i i

i

N  
      ,        (24) 

 

 2 2
1

1 1  .
2 2i i i iV V z     (25) 

 

 (21)

where 1c  and 1δ  are positive design constants. 
Substituting (20) and (21) into (19) yields
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.
step ( ) 2 1i i n≤ ≤ − . To eliminate the repeated 

differentiation 1iβ −  , a low-pass filter with positive time 
constant iτ  is employed as follows
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Let 1iβ −  pass through this filter to obtain a new state 
variable d

iβ  . From (15) and (23), the time derivative of iλ  
can be obtained as
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where ( ).iN  is a continuous function equals to 1iβ −−  . 
Now, the Lyapunov function  iV  is candidate as
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Considering (5) and (15), the time derivative of the 
variable iz  can be rewritten as
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Invoke (26), differentiating iV  results in
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Using Young’s inequality, we can write
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Substituting (28) into (27), we have
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According to (29), the i th virtual control signal can be 
obtained as
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where ic  is a positive design parameter. Substituting 
(22), (24) and (30) into (29) yields
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Similar to (23) and (24), we define a new variable 1
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which is obtained by pass iβ  through a low-pass filter as
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where 1iτ +  is a positive time constant of this filter. From 
(15) and (23), the time derivative of 1iλ +  can be obtained as
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where ( )1 .iN +
 is a continuous function equals to iβ−  .

step  n . From (5) and (15), we have
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Select the whole Lyapunov function candidate as
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Consider (34), the time derivative of nV  can be written as
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Now, the adaptive control signal u  can be designed as
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where nc  is a positive design parameter. 
Remark 2. As observed from (20), (21), (30), and (37), 

there is no Nussbaum function, no fuzzy basis function, 
and no radial basis function in the virtual control signals, 
the adaptive control law, and especially the control signal. 
These significant features are achieved due to the use of the 
proposed design procedure and can lead to the simplicity of 
adaptive controller design.

Substituting (31), (33) and (37) into (36) yields
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where 1 1c c=  and 
1  , 2, ,
2q qc c q n= + = …  . In accordance 

to Young’s inequality, one can get
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where 2δ  is a positive constant. Consider (39) and (40), 
we can rewrite (38) as
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0M > . On the other hand, for any  0ρ >  , the set
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is compact. So, the set I dΩ ×Ω  will be compact. Hence, 
( ).qN  has a maximum as 0qN >  on I dΩ ×Ω  , and we get 
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From (35), (42) and (43), it can be achieved
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It should be considered that nπ  is bounded due to the 
small selection of the positive design parameters. Also, (44) 
states that
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which implies that all the closed-loop signals are semi-
globally uniformly ultimately bounded (SGUUB). The 
design procedure and analysis proposed in this paper can be 
summarized as the following theorem.

Theorem. Consider the switched non-strict feedback 
nonlinear system (1) with the simplified form (2), in which 
the control directions are unknown. With the help of the 
state observer (5), the virtual control signals (20) and (30), 
the adaptive control signal (37), the adaptation law (21), and 
Assumptions 1 and 2, all the closed-loop signals are SGUUB, 

while the tracking error converges to zero.

4- Simulation Results
The effectiveness of the proposed adaptive control scheme 

is illustrated through the following example.
Example. Consider the switched non-strict feedback 

nonlinear system as follows

( ) ( )
1 1 1 2

( ) ( )
2 2 2

1

( ) ( ) ,                           

( ) ( ) ,                             

,                                                          

t t

t t

x f x g x x

x f x g x u

y x

 

 

  



 

 

 (46) 

 

 

 (46)

where ( ) ( )1
1 1 20.3  f x x x= + + , ( ) ( )2

1 1 20.1f x x x= − +
, ( )1 2

2 1 2f x x x= , ( )2
2 1 2f x x x= , ( )1

1 11.5 0.5sing x x= +
, ( )2

1 1 21.5 0.1sin( ) g x x x= + , ( )1
2 16 0.1sing x x= + , and 

( )2
2 1 25 0.3sin( )g x x x= + . The initial conditions are selected 

as ( ) ( ) [ ]1 20 , 0 0.3, 0.1
T Tx x  = −  , ( ) ( ) [ ]1 2  ˆ 0 , 0 0ˆ 0,

T Tx x  =  , 
( ) ( )1 2 0 0.1 , 0 0.01ˆ dθ β= = . The purpose of the controller design is 

to track the reference signal ( ) ( )sin sin 2ry t t= +  by the output 
signal y . In this simulation, the design parameters are chosen as 

1 2 1 1 1 1 2 24, 1, 8, 0.1, 0.7, 0.5, 0.01, 0.3 k k c cα γ δ τ= = = = = = = =
. As we know, with the help of this control method, there is no 
need to design any parameters related to fuzzy basis functions 
or Nussbaum functions. Also, only one adaptive law needs 
to be designed. Hence, fewer parameters are used in the 
design of the proposed controller. The simulation results are 
presented in Figs. 1-6. As observed from Fig. 1, the reference 
signal is well-tracked by the system output, and the tracking 
error illustrated in Fig. 2 has been converged to zero. The 
arbitrary switching signal is applied to the system according 
to Fig. 3.  The boundedness of the adaptive law i.e. signal 1̂θ  
is well shown in Fig. 4. The response of the proposed control 
signal without using the Nussbaum function is shown in Fig. 
5. As can be seen from Fig. 5, the control signal at the initial 
step is not extremely large. The simulations are repeated for 
the case where the controller is designed with the help of 
Nussbaum functions. The result can be seen in Fig. 6. From 
Fig. 6, it is clear that the control signal designed through the 
Nussbaum function method is extremely large in the initial 
stage, which can be destructive for actuators or equipment.

Remark 3. Some literature such as [35, 36] have studied 
the adaptive tracking control problem for a class of switched 
and non-switched nonlinear systems subject to unknown 
control direction. The Nussbaum-type functions are used to 
handle the problem of unknown control directions in these 
studies. In both of them, the control signal is extremely large 
in the initial stage due to the use of Nussbaum functions. 
Different from these literatures, the proposed adaptive control 
scheme solves the problem of unknown control directions in 
switched non-strict feedback nonlinear systems without using 
Nussbaum functions, meanwhile, the control objective is well 
achieved.

Remark 4. As can be seen from Figs 5 and 6, the control 
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Fig. 1. The system output y  and the reference signal ry  

 

 

 

 

 

 

 

  

 

 

 

 

Fig. 1. The system output y   and the reference signal ry  

 

  

 

 

 

 

 
 

 

 

 

 

Fig. 2. The trajectory of the tracking error 1z  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The trajectory of the tracking error 1z  
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Fig. 3. The switching signal  t  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The switching signal ( )tσ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The trajectory of the signal 1̂  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The trajectory of the signal 1̂θ  
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Fig. 5. The proposed control signal u  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The proposed control signal u  

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The trajectory of the control signal with Nussbaum function approach 

 

 

 

 

 

 

 

 

 

Fig. 6. The trajectory of the control signal with Nussbaum function approach
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signal changes at the moments of switching suddenly. 
Because in these moments, the dynamics of the system have 
changed and the adaptive controller has to adapt itself to the 
new conditions to fulfill the control objective. Therefore, 
it can be said that the adaptive controller is an appropriate 
candidate for such systems.

5- Conclusion
A non-Nussbaum function approach has been provided 

to solve the problem of adaptive output-feedback control for 
a class of switched non-strict feedback nonlinear systems, 
which guarantees that the control signal does not become 
very large in the initial stages. In the presented system, 
the switching signal is arbitrary; the control directions are 
unknown, and the states are unmeasurable. The unknown 
nonlinear functions have been approximated with the help 
of the universal approximation theorem, but there is neither 
fuzzy nor radial basis function in the adaptive control signal. 
On the other hand, only one adaptation law has been designed 
to estimate the unknown parameters. It has been demonstrated 
that using the proposed controller, all the signals in the closed-
loop system are SGUUB. Finally, the simulation results 
illustrate the features of the proposed control scheme.
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