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ABSTRACT:  Most of the studies on phenotype differences, including some diseases, are based on 
studying some specific positions in the genome called Single Nucleotide Polymorphism (SNP). Some 
SNPs alone and some by interacting with others, play an important role in any phenotype or specific 
disease. Various models, including the regression models, are designed and implemented for the prediction 
of these diseases. In this paper, three penalized logistic models including Ridge, Lasso and Elastic Net 
(EN), are used to predict the risk of a specific disease, while overcoming the limitation of the classic 
logistic regression on high-dimensional SNP datasets. The models are implemented on 10000 samples 
of the SNP datasets of OWKIN-Inserm Institute, which contains 18124 SNPs. Among these three, the 
Lasso model with minimizer lambda indicate higher accuracy (73.73%) and AUC (83.54%). The model 
is also less complex, since it eliminates less related features as much as possible and keeps only the most 
informative ones. Additionally, getting better results with Lasso indicates that multicollinearity is either 
not existed between variables or is low and can be neglected.
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1- INTRODUCTION
The purpose of Genome-Wide Association Studies 

(GWAS) is to identify the genetic variants causing different 
phenotypes, one of which are called SNPs (Single Nucleotide 
Polymorphisms), that are very similar to mutations [1]. A 
SNP is a DNA sequence variation occurring when a single 
nucleotide adenine (A), thymine (T), cytosine (C), or guanine 
(G) in the genome differs between members of a species 
or paired chromosomes in an individual. For instance, two 
sequenced DNA fragments from different individuals, 
AAGCCTA to AAGCTTA, are different in a single nucleotide. 
This illustrates that there is a SNP at this specific position, and 
the two possible nucleotide variations – C or T – are said to 
be the alleles for this specific position. Finding agent loci in 
the genome and the relationship between themselves, and the 
phenotypes are important as some of these genetic variants 
in a person’s genome along with his special environment or 
special diet can cause the relevant phenotype. Phenotypes 
are divided into two groups: quantitative phenotypes such 
as lipid level, blood pressure, height, weight, BMI and binary 
phenotypes, which are referred to as disease phenotypes or 
complex diseases. Complex diseases are essential to predict, 
as they can be controlled or even prevented by determining 
special environmental conditions, like what Armstrong and 
Tyler showed in their study of 5 children with phenylketonuria 
under a restricted regimen [2]. Phenylketonuria (PKU), 

which is an inherited disorder caused by a single gene, 
decreases the metabolism of the amino acid phenylalanine. 
Accordingly, the level of the amino acid, which is obtained 
totally through diet, increases in the blood and can cause 
serious health problems like mental disorders, intellectual 
disabilities and seizures. In the mentioned study, five children 
with PKU, aged from seven-month to four-year were put on 
a low-phenylalanine or phenylalanine-free diet to see if it can 
decrease their mental problems. The results of the study have 
shown that the disorders caused by PKU have been prevented 
in children with a restricted diet, especially if initiated in early 
age. This illustrates that genetic disorders can be prevented or 
controlled under certain environmental conditions. 

Besides the importance of the environment in this type of 
phenotype, which is the critical solution to control the disease 
infestation, the best SNP selection plays a vital role in the 
risk prediction of the disease. SNPs are the most important 
parts of a genetic region, responsible for genetic disorders, 
though not all of them are agent. However, recent studies have 
indicated that certain SNPs are in strong association with the 
relevant phenotype, including complex diseases, which are 
responsible for more than two-thirds of the deaths around the 
world. SNPs are more advantageous than other gene data such 
as microarray gene expressions, due to their stability, high 
frequency and being easier and faster to collect [3]. However, 
they are still hard to work with, because of their huge size and 
significantly large number (up to one million) compared to the 
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limited number of samples (few hundreds or thousands). In 
addition, complex diseases are caused by not only some certain 
SNPs independently, but also the interactions among lots of 
SNPs, which needs more complex models to detect. Different 
models are used to detect agent SNPs and interactions for 
complex phenotypes risk prediction, most of which are based 
on Machine Learning methods. One of the popular models 
is the regression model, which allows to consider all markers 
together and is able to detect and remove weak effect in the 
presence of stronger causal effects [4]. Depending on the type 
of phenotype, which can be quantitative or binary, linear or 
logistic model is respectively implemented[5].

Multiple logistic regression (MLR) models, also known 
as multiple-SNP analyses or polygenic models, involve all 
the relevant SNPs used in the phenotype prediction models 
as explanatory variables. Thus, due to the nature of multiple 
regression, these models will be able to recognize the 
correlation and coupling in the SNPs, and make distinctions 
among them. MLR models have been implemented in 
different SNP-based studies on diseases such as Lung Cancer 
[6], Parkinson’s Disease [7], Obesity [8] or many other 
diseases. However, the results of these models are reliable 
only when the number of samples are at least ten times as 
large as the number of SNPs to prevent overfitting. For high 
dimensional data, with a much greater number of SNPs, 
penalized regression models can be a better choice, aiming 
at shrinking the coefficients near to zero (Ridge regression 
models)[9], exactly toward zero (Lasso regression models)
[10], or some of them close to zero, and some exactly to 
zero (Elastic Net models). Many studies have implemented 
penalized models on high dimensional SNP datasets to select 
the most relevant SNPs as a feature selection method [11, 
12], or totally to predict the disease risk independently or in 
combination with other machine learning methods [12-16]. 
In addition to the compression and dimension reduction, 
which is mandatory in high dimensional data, penalized 
models are capable of identifying pertinent predictors in 
grossly underdetermined problems. The computational speed 
of these regularized models is also impressive, which makes 
them often outperform their un-regularized counterparts 
[13].

In this study, three penalized logistic regression models 
(Ridge, Lasso, and Elastic Net) have been implemented on 
data, finding the best hyperparameters for each, to find the 
highest accuracy among them. All reported results are the 
mean of 10-fold cross-validation, performed to assess the 
predictive performance of the models. The acquainted results 
of these models in this study demonstrated stronger prediction 
power, compared to other machine learning methods, which 
were implemented by other participants of the challenge. 
They have implemented methods including SVM, MLP, and 
X Gradient Boosted Tree on the whole samples of the train 
data, and got Area Under Curve (AUC) values below 0.80. 
The results are published and available on https://github.com/
scouvreur/DiseasePredictionDNA.

The paper continues in three sections as methods, dataset, 
and results. In the first section, logistic regression models, 

along with penalized models and the implementation and 
results of each are explained. Later, the dataset and some 
related limitations are described in detail. Finally, the result of 
implemented models is discussed and compared to the results 
of previous efforts on the data. 

2- PATIENTS AND METHODS
Patients Dataset

This study has been implemented on the dataset of the 
challenge “Disease prediction based on DNA data” held in 
2018 by the OWKIN-Inserm Institute (https://challengedata2.
ens.fr/en/challenges)1. The dataset includes 18124 SNPs of 
26500 samples, of which only 10000 random samples are used 
in this study, for the limitation on available processing power. 
The data comprises 18124 related SNPs, each of which is not 
determined to be related to the phenotype. For confidentiality 
reasons, neither the name of the phenotype nor the SNPs 
are given. Additionally, the SNPs are defined by their alleles, 
coded in “0”s and “1”s in two different columns, meaning that 
for each couple of columns, corresponding to a given SNP, 
the more frequent allele in the dataset for that specific SNP 
is coded as “0”, and the less frequent allele is coded as “1”. It 
should be noted that there is no reference genome specified in 
the data, so that the “more frequent” allele coded by “0” does 
not necessarily represent the “reference” allele. Moreover, the 
SNPs relative positions have been permuted, meaning that 
two columns of “01” and “10” are considered the same. 

3- METHODS
Regression is a statistical measurement estimating the 

relationship between one dependent variable, called outcome, 
and one or more independent variables called predictors 
or features. The most common form of regression is linear 
regression, in which the relationship between outcome 
and predictors is defined with a linear function. In linear 
regression, the only continuous outcome is permitted and they 
cannot predict categorical or binary outcomes.  In this case, 
the logistic regression is defined, modeling the probability of 
a certain category or class by using a logistic function. The 
probability of disease for any sample in these models can be 
generally written as (1):

( ) 1| , ( ) (1 )y y
n np y x p pβ −= −

 
(1)

Pn is the probability of being diseased defined as (2), in 
which y is the state of the person to have a special disease 
(y=1) or not (y=0), xn is the sequence of SNPs of the person, 
and β is the estimated coefficients for each SNP.
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As the goal of the logistic regression, the best coefficients 
are estimated by maximizing the likelihood (3) or log-

1  The dataset is not freely available. It was only available for the participants 
of the challenge, but may be attained upon request.
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In the case of high dimensional data, in which the number 
of variables is far more than samples and multicollinearity 
(correlations between predictor variables) is more probable, 
these models will not fit since they are not able to detect 
multicollinearity and also more likely to overfit. In order to 
overcome such problems, penalized models are introduced. In 
these models, a penalty is added to the log-likelihood; so that 
the coefficients are estimated considering the multicollinearity 
between variables, and because of the penalty on large 
fluctuations, overfitting is avoided. After adding the penalty, 
estimation would occur by minimizing (5)

( ) ( ) ( )0 0; ; ;  pl l Jβ β β β β= − +
 

(5)

where ( )0;l β β  , the likelihood of the coefficients ( 0β  is 
the constant coefficient and β  refers to the other coefficients), 
denotes the unrestricted log-likelihood function phrased in 
(4), l is the regularization parameter controlling the amount 
of shrinkage, of which the optimum should be found for 
the specific problem, and J(.) is the penalty function on the 
coefficient parameter. The reason that β0 is separated here 
from other coefficients is that the intercept is not penalized 
explicitly. The penalty function is determined based on the 
method, which should be properly selected depending on the 
problem. Three of the frequently used penalization methods 
are Ridge, Lasso and Elastic Net, all of which are implemented 
and discussed in the following. 

RIDGE REGRESSION 
Ridge regression can create a parsimonious model when 

the number of predictor variables in a set exceeds the number 
of observations, or when a data set has multicollinearity, 
with the help of L2-regularization parameter, added to the 
log-likelihood. L2-regularization adds an L2 penalty, which 
equals the square of the magnitude of coefficients. In this 
model, all coefficients are shrunk by the same factor (none are 
eliminated). The study [9] has shown how Ridge estimators 
are used in the logistic regression model to obtain more 
realistic estimates for the parameters and to improve the 
predictive value of the model. The penalized log-likelihood 

function to be minimized in Ridge regression is (6), where 
I is the number of variables (SNPs). The tuning parameter λ 
controls the strength of the penalty term. When λ = 0, Ridge 
regression equals the ordinary logistic regression. If λ = ∞, all 
coefficients are shrunk to zero. The ideal penalty is therefore 
somewhere in between 0 and ∞.
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LASSO REGRESSION
Unlike the Ridge model, Lasso standing for Least 

Absolute Shrinkage and Selection Operator, performs L1-
regularization, which limits the size of the coefficients by 
adding an L1 penalty equal to the absolute value of the 
magnitude of coefficients (7). This sometimes results in the 
elimination of some coefficients altogether, which can yield 
sparse models. This particular type of regression is well-suited 
for high dimensional data, in which dimension reduction is 
needed or some special variables should be selected; but 
does not work as well as Ridge models on data showing high 
levels of multicollinearity. The same as the Ridge regression l 
is basically the amount of shrinkage, increasing from 0 to ∞ 
sets none to all of the coefficients to zero. The more the l, the 
more the coefficients are eliminated. 
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ELASTIC NET
Elastic Net (EN) is a combination of both Ridge and 

Lasso, since it adds both L1 and L2 regularizations to the log-
likelihood with the ratio of α (8). This has been performed 
to extend the models against some limitations of Lasso and 
Ridge. In high dimensional datasets, keeping all variables 
does not make much progress, thus, eliminating some of 
the least important and related variables to the response is 
needed to work with the data. On the other hand, in datasets 
with I number of variables and N number of samples, if I > 
N, the Lasso can select at most N variables. In addition to, 
Lasso models fail to make grouped selections, which refers 
to the selection of a group of genes having a high correlation 
with each other. In fact, Lasso models are only able to select 
one variable from a group and ignore the others. Elastic Net 
models with both regularizations overcome these problems. 
The L1 part of the penalty generates a sparse model and the 
L2 part removes the limitation on the number of selected 
variables, encourages grouping effect, and stabilizes the L1 
regularization path. Accordingly, it is expected to demonstrate 
better results than both previous models. 
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Preprocessing
The coding of the data (Table 1-a) was changed because: 

1) the prediction models are mostly based on the number of 
less frequent alleles that each SNP has, and 2) the same role 
of “01” alleles and “10” alleles in the importance of the SNP 
to the phenotype. In the new coding, each SNP is coded in 
[“0”, “1”, “2”] in only one column, based on the number of its 
minor alleles, whether none, only one, or both of its alleles are 
minor (Table 1-b).

4- RESULTS
Implementation of Ridge regression:
After finding the optimal lambda for each fold, the Ridge 

regression model was implemented on data. The optimal 
lambda in each fold is found using cross-validation and 
calculating the error according to the log of each lambda. The 
plot for one of the folds is presented in figure 1-a. Optimal 
lambda balances the accuracy and simplicity of the model. As 
figure 1-a shows, the MSE increases with lambda. There are 
two best lambdas for each model: first, the one that minimizes 
the prediction error and gives the most accurate model 
(indicated by the left dashed vertical line), and the second is 
the largest lambda that gives the error within one standard 
error of the smallest (indicated by the right dashed vertical 
line). 

Using the minimizer lambda leads to a higher accuracy 
but may increase the complexity of the model. However, in 
Ridge regression, since no variable is removed, practically the 
complexity of the model will not considerably decrease by the 
increase of lambda. As shown in Table 2, the complexity with 
minimizer lambda is even less with optimal lambda. Thus, the 
better choice would be the model with minimizer lambda, 
which gives the highest accuracy and smallest MSE. The 
accuracy and Area Under Curve (AUC), reported in table 2, 
is the mean of a 10-fold cross-validation that the ROC curve 
of each is shown in Figure 1 (b and c).

Implementation of Lasso regression:
As well as the Ridge regression models, Lasso models are 

implemented with both minimizer and optimal lambdas, 
found by cross-validation. As shown in Figure 2-a, the 
number of selected features is decreased by increasing the 
lambda.  ROC curves of each fold along with AUC is indicated 
in Figure 2 (b and c) for both minimizer and optimal lambda.

In Lasso models, as the lambda increases, more coefficients 
are shrunk to zero and more features are eliminated and thus, 
the complexity of the model will significantly decrease. So, in 
the case that the number of selected features is more important 
to be low, the largest permitted lambda that does not increase 
MSE that much, would be a better choice for building the 
model. As shown in Table 2, the mean accuracy and AUC 

of the Lasso models are higher with minimizer lambda, and 
since the runtime for models with optimal lambda does not 
differ that much (meaning that the complexity is not enough 
to cause trouble), the model with minimizer lambda is 
considered as a better choice.

Implementation of EN regression:
Since Elastic Net regression models are eliminating 

variables like Lasso, complexity should also be considered 
when choosing the best lambda for the model. Nevertheless, 
lambda is not the only parameter to be optimized. Alpha, as 
the mixing parameter between Ridge (α=0) and Lasso (α=1) 
should also be optimized along with lambda to find the best 
EN model. When implementing cross-validation, the optimal 
l and α are found among all their possible couples, like ones 
by which the model gives the least MSE. This will be repeated 
on each fold of the data to find the best parameters. Finding 
the best alpha and lambda in one random fold is visualized 
in Figure 3 (a and b). Based on Figure 3-a, the best choice 
for alpha would be the line including darkest points, since the 
color refers to the RMSE. Determining the best alpha would 
determine the minimizer and the optimal lambda, as shown 
in Figure 3-b.

ROCs of all 10-folds for both models with minimizer 
lambda and optimal lambda, are shown in Figure 3 (c and 
d). As the results in Table 2 shows, the model with minimizer 
lambda is better to choose compared to the model with 
optimal lambda, since the mean runtime for models with 
lminimizer is not much larger than the mean runtime for models 
with loptimal. Moreover, the mean number of selected variables 
in each does not differ much to make considerable variations 
in the complexity of the models. Thus, in the case of using 
Elastic Net regression on the data, it seems better to build the 
model with lminimizer rather than loptimal. 

Selected variables do not differ enough to make 
considerable variations in the complexity of the models. 
Therefore, in the case of using Elastic Net regression on the 
data, it seems better to build the model with lminimizer rather 
than loptimal. 

5- DISCUSSION
This study has been performed to compare the efficiency 

of three penalized regression methods on SNP data related 
to a specific disease (undisclosed because of confidentiality 
reasons). Each method is implemented by finding the best 
hyperparameters. Two values for lambda is determined as 
the best values in all three models: 1) minimizer lambda that 
minimizes the MSE of the model, and 2) optimal lambda that 
is the largest lambda having an error within one standard 
error of the smallest MSE. All models are implemented with 
both lambdas. Among them, the Ridge regression was found 
to be the least efficient and most complex, since it involved 
all variables, some of which may be completely irrelevant to 
the phenotype and thus increase the complexity of the model. 
EN regression presented better results with the less complex 
model since it reduced the number of model variables to 
approximately 9.4% of all variables. The highest accuracy and 
AUC were achieved by Lasso regression, which eliminates 
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irrelevant variables as much as possible, and thus, makes the 
model less complex. 

As shown in Table 3, comparing the results of the three 
regression models, it can be surely said that Lasso regression 
outperforms two other methods, giving higher accuracy 
and AUC, especially with minimizer lambda rather than the 
optimal lambda, with less time of implementation. The penalty, 
added in Lasso, reduces the degree of overfitting that occurs 
in the model. In addition, the higher accuracy and AUC in 
Lasso (rather than Ridge) indicates that the multicollinearity 
between variables is negligible, meaning that the probability 
of randomly eliminating a relevant independent variable, 
which may be a multicollinear variable, is very low. 

The only published effort on this data with different models 
such as SVM, MLP, and X Gradient Boosted Tree is available 
on https://github.com/scouvreur/DiseasePredictionDNA, 
which has reported AUCs below 0.80 for all cases.  
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