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ABSTRACT 

This work presents a hybrid method for motif discovery in DNA sequences. The proposed method called 

SPSO-Lk, borrows the concept of Chebyshev polynomials and uses the stochastic local search to improve the 

performance of the basic PSO algorithm as a motif finder. The Chebyshev polynomial concept encourages 

us to use a linear combination of previously discovered velocities beyond that proposed by the basic PSO 

algorithm. Under this method, to balance between exploration and exploitation, at each iteration step, a local 

region is associated with each candidate particle, and a local exploration performed in this blob. The 

stochastic local search employs an intelligent repulsion/attraction mechanism to navigate a particle to 

explore this local region beyond that defined by the search algorithm to achieve a better solution. Over the 

successive iterations, the size of local region dynamically decreases. Also a non-linear dynamic inertia 

weight is introduced to further improve the performance of SPSO-Lk approach. The SPSO-Lk is tested on 

different sets of simulated and real nucleotide sequences to discover implanted DNA motifs. Experimental 

results show that the SPSO-Lk is effective, and provides competitive results in comparison with the 

performance of other algorithms investigated in this consideration.  
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1. INTRODUCTION 

Discovering motifs in DNA datasets has been the focus 

of many recent researches in bioinformatics. DNA motifs 

are structural patterns that occur frequently in a set of 

nucleotide sequences. Sometimes, these motifs directly 

determine the functions of the sequences in which they 

occur. So, discovering the structural motifs in DNA 

datasets plays an important role in bioinformatics area ‎[1].  

The task of motif discovery can be defined as the 

searching of the motifs that meet the predefined format 

and criteria. It is assumed that the motifs themselves and 

the existence of the motifs are not known a priori. Motif 

discovery is a search problem. So many search methods 

such as genetic algorithms, particle swarm optimization, 

local searches and etc. can be applied to discover planted 

 dl, -motifs ‎[1]. In recent years many algorithms for 

finding  dl, -motif in biological sequences are proposed. 

Exhaustive search such as Suffix tree ‎[1], WEEDER ‎[2], 

and MITRA ‎[3] are of the first algorithms used to find 

 dl, -motifs in biological sequences. Heuristic Based 

algorithm such as CONSENSUS ‎[4] is another type of the 

algorithms for this problem. Other Machine learning 

algorithms such as Expectation Maximization (MEME) 

‎[5], Gibbs Sampling ‎[6], Genetic Algorithms ‎[7], etc. are 

used to discover unknown motifs in biological sequences. 

Also many other algorithms are presented in the literatures 

‎[8]-‎[19]. 

Particle swarm optimization (PSO) is a swarm 

intelligence technique developed by Eberhart and 

Kennedy ‎[20], inspired by the social behavior of bird 

flocking and fish schooling. After the PSO introduced, it 

has received significant attention from both the theoretical 

and practical perspectives. PSO has been applied on a 

wide range of engineering fields. However, a few 

applications of the PSO for motif discovery are available. 

For example, in ‎[21], ‎[22] an extension of a particle 

swarm optimization algorithm is introduced, which aim at 

motif discovery in a set of protein sequence that are 
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unique to a family of proteins. 

In this paper, we present a new hybrid algorithm based 

on particle swarm optimization and stochastic local search 

for identification of  dl,  motifs in given DNA sequences. 

The algorithm computes linear combinations of previous 

velocities of the particles and previous best positions to 

significantly improve the performance of the original 

algorithm. Stagnation and Premature convergence are two 

of the main deficiencies of the original PSO algorithm 

‎[25]. In this paper, we use the stochastic local search to 

mitigate premature convergence problem. To cope with 

stagnation, a new method called repulsion/attraction 

mechanism is introduced. Also, a new non-linear adaptive 

inertia weight is introduced to further improve the 

performance of the proposed method.  

The rest of the paper is organized as follows. Section 2 

introduces the concepts of the original Particle Swarm 

Optimization. Section 3 defines basic concepts of the 

Stochastic Local Search. Description of the proposed 

algorithm is presented in section 4. The adaptation of the 

proposed algorithm for motif discovery in a set of DNA 

sequences is presented in Section 5. Also, this section 

reports experimental analysis on the proposed algorithm. 

Finally, section 6 concludes the paper. 

2. Principles of Particle Swarm Optimization ‎[20] 

The original PSO algorithm is an iterative process in 

which a set of particles, are characterized by their position 

and the velocity with which they move in the solution 

space of a cost function. Each individual in PSO flies in 

the parameter space with a velocity which is dynamically 

adjusted according to the flying experiences of its own and 

those of its companions. Therefore, every individual is 

gravitated toward a stochastically weighted average of the 

previous best point of its own and that of its neighborhood 

companions. Mathematically, given a swarm of particles, 

each particle is associated with a position vector, which is 

a feasible solution for an optimal problem; let the best 

previous position (the position giving the best objective 

function value called pbest) that the i-th particle has found 

in the parameter space be denoted by 
ip ; the best position 

that the neighborhood particles of the i-th particle have 

ever found called gbest is denoted by 
ig . At the start time 

all of the positions and velocities are initialized randomly. 

At each iteration step, the position vector of the particle, is 

updated by adding an increment vector. In the original 

PSO algorithm, the particles’ positions are updated 

according to the following equations ‎[20]:  
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where  1tv  is the velocity vector, which controls the 

amount of increment of the position of a particle,  1tx  

is the next position of the particle, maxv  is a maximum 

velocity possible for particle, 1c  and 2c  are two positive 

constants which control the importance of the individual 

knowledge and that of the neighbors, 1rand  and 2rand  

are two random parameters of uniform distribution in 

range [0, 1], which limit the velocity of the particle in the 

coordinate direction.  

This iterative process will continue swarm by swarm 

until a stop criterion is satisfied, and this forms the basic 

iterative process of a PSO algorithm. In the right-hand 

side of (1), the second term represents the cognitive part 

of a PSO algorithm at which the particle changes its 

velocity based on its own thinking and memory, while the 

third term is the social part of a PSO algorithm at which 

the particle modifies its velocity based on the adaptation 

of the social-psychological knowledge. Based on these 

formulations, only the best particle in the neighborhood 

has an impact on the candidate particle. Essentially, the 

PSO algorithm is conceptually very simple, and can be 

implemented in a few lines of computer codes. Also, it 

requires only primitive mathematical operators and very 

few algorithm parameters need to be tuned. 

3. PRINCIPLES OF STOCHASTIC LOCAL SEARCH ‎[24] 

Many combinatorial optimization problems with high 

computational complexity exist. There exist no exact 

algorithms that can solve instances of these problems 

within a reasonable time limit. In these cases many 

successful optimization algorithms use local search 

techniques with randomized choices and probabilistic 

decisions to produce or select candidate solutions from the 

search space ‎[24]. Stochastic local search algorithms are 

flexible, robust and provide excellent results in many 

application areas. 

Given a problem  , a stochastic local search for 

solving arbitrary instance   is formalized as follows. 

First we describe the required parameters of the algorithm: 

1.  S : is the search space for a problem  . 

2.     SS ' : is a set of candidate solutions. 

3.  'Ss : is a candidate solution. 

4.  N : is a neighborhood relation on  S , 

where       SSN  .  

5.  M : is a finite set of memory states.  
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The objective of an SLS algorithm is to find a solution 

by searching in the search space  S . Using the 

parameters, the algorithm is performed in three steps to 

find a solution: 

1. Initialization: At the first step, an initialization 

function        MSDinit   selects the start 

point for the algorithm in the search space. 

Usually, a random approach is used to find this 

point. In fact, the probability distribution over 

initial search position and memory states are 

specified. 

2. Iterative improvement: After initialization, the 

step function 

           MSDMSstep :  is applied 

to replace the current solution s  with a better 

candidate solution from the neighborhood of s  

while replacing the memory state m  with the 

corresponding new memory state. The step 

function maps each search position and memory 

state onto the probability distribution over the 

subsequent, neighboring search position and 

memory states. The set of probability distribution 

over a given set S  is denoted by  SD . A 

probability distribution  SDD  is a function 

]1,0[: SD  with  




Ss

SD 1.  

3. Termination: The  step  function is applied 

iteratively until the termination predicate 

 terminate  returns a true value. The function 

        FTDMSterminate ,:    

determines the termination probability for each 

search position and memory state. 

After terminating the search, the stochastic local search 

method returns the solution  'Ss  or it may return “no 

solution”. In combinatorial approach, where a local search 

is used to improve the main method, the solution 

 'Ss , if exists, contains a better result in comparison 

with the current best solution.  

Here, we used stochastic local search in the SPSO-Lk 

algorithm to escape from local optima. The proposed 

algorithm uses randomized choices in generating new 

solutions in the neighborhood of the candidate solutions. 

The next search position is selected from the local 

neighborhood based on local information.  

4. THE PROPOSED ALGORITHM 

In this section, the variations on the original PSO are 

described. The variations continuously improve the 

performance of the original algorithm. In our previous 

work, a variant of the algorithm was used for optimizing 

multimodal functions ‎[25]. The SPSO-Lk aims to cope 

with stagnation problem of the original PSO and to 

provide a better mechanism for balancing between 

exploration and exploitation. The schematic diagram of 

the SPSO-Lk algorithm is represented in Figure 1.  

During the first step of our algorithm, the required 

parameters such as population size, the coefficients, initial 

radius of blobs, number of particles influenced by 

stochastic local search are determined. After that, the 

initial values for positions and velocities of particles are 

randomly generated in the search space. The initial best 

position of a particle is set to its initial position. The 

initiation step starts the algorithm.  

During each iteration, the velocities of the particle are 

updated based on a new velocity equation. The velocity 

equation used here acts like Chebyshev polynomials ‎[26]. 

More precisely, unlike the original PSO, the two 

previously discovered velocities used here to compute the 

new velocity. Using this mechanism mitigates the 

stagnation problem.  

The value of velocity encourages the target particle to 

transit to the new interesting position. The new positions 

of the particles are updated using the velocity vectors. A 

different scenario is introduced here for updating the 

position of a particle. In this scenario, a particle transition 

is affected by a stochastic local search to discover better 

positions. 

An individual in the SPSO-Lk algorithm performs a 

global move followed by one or more local moves. The 

global move aims to increment the position of a particle 

using individual and social knowledge. The local move is 

designed to explore the regions of the search space which 

are not considered by the global move. As shown in 

Figure 1, the local move is performed by the SLS function. 

Since the algorithm is faced with global and local moves, 

we need to propose a robust combination approach to 

achieve useful moves. The following subsections describe 

the details of the algorithm. 

A. Update Velocities 

In the original PSO, the velocity vector is updated 

based on the previous velocity of the particle, pervious 

best position and the global best position of the 

population. The original PSO may be faced with 

stagnation. In a stagnation situation usually the algorithm 

gets trapped in a state in the search space and the particles 

unable to escape from that state and discover better 

solutions. This type of stagnation may be caused due to 

restriction on the direction of the velocity vector. To cope 

with this, similar to Chebyshev polynomials the last two 

velocity vectors contribute in the velocity update equation 

‎[26]. In the first iterations, the previous velocity has larger 

coefficient to increase the exploration of the algorithm, 

while in the last iterations the current velocity is preferred 

to encourage the particle to drive toward the preferred 

direction. This process encourages the particles to observe 

the space between the two previous velocity vectors. 
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Using the previous velocities in iterations t and t-1, the 

new velocity of each particle is computed using the 

following equation: 
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where  t  is a non-linear function which determines the 

relative importance of the current and previous velocity 

vectors. The coefficient  t  is dynamically adjusted 

according to the following equation: 

     ttt   11                                                        (5) 
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where t is defined as a linear function, iter  is the current 

iteration; maxiter  represents the maximum number of 

iterations, a and b respectively represent the upper bound 

and lower bound values used to control the relative 

importance of the current and previous velocities, and the 

parameter 10   transforms the value of t to the range 

[0, ], here we set 1 . 

 

 
 

Figure 1: Schematic diagram of SPSO-Lk algorithm. The algorithm combines and improved version of PSO and the stochastic local 

search. The velocity update equation is similar to Chebyshev polynomials. A non-linear inertia weight improves the balance between 

global and local search ‎[32]. 
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Another improvement may be achieved through 

acceleration coefficients ‎[27], ‎[28]. Different experiments 

were carried out to investigate the behavior of the swarm 

under different settings of the acceleration coefficients. 

The experiments are performed under fixed, linearly 

decreasing and non-linearly decreasing acceleration 

coefficients. Our empirical study showed that the 

acceleration coefficient c1 and c2 with a fixed value of 1.5 

has a better performance than others. 

B. Non-Linear Inertia Weight 

PSO is a powerful method for finding global optima in 

optimization area, but it has some deficiencies which 

should be resolved to achieve better performance. 

Premature convergence is one of the main deficiencies of 

the original PSO. The premature convergence usually 

occurred due to improper balancing mechanism between 

exploration and exploitation. One solution to mitigate this 

problem is achieved through inertia weight. The inertia 

weight may provide proper balancing mechanism. The 

inertia weight introduces the preference for the particle to 

continue moving in the same direction it was going on the 

previous iteration. At the first iterations the exploration is 

preferred and the exploitation is preferred at the last 

iterations. Broad considerations on inertia weight are 

performed and many improvements are presented. 

Eberhart and Shi ‎[23] found that linearly decreasing 

inertia in not very effective in dynamic environments. A 

non-linear inertia weight provides more flexibility to 

control the balance between exploration and exploitation 

throughout iterations.  

SPSO-Lk algorithm uses a non-linear and dynamic 

inertia weight ‎[32]. The inertia weight is based on a non-

linear sinusoid function f : 
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where k is a constant factor, in all our experiments the 

SPSO-Lk algorithm uses parameter 2k . The parameter t 

is defined in (7); here the value of   is set to 0.5. The 

behavior of the inertia weight is controlled by adjusting 

the parameters k and t. These parameters result a wide 

range of behavior from near linear to periodic with 

multiple minimum and maximum values.  

A sinusoid function generates the data in range of [-1, 

1]; so we need to transform them to a predefined range. 

The max-min normalization is used to perform linear 

transformation on the data produced by the function. By 

this transformation the inertia weight factor w  is set to 

change nonlinearly according to the following equation: 
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Where minw  and maxw  respectively represent the 

minimum and maximum values of the inertia weight. The 

minimum and maximum values of the function is 

represented by minf  and maxf . In our experiments minw is 

set to 0.4, while maxw  is set to 0.9. Adjusting this sinusoid 

inertia weight with the previously described values results 

a non-linear decreasing coefficient that improves 

significantly the performance of the original PSO.  

C. Update Positions 

The proposed non-linear inertia weight and velocity 

update equation are used to obtain the next positions of the 

particles. Here, we have used a different approach to 

update the positions. Let P be the set of particles 

constitute the main swarm. The main swarm is partitioned 

to the sub-swarms U and T (i.e. TUP   and 

TU  ), where T represents the particles which 

perform the stochastic local search around themselves, 

while the U represents the other particle with traditional 

update approach. The U and T are dynamic sets and their 

members are updated throughout iterations. Different ways 

can be used to define the members of the sets U and T. In 

one way, the particles are sorted based on their fitness, and 

k best particles are selected as members of the set T. The 

remainder particles constitute the set U. In other way, the k 

members of set T are selected randomly. Parameter k can 

be static or dynamic. In static fashion, a predefined 

percent nk  of particles contribute in stochastic local 

search, where n is the number of particles, while in 

dynamic fashion parameter k can obtain different values 

throughout iterations. Based on these considerations, each 

particle modifies its position according to the following 

equation: 
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In fact, if the target particle belongs to set T , the 

stochastic local search is performed in its 

repulsion/attraction region using the SLS function. 

Otherwise, the position of the target particle is updated in 

the standard way.  
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Figure 2: Local landscape around a particle may provide valuable information which is not considered by the PSO. The velocity 

update equation would skip the local landscape; therefore a local search overcomes this type of restriction. 

 

 

 

 

 
 

Figure 3: The schematic diagram of stochastic local search. (B) Update the list of repulsive particles, (C) Initialize of 

repulsion/attraction mechanism, (D) Update position module, (E) Update previous best position module. 
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equation (1) in one dimensional space. It would lead the 

particle to some search space and skip local region around 

particle. The local region around an individual may 

provide valuable additional information, and the local 

exploration enhances the particle searching ability and 

may gravitate it toward better position. This fact 

encourages us to introduce a stochastic local search into 

the PSO. 

The flowchart of the proposed stochastic local search is 

presented in Figure 3. The stochastic local search acts as 

repulsive or attractor for each target particle. Following 

the Figure 3, a description of the proposed approach for 

repulsion or attraction mechanism is provided as follows: 

first, before the stochastic local search starts, the lists of 

particles which are contribute as attractor or repulsive in 

each dimension are updated; then the repulsion/attraction 

regions are initialized around each particle Ti , and 

these particles fly stochastically in their local search 

regions to find better positions, if it is possible, as 

illustrated in Figure 2 and Figure 4. Each step of the 

stochastic local search navigates the particle to a new 

position. If the new position has better fitness than the 

previous position, the previous position is replaced by the 

new one. Also, the new fitness is compared with the 

fitness of pbest. The new position is considered as pbest if 

it has the better fitness value than pbest. 

E. Repulsion/Attraction Mechanism 

In PSO, the inertia weight w  is used to balance 

exploration and exploitation, but the local information 

about the landscape around an individual is not taken into 

account. Such information is valuable and encourages the 

particles to discover local unknown regions. Such 

discovery process adaptively accomplished throughout 

iterations.  

In this paper, we proposed the concept of 

repulsion/attraction region to encourage the particles to 

escape from their positions and find better solutions in 

their local landscapes. A similar concept, called repulsive 

velocity, is proposed in ‎[29], ‎[30], ‎[31] to improve the 

performance of the original PSO. The proposed approach 

in SPSO-Lk algorithm differs from the concept of 

repulsive velocity vector introduced in ‎[29], ‎[30]. The 

repulsion/attraction mechanism is based on a dynamic 

decision making process that perform the stochastic local 

search around target particles. The concept of 

repulsion/attraction region is described in Figure 4.  

 
 

Figure 4: The repulsion/attraction region around a target particle: The repulsion vector represents displacement from the next 

position toward optimal solution while the attraction vector represents displacement toward global best position. 

 

The attraction region forces the particle to drive toward 

the global best position, while the repulsion region 

encourages the particle to move in opposite direction of 

the global best position. The attraction and repulsion 

vectors respectively represent the displacement of the 

target particle in the attraction and repulsion regions. The 

repulsion region provides an enhancement in searching 

capability of the particles by enabling them to explore 

some parts of skipped regions. Also it mitigates the 

premature convergence of the PSO driven by (1). 

The repulsion/attraction regions provide the search 

spaces for stochastic local search. For this purpose, during 

each iteration, the particles are sorted according to the 

value of their pbest. Then k  best particles will be selected 

as members of set T, and a set of local regions are 

determined around them. As described previously, it is 

possible to set a static value to k or it can be set adaptively 

throughout iterations. In this study we used dynamic 

version of k parameter. The value of k parameter 

dynamically adjusted based on iteration intervals, as 

shown in the following equation: 











maxiter

iter
nnk                                                      (11) 

Where n is the number of particles in the swarm. Under 

this method, the number of particles which employ the 

local search is linearly decreased. At the first interval all 

of the particles are considered, while at the last interval 

only the global best particle is considered.  

Update the list of repulsive particles: Due to SLS, it 

is possible for a particle to find a better position in 

repulsion/attraction region. Before SLS is started, a 

particle should be located in its repulsion or attraction 

region. The particle is called repulsive, if it is located in 

the repulsive region, otherwise it is called attractor 
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particle. The repulsive particles tend to move in opposite 

direction of global best particle, while the attractor ones 

tend to move forward in direction of the global best 

particle. We defined a list  kdddd RRRR ,2,1, ,...,, called 

repulsion list that contains the repulsive particles, as well 

as an attraction list  pdddd AAAA ,2,1, ,...,,  that contains 

attractor particles. More precisely, the attraction and 

repulsion list are defined for each dimension of the search 

space. The following condition should be satisfied by 

repulsion and attraction lists: 

 ndeachforRAandRAT dddd ,..,2,1  , 

where n represents the number of dimensions of the search 

space, and T is the set of particles which performs the 

local search. The repulsion function depends on the 

attractive and repulsive lists. For the particles that belong 

to the attraction list of dimension d, idRF  returns 1, while 

for the other ones return -1. 

 
 









d

d
id

Riif

Aiif
RF

1

1
                                           (12) 

As shown in Figure 3, before the SLS is begun, the list 

of repulsive or attractor particles for each dimension d 

should be updated. The repulsion function updates these 

lists based on the predefined probability  , where the 

probability   is adaptively adjusted throughout iterations. 

The repulsion function updates the lists as following: 

  

idd

idd

ATR

randTiifAA

,

,



 
                             (13) 

Where dA  is the union of the candidate particles which 

belong to the set T  and the rand produces a value larger 

than threshold  . The rand is a random function from the 

interval [0,1] drawn from a normal distribution. The other 

particle which are not belong to dA  constitute the 

repulsive set dR  for a given dimension d .  

Initialize the Repulsion/Attraction Mechanism: The 

local search starts by initializing the required parameters. 

At every iteration, after an individual i flies to its new 

position, if Ti , it moves stochastically around its 

position to discover a new better position. The radius of 

repulsive/attractive region is decreased linearly throughout 

the iterations. The local search space along each 

dimension d  of the search space for an individual i is 

defined as: 

     

     trtxts

trtxts

d
i
d

i
d

d
i
d

i
d





max,

min,

                                                      (14) 

Where  ts i
d

min,  and  ts i
d

max,  respectively represent the 

minimum and maximum positions of repulsion/attraction 

region along dimension d for stochastic local search. The 

radius dr  is used to control the search interval along each 

dimension and is defined as following:  

   t
C

XX
tr

dd
d 




min,max,                                         (15) 

Where t is defined in (7), max,dX  and min,dX  respectively 

represent the maximum and minimum values of the search 

space along each dimension, and C is used to define the 

ratio of the radius against the search space. In this paper, 

we set r to the 5% of the solution space. The value of dr  

adaptively adjusted throughout iterations. The init function 

 init  receives the n-dimensional vector r and selects the 

start point for the stochastic local search around candidate 

particles. It uses the repulsion function RF to determine if 

the start point should be in repulsion or attraction part of 

the local region. The start point in each dimension is 

defined as: 

       trrandtRFtxty did
d
i

d
i                                    (16) 

where rand  is a random parameter from the interval [0,1] 

drawn from a normal distribution. Based on these 

formulations, the local search space will be 

 TiifsS i  . Here we have not used any memory, 

so we will have    M . 

Figure 5 represents the initiation of local search space 

around candidate particles. The local search spaces 

introduce the uncertainty about the position of candidate 

particles, improve the balance between exploration and 

exploitation of the PSO, and result the better solutions for 

the target function. In PSO driven by (1), a particle has a 

hard constriction on its search trajectory, but in SPSO-Lk, 

see Figure 5, the search trajectory is extended to a search 

area. In the early iterations the algorithm tries to explore 

the neighbor areas, so the neighborhood radius r has the 

largest value. As the algorithm proceeds, the 

neighborhood radius is decreased and the exploitation is 

preferred. The triangular region in Figure 5 represents the 

concept of dynamic neighborhood radius. 

Update Position: The SLS encourages each particle i 

to explore its local region. After the start point around 

particle i is set to iY , the SLS is begun. At each step of the 

SLS, the  Drandomd   returns a dimension in which the 

next position should be determined. The function 

)),,( ,(s i
i

i dYstepomlyselectRandY   receives the local 

search space is , current position iY , and the problem  , 

and return the next position. A random walk approach is 

used to select the next position of iY . After the particle 

moves to the new position iY , its current fitness is 

compared with its previous fitness. If the current fitness is 

better than the old fitness (i.e.    ii XFYF  ), the old 

position iX  of the target particle is replaced by the 

current position iY .  
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Figure 5: Local search regions associated with candidate particles. 

 

This iterative process will continue swam by swarm 

until a termination criterion is satisfied. At each step, the 

 terminate  function determines if the SLS should be 

terminated or not. The process is terminated if the 

maximum number of steps is satisfied or degree of 

improvement is larger than predefined threshold impTh . 

Degree of improvement represents the percentage of 

improvement on the fitness of candidate particle.  

Update Previous Best Positions (pbests): As 

described in previous subsection, after the position iX  is 

replaced with new position iY , if the candidate solution iY  

is in the set  iS '  of solutions of the particle i, then iX  

is used to update the previous best position (pbesti) that 

ever found by particle i has in the search space. If the 

fitness of candidate solution iX  is better that the fitness of 

previous best position, the previous best position is 

replaced by iX . If stochastic local search returns “no-

solution”, the previous best position remains unchanged.  

F. Update Global Best Position (gbest) 

SPSO-Lk has two passes during every iteration. At the 

first pass, the global move evaluates the pbest of each 

individual and selects the best pbest as new gbest. The 

second pass is performed by the local move. The local 

move only evaluates the fitness of the particles which are 

belong to set T . If the current fitness of a particle is better 

than the gbest, the gbest is replaced by current position of 

the particle. 

4. EXPERIMENT AND EVALUATION 

In this section, the experiments that have been done to 

evaluate the performance of the proposed PSO algorithm 

are described. The performance of the proposed algorithm 

is evaluated for finding implanted motifs in a set of DNA 

sequences. 

The SPSO-Lk is used for discovering motif in DNA 

sequences. In recent years many algorithms for finding 

 dl, -motif in biological sequences are proposed ‎[8]-‎[19]. 

However, A few applications of the PSO for motif 

discovery are available ‎[8], ‎[9]. Discovering the implanted 

motifs in DNA datasets plays important role in 

bioinformatics field. A DNA sequence consists of four 

types of nucleotide: A, C, G, T. DNA motifs which 

constituted from these nucleotides, are structural patterns 

that occur frequently in a set of nucleotide sequences. 

Sometimes, these motifs directly determine the functions 

of the sequences in which they occur. 

The objective of SPSO-Lk Motif Finder is to find the 

 dl,  degenerative motifs of length l  that are mutated at 

most d  symbol position of original motif. The pattern 

shared by these motif instances is referred to as consensus 

motif. Given N  nucleotide sequences  Nsss ,...,, 21 , the 

 dl, -motif discovery problem is formulated as follows: 

assume W  be a fixed but unknown sequence of 

nucleotides of length l , and each sequence is  contains a 

variant of W  with mutation at maximum d  points, the 

algorithm should find the positions of the consensus motif 

in each sequence.  

A. Identification of Consensus motif 

The SPSO-Lk population is composed of a set of 

candidate consensus motifs. Each particle in the SPSO-Lk 

is a vector of positions of the motifs in the sequences. In 

other words, each particle represents a N-dimensional 

vector where the value of each dimension contains the 

position of the motif in the corresponding sequence. It is 

assumed that a single motif exits per sequence.  

The SPSO-Lk takes a set DNA which contains N 

sequences of nucleotide with planted motifs of length l 

with d point mutation and returns a list of candidate motif 

positions such that each motif should have fitness values 

above a certain threshold.  

Initializing the population is the first issue in SPSO-Lk 

motif finder. As the size of the population increases, the 

time consumption of the algorithm increases. While taking 
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driven by (1) 

Particle i 

Particle j 

Particle k 

max,
2
js  

max,
1
is  

x1 

Possible search 

region using SLS 

min,
1
is  

Possible location for gbest 
x2 

max,
2
js  

dr  



Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012 

 
72 

a larger amount of the subsequences occurring in the 

sequences as the initial population instead of ones with 

good fitness values increase the quality of solutions in 

some cases, but it will also increase the time of the 

algorithm to evaluate every individual of the population. 

So, to balance between these issues we use an informed 

initialization method based on Fast Motif Discovery 

Method ‎[9]. This method returns good motifs which can 

be used as an initial population.  

After the initial population is created, at every iteration 

the SPSO-Lk select the best individual ( gbest ) with 

highest fitness value and produces new population based 

on that and the previous best position of each individual 

( pbest ). Also, at every iteration a stochastic local search 

is performed around each individual to obtain better 

solutions. The local search is used to shift the position of 

the motif in a randomly selected sequence to the left or 

right. The motif position is updated if its new fitness is 

better than the previous fitness.  

Another consideration is the controlling of the flying of 

an individual in the search space. In order to achieve these 

goal in the SPSO-Lk, the algorithm parameters modified as 

follows: 

maxmaxmax VXandXV UB                                     (17) 

minminmin VXandXV LB                                     (18) 

Where the upper bound UBX  represents the largest 

position in the input sequences, and the lower bound LBX  

represents the smallest position in the input sequences.  

The proposed algorithm performs the previously 

described steps until the stop criteria are satisfied. 

Different types of criteria can be applied in optimization 

problem. Two different types of criteria used here. The 

first one is based on the fitness function, and the second 

one is based on iteration number. If the fitness value of the 

best individual is above a predefined threshold then the 

algorithm is stopped. If the algorithm can not obtain the 

threshold, then it is stopped after the certain number of 

iterations. 

B. Fitness Function 

Fitness function is one of the main considerations in 

optimization problem, which has an important role in 

success of the algorithm. In SPSO-Lk, each individual is 

evaluated based on a fitness function. For  dl, -motif 

discovery problem a probabilistic fitness function is 

developed. The fitness function is based on Gibbs 

sampling mechanism defined in ‎[16] and ‎[17]. Based on 

this fitness function, the motifs which have fewer mutated 

position obtain greater values. Also the greater residue 

frequencies in the motif positions increase the fitness of 

the motif. 

 

TABLE 1 

MOTIFS IDENTIFIED BY SPSO-LK IN THE SIMULATED SEQUENCES 

Sequence Position Motif Sequence Position Motif 

1 

3 

5 

7 

9 

10 

12 

723 

194 

97 

26 

238 

148 

612 

AATGTTATGCACAG 

AATGCTATGCACAG 

AGTGATACCCACAT 

AATGCTATGCACAG 

ACTGCTATGCACAG 

AATGCTATGCACAG 

ACTGATATGCACAC 

13 

15 

17 

20 

21 

23 

25 

902 

31 

439 

571 

391 

76 

819 

ACTGATATGCACAG 

AGTGATATCCACAT 

ACTGCTATGCACAA 

AGTGTTATCCACAT 

AATGATATGCACAC 

AATGATATGCACAC 

AATGCTATGCACAC 

 

 

C. Experimental Results 

To evaluate performance of the proposed algorithm, we 

performed different experiments on simulated and real 

DNA sequences. The first experiment is performed on the 

simulated sequences. For this experiment, 25 random 

sequences of length 1000 have been generated. Also an 

 dl, -motif with different values for l  and d  is planted 

in the sequences. For this problem, we have performed 

experiments to identify  4,14  motifs. The population 

contains 100 individual. For larger values of l  and d  the 

bigger population size results better solutions. Table 1 

represents the identified motifs and their positions in 

simulated sequences. Note, only the motifs in 14 

sequences are shown. 

In order to evaluate the performance of the proposed 

algorithm on simulated sequence, two other motif 

discovery algorithm called MEME ‎[16] and GAMOT ‎[18] 

are used. The MEME algorithm has used expectation 

maximization, and the GAMOT algorithm has used 

genetic algorithm for motif discovery. We have measured 

the success rate and running time of these algorithms. 

Table 2 represents these parameters for SPSO-Lk, MEME 

and GAMOT.  
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TABLE 2 

COMPARISON OF SUCCESS RATE AND TIME OF SPSO-LK, MEME, GAMOT, AND PSO 

 MEME GAMOT SPSO-Lk 

l d Success 

rate 

Time Success 

rate 

Time Success 

rate 

Time 

8 1 100% 34sec 100% 17sec 100% 11sec 

10 2 100% 67sec 100% 28sec 100% 23sec 

12 3 97% 2min 100% 33sec 100% 31sec 

14 4 89% 7min 94% 29sec 100% 30sec 

16 5 83% 10min 95% 34sec 98% 33sec 

 

 

The experimental results show that the proposed 

algorithm outperforms MEME. Also, it relatively has a 

better performance than the GAMOT algorithm.  

 

TABLE 3 

IDENTIFIED MOTIFS FOR REAL BIOLOGICAL SEQUENCES 

 

Name Pattern MEME GAMOT SPSO-Lk 

GATA CTTATC CTTATC CTTATC TTATCG 

CuRE TTTGCTC TTTGCTC TTTGCTC TTTGCTC 

BAS1 TGACTC - TGACTC TGACTC 

ACE2 GCTGGT GCTGGT - GCTGGT 

AP1 TTANTAA - - TTAATAA 

 

In the second experiment the SPSO-Lk is tested on a set 

of erythroid sequences. These sequences are tested for the 

GATA box which should have sequence 

(T/A)GATA(A/G) and its reverse complement TATC box 

which should have a sequence (C/T)TATC(A/T). For this 

problem the identified motifs in the sequences are 

TTATCA, CGGTCA, CTATCA, AGATAA, TGGTAC, 

CTATCT, TGGTCA, TTGTAA, TTATCT, TTATCC, 

AGATAT, AGATAT, CTGTAT, and TTATCT. 

For the third experiment, we used the real biological 

sequences from the SCPD dataset ‎[19]. SCPD is a dataset 

of different transcription factors for yeast. We have 

evaluated the performance of SPSO-Lk against MEME, 

and GAMOT algorithms. The motifs identified by the 

proposed method are shown in Table 3. As shown in 

Table 3, all of the methods successfully discover the 

implanted motif in GATA and CuRE sequences. The 

MEME algorithm fails for finding the implanted motif for 

BASE1 and API sequences. Also, the GAMOT algorithm 

fails for finding motifs in ACE2 and API. The SPLSO 

successfully discovers the implanted motifs in each 

sequence. In SPSO-Lk algorithm, the stochastic local 

search acts as a sliding window on the nucleotide 

sequences. So, the algorithm can observe the nearby 

regions to find better positions. The above experiments 

demonstrate the effectiveness of the SPSO-Lk algorithm 

for  dl, -motif discovery problem. 

 

 

5. CONCLUSIONS 

In this work we present a combinatorial optimization 

based on improved version of PSO and Stochastic local 

search employing an intelligent inertia weight to 

significantly improve the performance of the original PSO. 

The use of local exploration seems to provide a good 

balance between exploitation and exploration of the PSO 

algorithm. The local landscape around each particle allow 

us to test many other local search methods such as tabu 

search and simulated annealing as well as other random 

walk techniques. 

In the original PSO, the individuals are gravitated 

rapidly toward the global best particle and the population 

rapidly converges to a point around the best particle. The 

high speed convergence may occur due to constriction on 

the particles trajectories and the premature convergence. 

By considering local landscape associated with each 

individual as a function of time, the stochastic local search 

method provides an efficient exploration that helps the 

population to avoid premature convergence. Also, a local 

exploration relaxes the hard constriction on the particle 

trajectory and provides the required diversity for the 

particle trajectory.  

SPSO-Lk algorithm was tested on different nucleotide 

sequences, and compared with two other algorithms for 

finding  dl, -motifs. Different types of performance 

criteria such as speed, success rate, and discovered motif 

have been investigated. The experiment results showed 

that SPSO-Lk seems to be effective for discovering  dl, -

motifs in DNA sequences.  
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