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ABSTRACT:  This paper presents a robust control scheme for distributed generations (DGs) in islanded 
mode operation of a microgrid (MG). In this strategy, assuming a dynamic slack bus with constant 
voltage magnitude and phase angle, nonlinear equations of the MG are solved in the slack-voltage-
oriented synchronous reference frame, and the instantaneous active and reactive power reference for 
the slack bus is obtained at each time step, based on Y_bus  equation of the MG. The slack bus power 
references are robustly tracked by the proposed adaptive sliding mode based power controller. In addition, 
a hyper-plan sliding controller is suggested for other DGs that provides three regulators including active 
power, reactive power and voltage regulator for DG units and ensures protection of the power electronic 
interfaces to the faults assumed to have occurred in the MG. At each step time, DGs are modeled as 
positive and negative current sources that are controlled by their adaptive sliding mode controllers in 
the normal and abnormal operating conditions. All the parameters of controllers are derived via particle 
swarm optimization (PSO) algorithm in order to minimize an appropriate cost function. Performance of 
the proposed control strategy is compared to the performance of the conventional master-slave based 
control strategy. The validity and effectiveness of the presented method are supported by time domain 
simulation of a test microgrid in MATLAB.
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1. INTRODUCTION
A microgrid (MG) system usually refers to a part of a low-

or medium-voltage distribution system, which is comprised 
of several distributed generators (DGs), a cluster of local 
loads and energy storage devices [1]. It is very important to 
control a MG due to its automation in both islanded and grid-
connected modes of operation. The most important challenges 
in MGs protection and control include uncertainties, dynamic 
modeling and stability; control and reliability issues are more 
significant in islanded mode [1,2]. Most DGs are based on 
electronically-interfaced where the primary control shares 
power and inverts output voltage. The controllers can be 
developed in dq  coordinate (as PI-based controllers), 
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1. Introduction 

A microgrid (MG) system usually refers to a part of a low-or medium-voltage distribution system, which is 

comprised of several distributed generators (DGs), a cluster of local loads and energy storage devices [1]. It is 

very important to control a MG due to its automation in both islanded and grid-connected modes of operation. 

The most important challenges in MGs protection and control include uncertainties, dynamic modeling and 

stability; control and reliability issues are more significant in islanded mode [1,2]. Most DGs are based on 

electronically-interfaced where the primary control shares power and inverts output voltage. The controllers 

can be developed in dq coordinate (as PI-based controllers), αβ frame (as Proportional-Resonant (PR) 

controllers), or abc frame (as hysteresis, or dead-beat) [2]. Power sharing control strategies of the DGs can be 

divided into two categories: droop-based and non-droop-based. The main objective of the primary control 

irrespective of whether it is droop-based or non-droop-based, is to ensure that the output voltage of the DG is 

sinusoidal with adjustable magnitudes and phase angles under any loading conditions and faults. In addition, 

the control strategy must be robust against parameter uncertainties and transitions between islanded and grid-

connected modes of the MG [2,3]. In the Droop based method, the DGs participate in adjusting voltage and 

frequency of the MG, the total active and reactive power demand of the MG is locally shared among DG units 

without using any communications among them. However, the frequency and voltage of the MG deviate and a 

complementary control scheme is required to restore frequency and voltage [4–7]. Then, the supervisor should 

send proper signals through the intercommunication links periodically. Moreover, the power sharing under 

droop control method highly depends on the impedance of the filter of the interface inverter and impedance of 

the interlink line. Poor transient performance, the inability for black start up after system collapse and ignoring 

 
frame (as Proportional-Resonant (PR) controllers), or abc  
frame (as hysteresis, or dead-beat) [2]. Power sharing control 
strategies of the DGs can be divided into two categories: 
droop-based and non-droop-based. The main objective of the 
primary control irrespective of whether it is droop-based or 
non-droop-based, is to ensure that the output voltage of the 
DG is sinusoidal with adjustable magnitudes and phase angles 
under any loading conditions and faults. In addition, the 
control strategy must be robust against parameter uncertainties 
and transitions between islanded and grid-connected modes 
of the MG [2,3]. In the Droop based method, the DGs 
participate in adjusting voltage and frequency of the MG, the 

total active and reactive power demand of the MG is locally 
shared among DG units without using any communications 
among them. However, the frequency and voltage of the MG 
deviate and a complementary control scheme is required to 
restore frequency and voltage [4–7]. Then, the supervisor 
should send proper signals through the intercommunication 
links periodically. Moreover, the power sharing under droop 
control method highly depends on the impedance of the filter 
of the interface inverter and impedance of the interlink line. 
Poor transient performance, the inability for black start up 
after system collapse and ignoring load dynamics are the other 
disadvantages of the conventional droop control technique 
[8–10]. For accurate power sharing and regulating frequency 
and voltage of the network, a modified droop characteristic 
is proposed in [11] which is composed of the angle droop, 
the frequency droop and the changed voltage droop. The 
combined droop control scheme can decrease the frequency 
deviation of the network and share the active and the reactive 
power accurately with appropriate droop coefficients. 
In [12], an adaptive droop controller has been proposed 
based on a superimposed frequency in which the power 
sharing is performed more accurately than the conventional 
droop method. In this paper, both primary and secondary 
controllers use local measured parameters without extra 
communication links, which increases stability and reliability. 
However, power sharing accuracy is increased by adapting the 
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droop gains that the main drawback is the stability reduction. 
In [13], a control method has been presented based on 
combination of the virtual impedance, voltage compensation 
and droop method for a balanced power sharing among DG 
units with insignificant frequency and voltage deviations. 
However, this paper has used the conventional PI controller 
which should be re-tuned in different conditions and it is not 
robust and stable. In [14], a multivariable controller design 
based on droop method has been presented which consists 
of Cascade, feed-forward and repetitive controllers. The 
proposed strategy regulates the frequency and voltage of the 
balanced, unbalanced, and nonlinear loads. However, poor 
transient response and low stability margin are drawbacks 
of this control method. The most widely adopted technique 
of non-droop-based control is the master-slave method, in 
which, one DG operates as the master unit for adjusting the 
frequency and voltage magnitude of the network, while the 
other DGs transfer the pre-defined amount of power [15–
19]. In practice, a microgrid should be able to operate under 
all balanced/unbalanced loading conditions and normal/
fault conditions without any performance degradations. In 
the presence of unbalanced loads or faults, a DG unit must 
inject a portion of the negative-sequence current to balance 
the load voltages. A number of control strategies on robust 
control applications for microgrids have been proposed 
under undesirable conditions. The H∞ and μ-synthesis robust 
controls are the linear robust control techniques which provide 
effective control methods for dynamical systems. But, most 
linear robust control methods suggest complex statefeedback 
controllers, whose orders are not smaller than the order of the 
controlled systems [20-22]. Sliding-mode controller (SMC) is 
an effective nonlinear robust controller with invariant control 
effect on internal perturbations and external disturbances if 
the controlled state trajectory slides along the designed sliding 
surface [23]. The combination of adaptive control techniques 
and SMC is established as a beneficial robust technique for 
MG control with real external disturbances and parametric 
uncertainties in islanded microgrids under unbalanced loads 
[23-26]. An adaptive sliding mode controller (SMC) has 
been proposed in [23] to increase the rejection of external 
disturbances and internal perturbation to assure robustness 
of the control system of the inverter. In this work, only the 
output voltage of the DGs is controlled without considering 
current amplitude under fault condition. Reference [24] has 
considered a voltage-control scheme for an islanded MG, 
based on fractional-order SMC. However, the suggested 
fractional-order SMC in [24] regulates the terminal voltage 
of the DG units without controlling the current. Thus, the 
major problem is the stability. A control strategy has been 
presented based on SMC in reference [25] for DG units. 
The recommended control scheme presents a stable and fast 
control on frequency and voltage of the DGs. However, the 
negative components of voltage and current are not considered 
in this control scheme.  A recursive fast terminal sliding mode 
control (FTSMC) has been developed in [26] for a MG system. 
A voltage controller based on recursive approach of FTSMC 
has been used to control the bus voltage closer to the upstream 

grid and farther away from the DG units in a grid-connected 
MG. Reference [27] has proposed a droop-free strategy that 
fulfills both the secondary and the primary control aims for 
an Islanded MG. Active, reactive and voltage controllers use 
its local and neighbor’s data to update information. But, any 
communication link failure needs instantaneous maintenance 
before other links fail. Thus, reliability of the system is weak.

Adopting the droop-free characteristic for an autonomous 
multi-bus MG, the main contribution of this work is to 
suggest a dynamic slack bus with constant voltage magnitude 
and phase angle. Nonlinear equations of the MG are solved 
in the slack-voltage-oriented synchronous reference frame, 
and the instantaneous active and reactive power references of 
slack bus are obtained at each time step. Since the amplitude 
and phase of the slack bus are forced to remain constant, the 
frequency and voltage of the MG are controlled. An adaptive 
sliding mode controller is introduced to adjust the active and 
reactive power quantities which must be provided by the slack 
bus DG, robustly. Moreover, adaptive hyper-plane sliding 
mode power controllers are introduced to regulate the output 
active and reactive power and output voltage of other DGs, 
robustly. The proposed control scheme is designed to work 
independently from the network topology, system parameters, 
and load models of the MG. In section 2, the robust control 
strategy based on a dynamic slack unit is proposed. An 
adaptive sliding mode based active power controller and a 
hyper-plane sliding mode based reactive power controller are 
developed in section 3. Section 4 represents the simulation 
results to verify the validity and effectiveness of the presented 
control methods. Finally, the paper is concluded in section 5.

2. THE PROPOSED VOLTAGE CONTROL FOR SLACK 
UNIT 

In the island mode operation, the DG unit with the highest 
power rating (DG1) can be operated as a dynamic slack bus. 
Therefore, the slack unit must generate the required amounts 
of active and reactive powers such that the voltage magnitude 
and angle of the slack bus are forced to be constant at their 
respective references. In the following, the design procedure of 
the proposed control strategy is explained. Consider a multi-
DG grid-connected MG, numbering the DGs terminal buses 
from 1 to M and remaining buses from M+1 to N (Fig 1.) 
The loads can be represented by their equivalent impedances. 
Quasi-static networks are usually described by the admittance 
matrix of busY . Define the vectors:
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Iod(t)
Ioq(t)

0
0

] =
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[
 
 
 VGd(t)
VGq(t)
VPd(t)
VPq(t)]

 
 
 
 

 
 
(1) 

 

with  

VGd(t) = [VG1,d(t)  VG2,d(t) … VGM,d(t)]
T
 (2) 

VGq(t) = [VG1,q(t)  VG2,q(t) … VGM,q(t)]
T
 (3) 

Iod(t) = [Io1,d(t)   Io2,d(t)  … IoM,d(t)]
T
 (4) 

Ioq(t) = [Io1,q(t)   Io2,q(t)  … IoM,q(t)]
T
 (5) 

Where VPd and VPq are voltages of the load buses and the remaining buses from M+1 to N. At each step time 

of(∆t), based on network Ybus equations, nonlinear equations of the microgrid are solved in the slack voltage 
oriented synchronous reference frame and then output voltages of the DGs (vectorVG) are obtained. In transient 
state conditions of the microgrid, the same as steady state conditions, the first DG unit is assumed to act as a 
dynamic slack bus with a constant voltage magnitude and reference angle. Considering this assumption, the 

reference vector VG
refis derived from V𝐺𝐺 such that only the terminal voltage of the slack (DG1) unit is replaced 

with reference value VG1dq
ref  : 

VG
ref = [VG1dq

ref  VG2,dq … VGM,dq ]T (6) 

Based on the obtained VG
ref and considering the matrix equation (1): 

[VPd
ref(t)

VPq
ref(t)] = − [Re{YPP}  − Im{YPP} 

Im{YPP}     Re{YPP} 
]
−1

([Re{YPG}  − Im{YPG} 
Im{YPG}     Re{YGG} ] [VGd

ref(t)
VGq

ref(t)]) (7) 

  (1)

with 

( ) ( ) ( ) ( ) T
Gd G1,d G2,d GM,dV t V t   V t   V t = …   

(2)

( ) ( ) ( ) ( ) T

Gq G1,q G2,q GM,qV t V t   V t   V t = …   
(3)



109

E. Rokrok et al. , AUT J. Elec. Eng., 52(1) (2020) 107-120, DOI:   10.22060/eej.2019.14901.5246

( ) ( ) ( ) ( ) T
od o1,d o2,d oM,dI t I t    I t    I t = … 

 
(4)

( ) ( ) ( ) ( ) T

oq o1,q o2,q oM,qI t I t    I t    I t = …   
(5)

Where 
PdV  and PqV  are voltages of the load buses and 

the remaining buses from M+1 to N. At each step time of  
(
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), based on network busY  equations, nonlinear equations 
of the microgrid are solved in the slack voltage oriented 
synchronous reference frame and then output voltages of the 
DGs (vector GV ) are obtained. In transient state conditions of 
the microgrid, the same as steady state conditions, the first 
DG unit is assumed to act as a dynamic slack bus with a 
constant voltage magnitude and reference angle. Considering 
this assumption, the reference vector ref

GV is derived from VG
 

such that only the terminal voltage of the slack ( )DG1  unit is 
replaced with reference value ref

G1dqV  :
Tref ref

G G1dq G2,dq GM,dqV V  V  V   = …   
(6)

Based on the obtained ref
GV  and considering the matrix 

equation (1):

( )
( )

{ } { }
{ } { }

{ } { }
{ } { }

( )
( )

1ref
PP PPPd

ref
PP PPPq

ref
PG PG Gd

ref
PG GG Gq

Y  Y  V t
Y      Y  V t

Y  Y  V t
Y      Y  V t

Re Im
Im Re

Re Im
Im Re

−
   −

= −   
    
   −
           

(7)

( )
( )

{ } { }
{ } { }

( )
( )

{ } { }
{ } { }

( )
( )

ref ref
PG PGod Gd

ref ref
PG GGoq Gq

ref
PP PP Pd

ref
PP PP Pq

Y  Y  I t V t
 

Y      Y  I t V t

Y  Y  V t
Y      Y  V t

Re Im
Im Re

Re Im
Im Re

    −
= +    

       
  −
  
      

(8)

In fact, the matrix equations (7-8) are solved such that 
terminal voltage of the slack DG unit is forced to keep at its 
reference value. Then, the reference current of the slack unit 
(defined by ref

o1dqI ) is obtained at each step time of 
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, based 
on (8). The instantaneous active power references of the slack 
unit are obtained as:

 4 of 16 

[Iod
ref(t)

Ioq
ref(t)] = [Re{YPG}  − Im{YPG} 
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ref(t)

VGq
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reference frame in which the direct and quadrature axes are 
specified by d and q, respectively. Using the well-known Park 
transformation, the voltage and current equations in the 
synchronous rotating frame can be derived as:
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 are added to account disturbances 
and other un-modeled uncertainties for system equations. 
The instantaneous active and reactive powers injected by the 
DG unit to the connection bus can be represented as:

( ) ( ) ( ) ( )( )f fd fd fq fq
3P v t i t v t i t
2

= +
 

(16)

( ) ( ) ( ) ( )( )f fq fd fd fq
3Q v t i t v t i t
2

= − −
 

(17)

The main control objective for PQ controlled DGs is to 
adjust the active and reactive power delivered to the MG 
by the DG. To enhance the transient performance, and to 
increase the disturbance rejection ability and  reference 
tracking accuracy, an adaptive sliding mode controller based 
on direct power control strategy is suggested for positive and 
negative sequence of active and reactive power of all DG 
units. In order to eliminate the reaching phase and decreasing 
steady-state errors caused by nonlinear sliding motion, for 
the active power sliding mode controller, the integral based 
sliding function is chosen as:

t

Pf Pf IP Pf0
S e K e dt= + ∫  

(18)

where IPK  is positive constant gain and Pfe  is the error 
signal corresponding to the active power of the DG given by 
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*
Pf f fe P P= − . Based on the sliding mode control, it is required 

to restrict the controlled state to its corresponding sliding 
surface. Consider the sliding function (18), Differentiating 

PfS  yields:

Pf Pf IP Pf f IP Pf
d d dS e K e P K e
dt dt dt

= + = − +
 

(19)

In the typical Q control scheme, the reactive power 
reference might be selected directly (for example, Q* = 0), 
or might be chosen to provide a pre-defined voltage profile 
at the inverter output [2].  Stability and robustness of the 
conventional PI controller are weak against the faults, system 
uncertainties and unbalanced loads. Therefore it cannot be a 
desirable candidate for controlling the system. A hyper-plane 
sliding mode controller is proposed in this paper for the 
reactive power controller. (i) It does not require to know the 
online reactive power reference. (ii) The presented controller 
can force the voltage error towards zero asymptotically and 
also keep the reactive power bounded. The hyper-plane 
sliding function is defined as:

( )t

Qf Qf vf IQ Qf vf0
S e e K e e dt= + + +∫  

(20)

where IQK  is positive constant gain and Qfe  and vfe  are the 
error signals corresponding to the reactive power and output 
voltage of the DG given as follows:

*
Qf f fe Q Q ,= −

 
(21)

( )* 2 2
vf f f f fd fqe v v ,   v v v= − = +

 
(22)

where superscript (*) denotes the reference values. 
Reactive power reference ( *

fQ )) is defined as:

t*
f Iv vf0

Q K e dt= ∫  
(23)

where 
IvK  is the positive constant gain. Fig. 4 shows 

building the reference of the reactive power for use in the 
hyper-plane sliding function. 

Based on the sliding control strategy, it is necessary to 
restrict the controlled state to its corresponding sliding 
surfaces. Consider the sliding function (20), differentiating

, yields:

( )Qf Qf vf IQ Qf vf
d d dS e e K e e
dt dt dt

= + + +
 

(24)

where:
Another step is to define a control law so that  

leads to zero and is sustained thereafter. The aim is to design 
a desirable control law, u, such that the sliding functions (18) 
and (20) satisfy

Pf

Qf

d S
dt 0
d S
dt

 
 

= 
 
  

 

(25)

Considering (19), (24) and (12-17), it can be shown that 
(appendix A):
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The modified control law is considered to be 

u = [vid   viq]T = uao + uas = [vido   viqo]T + [vids   viqs]T
 (31) 

 where uaois used for the nominal system and uas deals with the system parameter variations and the 

external disturbances [23],[28-29]. First, it is assumed that S = 0, Ṡ = 0. Considering nominal values of the 
parameters, the equivalent SMC can be obtained by setting equation (26) to zero and selecting uao as follows: 

uao = [
vido
viqo

] = 2
3α [

vfd   vfq
vfq −vfd

]
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Considering uncertainties of the DG model, the controller designed in (32) is combined with adaptive 
term so that robust behavior is obtained from the developed closed-loop system. Clearly, if real parameters of 

the model are not equal to the nominal values, then Ṡ ≠ 0 and the system response will not settle on the sliding-
surface. Considering equation (26), derivative of the sliding-surface can be written as: 
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Ṡn = − A [ifd
ifq

] − [
vfd   vfq
vfq −vfd

] B − 3
2 [

vfd   vfq
vfq −vfd

] [
αvid
αviq

] + [KIP   0
0   KIQ

] [
ePf
eQf

]

+ [ 0
KIv + KIQ

] evf 
(35) 

μs = 3
2 [

ηd      ηq
ηq  − ηd

] [ifd
ifq

] + 3
2 [

vfd   vfq
vfq −vfd

] [ϑd
ϑq

] + 1
vf

[0          0
vfd    vfq

] [ ϑd
ϑq

] (36) 

 

 (28)

 7 of 16 

[
d
dt SPf

d
dt SQf

] = 0 
        

(25) 

Considering (19), (24) and (12-17), it can be shown that (appendix A): 

d
dt [SPf

SQf
] = − A [ifd

ifq
] − [

vfd   vfq
vfq −vfd

] B − 3
2 [

vfd   vfq
vfq −vfd

] [
αvid
αviq

] − [
0

d
dt vf

] + [KIP   0
0   KIQ

] [
ePf
eQf

]

+ [ 0
KIv + KIQ

] evf − 3
2 [

ηd      ηq
ηq  − ηd

] [ifd
ifq

] − 3
2 [

vfd   vfq
vfq −vfd

] [ϑd
ϑq

] 

        (26) 

A = 3
2 [

γ(ifd − iod) + ω0vfq     γ(ifq − ioq) − ω0vfd
γ(ifq − ioq) − ω0vfd  − γ(ifd − iod) − ω0vfq

] 
 

(27) 

B = 3
2 [

α(−vfd − βifd) + ω0ifq
α(−vfq − βifq) − ω0ifd

] 
 

(28) 

d
dt vf =

2vfd
dvfd

dt + 2vfq
dvfq

dt
2√vfd

2 + vfq
2

 

= 1

√vfd
2 + vfq

2
(vfd(γ(ifd − iod) + ω0vfq + ϑd) + vfq(γ(ifq − ioq) − ω0vfd + ϑq)) 

 

 
(29) 

d
dt vf = 1

√vfd
2 + vfq

2
[vfd  vfq] ([

γ(ifd − iod) + ω0vfq
γ(ifq − ioq) − ω0vfd

] + [ ϑ𝑑𝑑
ϑ𝑞𝑞

]) 
(30) 

 

The modified control law is considered to be 

u = [vid   viq]T = uao + uas = [vido   viqo]T + [vids   viqs]T
 (31) 

 where uaois used for the nominal system and uas deals with the system parameter variations and the 

external disturbances [23],[28-29]. First, it is assumed that S = 0, Ṡ = 0. Considering nominal values of the 
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The modified control law is considered to be
T

id iq ao as

T T
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 where aou is used for the nominal system and asu  deals 
with the system parameter variations and the external 
disturbances [23],[28-29]. First, it is assumed that  S 0,  S 0= = . 
Considering nominal values of the parameters, the equivalent 
SMC can be obtained by setting equation (26) to zero and 
selecting aou  as follows:
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the model are not equal to the nominal values, then Ṡ ≠ 0 and the system response will not settle on the sliding-
surface. Considering equation (26), derivative of the sliding-surface can be written as: 
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external disturbances [23],[28-29]. First, it is assumed that S = 0, Ṡ = 0. Considering nominal values of the 
parameters, the equivalent SMC can be obtained by setting equation (26) to zero and selecting uao as follows: 

uao = [
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] = 2
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Considering uncertainties of the DG model, the controller designed in (32) is combined with adaptive 
term so that robust behavior is obtained from the developed closed-loop system. Clearly, if real parameters of 

the model are not equal to the nominal values, then Ṡ ≠ 0 and the system response will not settle on the sliding-
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where, nS  is the sliding-surface for the nominal 
parameters while all of the system uncertainties are expressed 
by 
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where, Sn is the sliding-surface for the nominal parameters while all of the system uncertainties are expressed 
by μs. Clearly, on the sliding-surface, Sn = S = 0. In this paper, corresponding to the lumped uncertainty given 
in (36), the adaptive term uasis modified as [28-29]: 

uas = [
vids
viqs

] = 2
3α [

vfd   vfq
vfq −vfd

]
−1

{Γ̂sgn(S)}         (37) 

 where, Γ̂ is an adjustable gain constant. In order to keep the trajectory on the sliding surface, size of the 
uncertainties should be bounded. Assume that there exists a positive number Γd such that: 

 uas = [
vids
viqs

] = 2
3α [

vfd   vfq
vfq −vfd

]
−1

{Γ𝑑𝑑sgn(S)} is a terminal solution for uas, where Γd must satisfy Γd  > |μs|. If 

the adaptive law is chosen as: 
d
dt Γ̂ = γs

−1. 𝑆𝑆         (38) 

where γs is a diagonal matrix, in which the diagonal entries are positive adaption gains. In addition, by selecting 

an appropriate adaptation gain γs, high control activity in the reaching mode can be prevented effectively. As 
an illustration, one may also define γsto be a function of S and make it vary before the sliding surface is 

achieved.  Define the adaption error as Γ̃ = Γ̂ − Γd. In order to prove the stability of the adaptive sliding control 
law for the inverters operating in the islanded MG, a Lyapunov function is defined as follows: 

V = 1
2 STS + 1

2 Γ̃TγsΓ̃         (39) 

Differentiating V with respect to time yields: 
d
dt V = ST( d

dt S) + Γ̃Tγs( d
dt Γ̃)         (40) 

Considering (27), it can be acquired that: 
d
dt V = ST(−μs − Γ̂sgn(S)) + (Γ̂ − Γd)Tγs( d

dt Γ̂)         (41) 

then 
d
dt V = ST (−μs − Γ̂sgn(S)) + (Γ̂ − Γd)Tγs(γs

−1|S|)
= −STμs − STΓ̂sgn(S) + STsgn(S)(Γ̂ − Γd) = −STμs − Γd|S| < 0 

        (42) 

 
Because the time-derivative of the Lyapunov function, V, is negative definite, the suggested voltage 

control strategy is asymptotically stable. Both 𝑆𝑆 and  Γ̃ reach zero in finite time, i.e., 𝑆𝑆 → 0  and Γ̂ → Γd . 
Therefore, ePf → 0 , eQf → 0 and evf → 0  can be proved through definition of the sliding surfaces in (18) and 

(20).  Thus, the convergence of the adaptive gain parameter Γ̂ and the reaching of sliding mode, as well as the 
tracking control can be guaranteed [28].  It can be assumed that the commanded voltage u = uao + uas  seems 
at the input of the filter inductor i.e.(uao + uas = vidqo + vidqs = vidqk). Under fault condition, voltage of the 

DG drops, therefore, power controller increases current of the DG in response to the voltage drop. For over-
current protection, the active and reactive power references should be limited as a function of the actual output 
voltage amplitude of the DG. Based on the maximum output current of the DG, Imax, and the active and reactive 
power references, the minimum amplitude of the voltage of the DG, Vmin, can be obtained as: 

Vmin =
√Pref

2 + Qref
2

Imax
 

       

(43) 
If 𝑉𝑉𝑓𝑓 < 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚, the reactive power delivered by the DG unit should be limited to: 

Qmax = VfImaxsinφ         φ = tan−1(Qref
Pref

)         

(44) 

. Clearly, on the sliding-surface, nS S 0= = . In this paper, 
corresponding to the lumped uncertainty given in (36), the 
adaptive term asu is modified as [28-29]:
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an illustration, one may also define γsto be a function of S and make it vary before the sliding surface is 
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law for the inverters operating in the islanded MG, a Lyapunov function is defined as follows: 
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an illustration, one may also define γsto be a function of S and make it vary before the sliding surface is 

achieved.  Define the adaption error as Γ̃ = Γ̂ − Γd. In order to prove the stability of the adaptive sliding control 
law for the inverters operating in the islanded MG, a Lyapunov function is defined as follows: 
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within the allowable limits (see Fig. 4). Therefore, the over-current protection of the converter can be easily 
ensured in case that voltage of the DG drops. 
The tunable parameters in the designed sliding functions are KIP, KIQ , KIV and Γd , where the selected 

parameters are searched by using the PSO algorithm in given parameter spaces under normal condition. The 

cost function in the PSO algorithm is critical for the searching performance [29]. In this paper, a quantitative 

performance index based on the sum of the absolute active power, reactive power and voltage deviations is 

adopted as the cosy function, which is: 

J(t) = ∑ ∫ (|ePfi|2 + |eQfi|
2 + |eVfi|2) dt

t1

0

n

i=1
         

(45) 
where n is the number of the DGs, and t1 is the total simulation time. Smaller cost value indicates better control 

performance.  The number of the optimized parameters is 3n, and the optimized parameter set is𝐾𝐾 =
[𝐾𝐾𝐼𝐼𝐼𝐼1, 𝐾𝐾𝐼𝐼𝐼𝐼1, 𝐾𝐾𝐼𝐼𝐼𝐼1, Γd1 … , 𝐾𝐾𝐼𝐼𝐼𝐼4, 𝐾𝐾𝐼𝐼𝐼𝐼4, 𝐾𝐾𝐼𝐼𝐼𝐼4, Γd4 ].  
According to the investigation of related work and design experience, the searching ranges of these parameters 
are set as KIP = [1000; 10000], KIQ = [1000; 10000], Γd = [1e3; 2e3]and KIV = [0; 20].The number of the 

particles and the initial maximum velocity are chosen as 20 and 10% of the searching upper limit corresponding 

to each parameter. For the jth particle in the ith generation, the particle updates its velocity and location by 

using the following equations 

vij(t + 1) = w(t)vij(t) + c1 (pbest − xij(t)) + c2(gbest − xij(t))         (46) 

xij(t + 1) = xij(t) + vij(t + 1) (47) 
where xij(t) and vij(t) represent the location and the velocity at time t, pbest expresses the local best location, 

and gbest is the global best location. w(t) is the learning rate from the initial value 0.9 decreasing to the final 
value 0.4. By minimizing the cost function J(t)over time, the algorithm can obtain the optimal parameters [29]. 

 

4. Simulation Results 

In order to verify effectiveness of the suggested control scheme, the test autonomous MG system shown 
in Fig.5 is simulated in MATLAB. Moreover, the performance of the proposed control strategy is compared 
with the master slave control strategy represented in [25] to demonstrate effectiveness of the dynamic slack 
strategy. Of course, the only master unit (DG1) employs voltage mode conventional SMC based controller of 
[25] while the rest of the controllers use the proposed adaptive based controller. In the proposed control strategy, 
the DG1 employs the same adaptive power controller as the other units. Parameters of the DGs and its controller 
gains are given in Table 1. The initial steady state condition of the MG is obtained by means of AC load flow 
analysis. For any scenario that occurs in the MG system, the nonlinear differential equations of the system are 
solved by means of MATLAB code. Two types of load are considered for evaluating effectiveness of the 
presented control strategy; (1) balanced linear loads, (2) unbalanced linear loads. The balanced loads are 
connected through 13.8/0.48 kV transformers and consist of three star-connected series RL loads. The 
unbalanced load is constructed through a 13.8/0.48 kV transformer that consists of a series RL load between 
phase-a and the neutral conductor and its two other phases are open. The load inductance and resistance are 40 
µH and 30 mΩ, respectively. 
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value 0.4. By minimizing the cost function J(t)over time, the algorithm can obtain the optimal parameters [29]. 

 

4. Simulation Results 

In order to verify effectiveness of the suggested control scheme, the test autonomous MG system shown 
in Fig.5 is simulated in MATLAB. Moreover, the performance of the proposed control strategy is compared 
with the master slave control strategy represented in [25] to demonstrate effectiveness of the dynamic slack 
strategy. Of course, the only master unit (DG1) employs voltage mode conventional SMC based controller of 
[25] while the rest of the controllers use the proposed adaptive based controller. In the proposed control strategy, 
the DG1 employs the same adaptive power controller as the other units. Parameters of the DGs and its controller 
gains are given in Table 1. The initial steady state condition of the MG is obtained by means of AC load flow 
analysis. For any scenario that occurs in the MG system, the nonlinear differential equations of the system are 
solved by means of MATLAB code. Two types of load are considered for evaluating effectiveness of the 
presented control strategy; (1) balanced linear loads, (2) unbalanced linear loads. The balanced loads are 
connected through 13.8/0.48 kV transformers and consist of three star-connected series RL loads. The 
unbalanced load is constructed through a 13.8/0.48 kV transformer that consists of a series RL load between 
phase-a and the neutral conductor and its two other phases are open. The load inductance and resistance are 40 
µH and 30 mΩ, respectively. 

 

The number of the particles and the initial maximum velocity 
are chosen as 20 and 10% of the searching upper limit 
corresponding to each parameter. For the jth particle in the 
ith generation, the particle updates its velocity and location 
by using the following equations
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where ( )ijx t  and ( )ijv t  represent the location and the 
velocity at time t, pbest  expresses the local best location, and 
gbest  is the global best location. ( )w t  is the learning rate 
from the initial value 0.9 decreasing to the final value 0.4. By 
minimizing the cost function ( )J t over time, the algorithm 
can obtain the optimal parameters [29].
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scheme, the test autonomous MG system shown in Fig.5 
is simulated in MATLAB. Moreover, the performance of 
the proposed control strategy is compared with the master 
slave control strategy represented in [25] to demonstrate 
effectiveness of the dynamic slack strategy. Of course, the only 
master unit (DG1) employs voltage mode conventional SMC 
based controller of [25] while the rest of the controllers use the 
proposed adaptive based controller. In the proposed control 
strategy, the DG1 employs the same adaptive power controller 
as the other units. Parameters of the DGs and its controller 
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gains are given in Table 1. The initial steady state condition of 
the MG is obtained by means of AC load flow analysis. For any 
scenario that occurs in the MG system, the nonlinear differential 
equations of the system are solved by means of MATLAB code. 
Two types of load are considered for evaluating effectiveness 
of the presented control strategy; (1) balanced linear loads, (2) 
unbalanced linear loads. The balanced loads are connected 
through 13.8/0.48 kV transformers and consist of three star-
connected series RL loads. The unbalanced load is constructed 
through a 13.8/0.48 kV transformer that consists of a series RL 
load between phase-a and the neutral conductor and its two 
other phases are open. The load inductance and resistance are 
40 µH and 30 mΩ, respectively.

4.1. Connection and disconnection of DG2, DG3 and DG4 
In order to force the magnitude and phase angle of the 

slack bus voltage to be constant at the respective command, 
the slack bus power references are robustly tracked by the 
proposed adaptive sliding mode based power controller. 

This case illustrates the responses of the system to stepwise 
changes in their active power commands both with the 
proposed control strategy and the master slave strategy. At 
first, the microgrid operates in the autonomous mode but, the 
active power references of all DG units are set to their rated 
values. In this case, DGs generate enough reactive power to 
maintain their voltage in the reference value of the microgrid. 
Fig. 6, Fig. 7 and Fig. 8 show active, reactive power and output 
voltages of DGs with the connection and disconnection of 
DG2, DG3 and DG4. As Fig 6 shows at t = 0.2s, the DG2 
is disconneted from respective bus. At t = 0.4s, the DG4 is 
disconnected from the MG and the DG2 is conneted to the 
MG. At t = 0.6s, the active power references of DG2, DG3 
and DG4 are set to ,  and
. Finally, at t = 0.8s, the active power references of all of DGs 
are set to the respective command. Fig. 7 illustrates response 
of the DG1 to connection and disconnetion of DG2, DG3 and 
DG4 using the proposed control strategy and the master slave 
strategy. As Fig 7 shows output power of DG1 increases after 

𝑉𝑉𝑠𝑠−𝑟𝑟𝑟𝑟𝑠𝑠
𝑓𝑓𝑠𝑠

𝑉𝑉𝑑𝑑𝑑𝑑
𝑅𝑅𝑓𝑓
𝐿𝐿𝑓𝑓
𝐶𝐶𝑓𝑓
𝑓𝑓𝑠𝑠𝑠𝑠

Ω
μH
μF

𝐾𝐾𝐼𝐼𝐼𝐼
𝐾𝐾𝐼𝐼𝐼𝐼
𝐾𝐾𝐼𝐼𝐼𝐼
Γ𝑑𝑑

Table 1. DG parameters and its controller gains.

 
Fig. 6 the connection and disconnection of the DG2, DG3 and DG4.  

  
Fig. 6. the connection and disconnection of the DG2, DG3 and DG4. 
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Fig. 7 Responses of the DG1 to the connection and disconnection of the DGs 

  

disconnection of DG2, DG3 and DG4. Fig 8 shows the slack 
voltage (DG1) is set to 1 p.u. and the other voltages of the DGs 
are ramped to 0.98 p.u. It can be seen that the output powers 
of the DGs track their corresponding commands resulting in 
changes in the connection and disconnection of the DGs. It 
should be noted that the active and reactive power of the slack 
bus (DG1) is changed in order to force the voltage amplitude 
and phase of the slack bus to be constant. On the other hand, 
the reactive power references of all DGs are changed based on 
the hyperplane sliding mode controller in order to adjust the 
output voltage of the DGs flexibly. Fig. 7 and Fig. 8 illustrste 
the proposed method has better voltage control and operates 
faster and more accurately than the master slave method with 
more active and reactive power generation.

4.2. The system response to a single phase to ground fault 
This simulation shows the performance of the MG system 

under the single phase to ground fault, in an islanded MG 
(switch S is opened). In this case, at first, all DG units are 
connected to the MG and active powers are set to references 
value and reactive power references are flexible. At t =0.1s, 
a fault occurs in middle of the transmission line between 
buses 6 and 9 and at t= 0.2s, the fault is cleared. Fig. 9 
demonstrates performance of the MG to the fault. As shown 
in Fig 9(a), under this fault, the proposed adaptive controller 
is able to maintain the output voltage of the DG units at 
their corresponding references. Fig 9 (b-d) also shows that 
the active and reactive powers of the DG unit track their 
corresponding references. 

 
Fig. 8 The DGs voltages with the connection and disconnection of the DG2, DG3 and DG4  

  

Fig. 7. Responses of the DG1 to the connection and disconnection of the DGs

Fig. 8. The DGs voltages with the connection and disconnection of the DG2, DG3 and DG4 
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4.3. Response to unbalanced load 
In this case, the MG system is initially started under 

balanced condition, then an unbalanced load is added to bus 
17 and bus 18 at t = 0.1s. The unbalanced load is made up 
of a series RL load between phase-a bus 17 to ground and 
phase-b bus 18 to ground; inductance and resistance of the 
load are and . Fig. 10 illustrates response of 

the MG to the unbalanced loading. It can be seen that the 
output powers of the DGs track their respective references, 
resulting in corresponding changes in the reactive power of 
the DGs. The active power reference of DG2, DG3 and DG4 
are constant, but the reactive power references are flexible 
in order to hold the voltage constant. The active power of 
the DGs follow their reference values. However, under an 

 
Fig. 9 Responses of the MG to a single phase to ground fault. a) DGs voltages. b) Active and reactive powers of DG1. c-d) 

Active and reactive Powers of DGs respectively. 
   

 
Fig. 10 System responses to unbalanced load. a) DG2 cuurent. b) DG2 voltage. c-d) Active and reactive Powers of DGs 

respectively. 

  

Fig. 9. Responses of the MG to a single phase to ground fault. a) DGs voltages. b) Active and reactive powers of DG1. c-d) Active and 
reactive Powers of DGs respectively.

Fig. 10. System responses to unbalanced load. a) DG2 cuurent. b) DG2 voltage. c-d) Active and reactive Powers of DGs respectively.
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unbalanced condition, the instantaneous active and reactive 
power of the DGs experience double frequency oscillations. 
The output reactive powers of the DGs change further under 
this condition in order to maintain the output voltages and 
finally settles on new values. In order to evaluate robustness 
of the recommended controllers subject to parametric 
uncertainties, a 50% mismatch is considered for resistances 
and inductors of the filters from  and  to 

 and  at . Fig. 10 illustrates 
that the output voltages and currents of the DG units track 
their respective commands. A comparison between before 
and after mismatches illustrates that there is no considerable 
difference between the two responses.

4.4. Transferring between grid-connected and islanding 
modes

This simulation illustrates performance of the suggested 
control scheme in transitions from grid-connected mode to 
islanded mode of the MG. In this study, at first, switch S is 
closed. Therefore, the MG operates in the grid-connected 
mode and active references of DGs are set to their reference 
value, respectively. At t = 0.2s, the switch S is opened and the 
MG system operates in islanded mode. Fig .11 and Fig. 12 
show performance of the proposed strategy compared maste 
slave strategy for these transferring. Figure 11 shows that the 
proposed method is more accurate and faster than the m and 
has a more robust operation.

 
Fig. 11 Responses of the MG, transferring between grid-connected and islanded modes  

  

Fig. 11. Responses of the MG, transferring between grid-connected and islanded modes 
 

 

Fig. 12 Responses of the MG , transferring between grid-connected and islanded modes  

 

Fig. 12. Responses of the MG , transferring between grid-connected and islanded modes 
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5. CONCLUSIONS
This paper proposes an adaptive control scheme for 

autonomous operation of a multi-bus microgrid comprising 
several inverter-based DGs. Assuming a dynamic slack bus 
with a constant voltage magnitude and phase angle, the 
instantaneous active and reactive power components of 
the slack bus are obtained at each step time based on node 
equations of the microgrid. In order to obligate the voltage 
magnitude and angle of the slack bus to be constant at their 
corresponding commands, the obtained power components 
as the slack bus power references are tracked on-line by the 
proposed adaptive sliding mode based power controller. The 
lumped uncertainties imposed on the DG unit power dynamic, 
involving disturbances and DG parameter changes, are 
estimated through an adaptive algorithm. Moreover, a hyper-
plane sliding mode controller is designed for the rest of the 
DG units that regulate active, reactive and terminal voltages 
of DGs. Performance of the proposed adaptive strategy under 
normal and faulted conditions, balanced and unbalanced load 
and parameter uncertainties are demonstrated through time-
domain simulation and compared with the performance of 
a control strategy presented in [25]. The proposed controller 
is stable and robust against the unbalanced loads, faults and 
uncertainties of the system.
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bus to be constant at their corresponding commands, the obtained power components as the slack bus power 
references are tracked on-line by the proposed adaptive sliding mode based power controller. The lumped 
uncertainties imposed on the DG unit power dynamic, involving disturbances and DG parameter changes, are 
estimated through an adaptive algorithm. Moreover, a hyper-plane sliding mode controller is designed for the 
rest of the DG units that regulate active, reactive and terminal voltages of DGs. Performance of the proposed 
adaptive strategy under normal and faulted conditions, balanced and unbalanced load and parameter 
uncertainties are demonstrated through time-domain simulation and compared with the performance of a control 
strategy presented in [25]. The proposed controller is stable and robust against the unbalanced loads, faults and 
uncertainties of the system. 
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d
dt SPf = d

dt ePf + KIPePf = − d
dt Pf + KIPePf = 0               (A-1) 

dPf
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2 (dvfd
dt ifd + vfd
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dt +

dvfq
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dt ) 
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dPf
dt = AP [ifd

ifq
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Reactive power derevative: 
dQf
dt = 3

2 (
dvfq

dt ifd + vfq
difd
dt − dvfd

dt ifq − vfd
difd
dt ) (A-8) 

dQf
dt = AQ [ifd

ifq
] + [vfq −vfd]BQ + 3

2 [vfq −vfd] [
αvid
αviq

] + μsQ (A-9) 

dvf
dt =

(dvfd
dt vfd + dvfq

dt vfq)

√vfd
2 + vfq

2
= [vfq  − vfd]Cv (A-10) 

AQ = 3
2 [γ(ifq − ioq) − ω0vfd  − γ(ifd − iod) − ω0vfq] (A-11) 

BQ = 3
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α(−vfd − βifd) + ω0ifq
α(−vfq − βifq) − ω0ifd

] = BP (A-12) 
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2 3⁄
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μsQ = 3
2 [ηq  − ηd] [ifd

ifq
] + 3

2 [vfq −vfd] [ϑd
ϑq

] (A-14) 

d
dt SQf = −AQ [ifd

ifq
] − [vfq  − vfd]BQ − 3

2 [vfq  − vfd] [
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] − μsQ − [vfq  − vfd]Cv

+ (KIQ + KIv)evf + KIQeQf

(A-15) 
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