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ABSTRACT:  In this paper, we introduce a new linear received signal strength-based estimator 
for unknown node localization which its accuracy at low Signal-to-noise ratio (SNR) is better than 
many linear estimators and can compete with estimators based on the convex optimization, but it is 
much lighter than convex optimization-based estimators. The main ingredients in our proposed linear 
position estimator are to reformulate the localization problem in terms of Tikhonov-regularization and 
introduce a biased noise variable. The way that we apply for this reformulation avoids any possible linear 
approximation in which target position variables are involved, thus saving fair amount of information. 
The proposed algorithm is also indifferent to the transmit power and thus, applicable to either known or 
unknown transmit power scenarios. Simulation results show the efficacy of the proposed algorithm in 
comparison to the other methods for both typical RSS-based measurement data model and the modified 
model for indoor application.
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1- INTRODUCTION
Nowadays, a lot of effort is spent on developing more 

accurate localization methods in sensor networks, such as 
wireless sensor network (WSN) [1]. This is mainly due to 
their diverse set of applications, including industrial and 
health care monitoring, and environmental sensing. The 
localization systems use different measurements of acoustic 
and radio signals such as angle of arrival (AOA) [2], time of 
arrival (TOA) [3], time difference of arrival (TDOA) [4], and 
received signal strength (RSS) [5] [6], or the combination of 
these methods [7]. The first three aforementioned methods 
are more accurate, but require complex hardware. On the 
other hand, the received signal strength measurement does 
not aquire expensive antenna or high  bandwidth. Node 
localization based on the RSS measurements should be 
considered as a fascinating research field. Recently, a lot of 
scientific research has been undertaken in the field of RSS-
based node localization. It serves as an appealing option 
to be applied for practical applications such as the primary 
user detection in cognitive radio networks [8] or underwater 
acoustic localization in wireless sensor networks [9]. 

The most popular and practical estimators to extract 
an unknown node position parameter with RSS values is 
the maximum likelihood estimator (MLE). The MLE is 
asymptotically efficient, eliciting that its variance attains 

the Cramer  Rao lower bound (CRLB) as the sample size 
approaches infinity [10]. However, the cost function of MLE 
for RSS-based localization is highly nonlinear and non-
convex and has a large number of local minima. Various 
methods have been advocated to yield only an approximate 
solution to this estimator.  The Gauss-Newton method may 
be considered as the first choice for this type of problem 
[11]. The convergence of any Gauss-Newton method, as an 
iterative procedure, requires appropriate initial parameter 
values. Otherwise, the algorithm may get stuck at suboptimal 
solutions, leading to large estimation error.

Recently, another approach has been derived from 
considering a class of optimization problems called the convex 
optimization problems. This approach has been intensively 
studied since the time of some pioneering papers, such as 
Beck’s paper [12].  The second-order cone programming 
(SOCP) and semidefinite programming (SDP)-based 
estimators are some of the most popular algorithms in this 
class [13] [14]. In this type of estimator, the convex relaxation 
methods make some approximations of the non-convex 
cost function and substitutes the cost function with the 
largest convex function below the cost function. As a result, 
convergence to the calculated global minimum is guaranteed. 
In fact, introducing some error is inevitable in the usage of 
convex relaxation. These methods do not provide a closed 
form solution for problems, and the solution can be efficiently 
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obtained by using the CVX tools [15]. Although it may sound 
to be computationally demanding.

In this paper, we develop a linear position estimator that 
is considered to achieve light computation like when so many 
linear estimators are compared to the convex estimators. As 
for a WS node with limited process power, this is of merit. 
Nevertheless, perhaps the most remarkable character of 
our proposed linear estimator is a specific range of SNR 
values (low SNRs) for which the accuracy is in the order of 
convex estimator or even better. The method works from the 
premise that only the term containing the noise variable is 
linearly approximated. The term that unknown node position 
coordinates are included is not approximated. This will 
prevent loss of certain amount of information contained in 
nonlinear mapping between coordinates variables in the cost 
function. The price we pay for getting our new linear estimator 
is to unrealistically ignore the influence of the bias term of 
an introduced new noise variable. The price is lowered when 
the noise power increases. This is where the performance of 
our proposed estimator surpasses the convex estimators, as 
simulation results confirm. In addition, the transmit power is 
not excluded from signal model when its value is not known 
at an unknown node and obtained as a by-product of the 
localization process at no cost.

The paper is organized as follows. The typical path loss 
exponent data model used for RSS-based localization is 
presented in Section 2. Then This model is modified to more 
specific application which is the indoor localization. For 
indoor applications, the propagation path loss model is still 
valid with some minor modifications which is described in 
more details. Finally, the problem of position estimation for 
these types of data models is stated in Section 2. Section 3 
introduces our proposed method and discusses our strategy 
to linearly approximate the nonlinear cost function of the 
MLE and reformulate it in the matrix format by inspiring 
the idea of Tikhonov regularization. Section 4 is devoted 
to the numerical results, indicating the performance of the 
proposed method compared with some of the well-known 
localization algorithms, either linear or convex optimization-
based estimators. Finally, conclusions and discussions are 
given in Section 5.

2- DATA MODEL AND PROBLEM STATEMENT
A wireless sensor network comprises of N nodes with 

prior known positions (anchor nodes), and an unknown node 
with unknown location which is the subject of the location 
estimation in a wireless sensor network. The 2D coordinates 
of the anchor nodes and a node are denoted by vectors of the 
forms [ , ]T

i i ix y=s  1,2,...,i N= and
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If these two nodes are located in the rooms diagonally 

opposite from each other, for example an unknown node 
is in room 1 and the anchor node in room 4, then there are 
two walls in line-of-sight with them and , 2inω =  . In other 
words, to create results of Fig. 5, before setting attributes of  

in  and 0P   for each pair of an unknown node and the anchor 
node, their locations are checked according to Fig. 1.

The problem is stated to be the estimation of the unknown 
node coordinates
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the complexity of a matrix multiplication is ( )nmp . 
The computational complexity of the matrix inversion of 
m m×  matrix is ( )3m . Therefore, the computational 
complexity of (15) is ( )8 4 8 4N N+ + + .

According to [13] and [14], the equations

12 
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𝜖𝜖) are used to analyze the worst-

case complexities of the SOCP2[Tomic] in [13] and SDP-URSS[Vaghefi] in [14] algorithms, respectively. 

The 𝜖𝜖 is the parameter set by the SOCP and SDP solvers (such as SeDuMi in the CVX Toolbox [15]) to 

obtain the required accuracy. Gazing at the results of the Table 2 in Section 4 confirmes that the 

computational burden of the SOCP2[Tomic] is about twice as large as that of the SDP-URSS[Vaghefi]. 

The mathematical complexity of the other methods can be found in their related references and here we 

only recite: 𝒪𝒪(4𝑁𝑁) for LS[Xu], 𝒪𝒪(4𝑁𝑁2) for both A-BLUE[Hu] and A-SPM-WIV[Li], and 𝒪𝒪 (4𝑁𝑁2.5 log 1
𝜖𝜖) 

for RSDP[Hu]. These results are summarized in Table 1. 
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Fig. 2. Performance comparison with different shadowing standard deviation σ and unknown 0P .
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version is MATLAB 2014a.
RSS measurements are made by 0 10P dBm= − , and 

PLE=3. 10 anchor nodes are deployed, in a square of length 30 
m. The node is located at (11,8; 8,4). All performance results 
are averaged over 200 independent runs.

The value of 0P  is unknown to algorithms. Average RMSE 
values for our proposed algorithm, as well as SDP-URSS, SOCP, 
are examined and compared versus the shadowing standard 
deviation in Fig. 2. In addition, CRLB is presented. For the low 
values of the shadowing standard deviation, the biased term 
modeled in (6) is being ignored. As the shadowing standard 
deviation starts increasing from 1:5dBσ = to a high level, 
the UT-LLS estimator outperforms other algorithms. Fig. 2 
demonstrates that the UT-LLS has a superior performance 
to CRLB at low SNR. This should not be considered as a 
strange matter, since the CRLB offers a lower bound for only 
unbiased estimators and the UT-LLS is a biased estimator of 

a location. As it is evident from Figs. 2, whenever the noise 
level is simultaneously increasing the A-SPM-WIV [Li] 
performance further deteriorates. In contrast, our proposed 
algorithm performs better at low SNRs. The point to note 
about [24] is, for [24] to reach a set of suitable equations for 
using BLUE, it aims to linearize the nonlinear terms involving 
both noise and unknown position coordinates. As mentioned 
in the abstract and introduction, the main advantage of our 
method is “The method works from the premise that only the 
term containing the noise variable is linearly approximated”. 
This causes the performance of our proposed algorithm to 
be better than [24], when the noise variance is high, for the 
less approximation used, the less information is discarded. In 
the simulation results of [24], the RMSE of the positioning 
error is shown only for very small noises where the upper 
limit for the standard deviation of shadowing noise is 4 dB, 
which is an insufficient and small amount. But in our paper, 
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Fig. 3. RMSE of 0P estimate with different shadowing standard deviation σ where 0 10P dBm= − .

Fig. 4. Mean of 0P estimate with different shadowing standard deviation σ where 0 10P dBm= − .
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the performance simulation of its algorithm is investigated for 
also higher values   of standard deviation of shadowing noise, 
and as Figs. 2 and 5 show, the positioning error increases with 
increasing the noise level.

The next simulation is to evaluate the variance and mean 
of the estimate of the transmit power 0P for each algorithm. 
The results are shown in Fig. 3 and Fig. 4, respectively. As it 
can be seen, the results of RSDP[Hu], A-BLUE[Hu], LS[Xu], 
and A-SPM-WIV[Li] are not presented in Figs. 3 and 4. 
This is due to the fact that only if an algorithm estimates the 
unknown transmission power, then its performance appear 
in Figs. 3 and 4. In addition to our proposed algorithm UT-
LSS, only the two algorithms SOCP2 and SDP-URSS have this 
capability. It seems from Figs. 3 and 4 that the SDP-URSS may 
not be a good candidate in terms of providing an accurate 
estimate of the unknown transmission power. On the other 
hand, UT-LSS and UT-LSS show similar satisfactory results 
in this regard.

The next simulation is about the effect of indoor 

environment on the accuracy of an unknown node 
localization. We apply the model introduced in (2), to make 
the changes that are inherent in an indoor environment and 
transmitted signals from anchor nodes are undergone. As in 
[20], we assume ( ) 5sin(2 )iu t tπ=  and the attenuation factor 

4ωγ = . We also suppose that there are four different rooms 
where the value of ,inω  is set accordingly. ,inω indicates the 
number of partitions which the line of sight passes through. 
Its value varies from 0 to 2 depending on how an unknown 
node and the anchor node are relatively positioned in the 
four rooms. The rest of the parameters are the same as in 
the outdoor environment which is the scenario of the Fig. 
2. The results shown in Fig. 5 indicate the superiority of 
the UT-LLS algorithm. In fact, in Figure 5 the attenuation 
increases in indoor environment due to the presence of walls, 
ceilings and other objects, and this attenuation appears as 
an unknown random loss in the model. This loss is more 
effective when there are small shadows around zero. However, 
with increasing shadow noise, its effect decreases, although 
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Fig. 5. Performance comparison for indoor environment with different shadowing standard deviation σ and unknown 0P .

Fig. 6. Performance comparison with different number of anchors and unknown 0P where shadowing standard deviation σ equals 2 
and path loss exponent is 3.
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its value is constant. For this reason, the relative state of 
performance of the algorithms is similar to the relative state 
in Fig. 2, at high noise levels.

The behavior of the proposed algorithm and other 
algorithms toward changes in the number of anchor nodes 
(N) is shown in Fig 6. The PLE value is 3 and the shadowing 
noise standard deviation is 2. As the general law, better 
coverage and more information would be provided to 
perform the localization with increasing the number of 
anchor nodes, and therefore the RMSE decreases. Once more, 
regardless of the number of the anchor node, the performance 
of UT-LLS is superior at the large noise levels. The two next 
algorithms which follow are as usual, SOCP2[Tomic] and 
SDP-URSS[Vaghefi] which are based on the convex relaxation 
methods.

Additionally, the average run time per second of these 
algorithms is shown in Table 2. The average run time values 
taken from Table 2 demonstrate the tremendous time saving 
offered by using the UT-LLS estimator over using location 
estimator methods based on the convex optimization.

5- CONCLUSIONS AND DISCUSSIONS
 A new linear location estimator, able to work in both 

known and unknown 0P , is proposed. Firstly, the nonlinear 
function of the noise term is approximated  with a linear 
function of a biased Gaussian noise for the  maximum 
likelihood estimator cost function. This is against many 
existing algorithm trends which make approximations based 
on an unknown signal position. The main advantage of our 
scheme is in saving a fair amount of information by avoiding 
any possible nonlinear process that target position variables 
are involved. Consequently, we replace the nonlinear 
function of the noise term with linear function of a Gaussian 
biased noise. Simulation results show that this biased noise 
is explained for a case where the noise standard deviation 
is much larger than the noise mean. Later, inspired by  the 
Tikhonov-regularization, linear least squares method is 
utilized to  derive the position estimate of the node. The 
proposed algorithm is also able to be applied specifically to 
indoor environments. The way we use to approximate the 
nonlinear terms leads us to a linear estimator to outperform 
most convex estimators in terms of both accuracy and speed 
in high power noise. The other advantage of our scheme is its 
ability to compute a closed-form expression to estimate 0P  as 

a by-product.  
The idea introduced by this work may be followed 

by applying the proposed algorithm to the cooperative 
localization scenarios where is more than one unknown node, 
and rely information to an anchor or a sink node [13].  In 
addition, using the new approach introduced in [25], a more 
appropriate model matching the LS method prerequisites can 
be applied to increase the accuracy of location.
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Nomenclature

N Number of anchor nodes
ωγ Path loss exponent of indoor environment

is Position of the ith anchor u Dynamic propagation environment 
function

ix , iy Length and width of the ith sensor
ωΠ Wall indicator

è Position of the source U
Peak power of dynamic propagation 

environment

γ Path loss exponent t Time

n Shadow fading
ut

Period of dynamic propagation 

environment

iP
Received signal strength of the ith 

anchor iε Localization error

0P Received signal strength at 0d iα Parameter

0d Reference distance to source A System matrix

σ Standard deviation of shadowing b Observation vector

0P Received signal strength at 0d in 

indoor environment
2I 2 2×  identity matrix

n
Shadow fading in indoor 

environment [.]T Transpose operator

,inω

Number of walls between source 

and the ith anchor
1(.)− Inverse operator
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