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ABSTRACT:  Improper designs of the demand response programs can lead to numerous problems 
such as customer dissatisfaction and lower participation in these programs. In this paper, a home energy 
management system is designed which schedules appliances of smart homes based on the user’s specific 
behavior to address these issues. Two types of demand response programs are proposed for each house 
which are shifting-based and learning-based programs for shiftable and heating, ventilation and cooling 
appliances, respectively. The current structure uses machine learning techniques to design the best 
demand response programs for heating, ventilation and cooling devices of each user based on his/her 
behavior and desired comfort level. Doing so, the home energy management system is able to achieve 
energy cost and consumption reduction without causing dissatisfaction and discomfort to the users. 
Results demonstrate that by using this structure, energy cost and consumption are reduced by 20.32% 
and 27%, respectively for a single house located in the Austin, Texas area, in one day. The proposed 
home energy management structure is tested on three additional houses to show the effectiveness of 
it. Moreover, comparisons with other methods are performed to clarify the benefits of this structure 
over other methods. The proposed structure is formulated as a mixed-integer linear model with its 
optimization performed in the General Algebraic Modeling System environment. CPLEX solver is used 
to solve the optimization problem.
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1. INTRODUCTION
Introduction of the smart homes in the recent years 

has heightened the need for an efficient home energy 
management system (HEMS) which can communicate with 
the appliances and upper grid to perform demand response 
(DR) and schedule the consumption [1, 2]. A HEMS consists 
of software, hardware and communication protocols like Wi-
Fi and Zigbee and acts as the control center inside a house [3]. 
Also, it can decide about the participation of the smart home 
in DR programs by receiving the information from the upper 
grid and home appliances and performing optimization [4, 5].

Intensive research has been conducted in the literature 
regarding DR management by HEMS. In [6], demand 
response programs have been used inside a smart home to 
reduce energy costs and increase the utilization of renewable 
energy resources. A DR management system for smart homes 
has been presented in [7], which is based on minority game 
and reduces demand peak while fairly allocating the solar 
energy on the additional grid. Restricted and multi-restricted 
scheduling methods have been used in [8], for scheduling the 
appliances of smart homes by HEMS. For the optimization 

process grey wolf optimizer (GWO) has been utilized. To 
increase renewable uptake and decrease customers’ electricity 
bill, an intelligent battery control combined with solar 
generation inside HEMS has been proposed in [9] which 
also has considered consumer comfort. In [10], a versatile 
convex programming DR optimization framework has been 
used to automatically manage the different appliances inside 
a household. Operation of several classes of home appliances 
like deferrable, curtailable, thermal and critical ones has been 
managed by a HEMS in [11], using DR programs to reduce 
consumer’s electricity bill and minimize daily curtailed energy. 
A joint scheduling scheme for the electric supply and demand 
of HEMS has been presented in [12] to reduce electricity bill. 
Stochastic model of a HEMS has been presented by [13] which 
considers uncertainties of electric vehicles and generation 
of renewable energy resources and minimizes customer’s 
cost and response fatigue. A multi-objective mixed-integer 
nonlinear programming model for HEMS has been proposed 
by [14], which performs appliance scheduling in a way to 
achieve a balance between energy saving and comfortable 
lifestyle. In [15], energy scheduling of a household equipped 
with solar-assisted heating, ventilation, and air conditioning, 
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and water heating system has been performed to minimize 
energy cost and fulfill user’s thermal comfort requirements. 
An intelligent algorithm for HEMS has been proposed in 
[16], which manages loads according to their preset priority 
and guarantees power consumption below certain levels. A 
distributed framework for DR has been developed in [17], 
which is based on cost minimization and is solved using an 
approximate greedy iterative algorithm.

Modeling user behavior to obtain the best DR program 
without causing dissatisfaction to customers is crucial. To 
this end, multiple studies have attempted to model user 
behavior using different techniques. In [18], user behavior has 
been grouped into two comfort-seeking behavior and green 
incentive seeking behavior. Stochastic models have been used 
in [19, 20] to take user behavior uncertainty into account. 
Also, in [21] and [22] user’s behavior regarding thermal loads 
has been modeled using equivalent resistance-capacitance 
network and regression method, respectively. Energy 
consumption of the heating, ventilation and cooling (HVAC) 
systems has been modeled using the equivalent thermal 
parameters (ETP) in [23]. A novel learning-based method 
has been developed by [24], to model user behavior and DR 
regarding the HVAC systems. Modeling of user behavior is 
a complex problem due to the effects of seasonal changes, 
weather changes, personal habits, etc. on consumption 
pattern. The learning-based approach which is adopted from 
[24] is found to be the most accurate approach to model user 
behavior. Therefore, it is used in this paper to design the best 
DR program for users considering their HVAC consumption 
behavior. Moreover, a shifting-based DR is considered as well 
and the model is simplified as a mixed-integer linear model. In 
addition, the main contributions of this paper are as follows:

· Presenting a simplified mixed-integer linear model for 
HEMS of a smart home which considers user behavior;

· Considering two types of DR programs for home 
appliances which consist of learning-based and shifting-based 
DRs;

· Modeling user dissatisfaction in the objective function to 
prevent discomfort issues.

2. SYSTEM STRUCTURE
The proposed HEMS in this study is able to send and 

receive information from grid and individual appliances. It is 
also able to control the operation of the devices and perform 
DR based on the received information and the optimizations 
that it performs. The overall structure of the proposed HEMS 
is illustrated in Fig. 1. As can be seen, first, the data needed 
for the optimization and training process is obtained from 
the smart meter. This data includes next-day electricity price, 
desired comfort level, indoor and outdoor temperature for 
the optimization process and one-week HVAC consumption 
data, thermostat setting, indoor and outdoor temperature for 
the training process. Next, by using the one-week user data, 
training is performed to derive HVAC system’s consumption 
model. At this stage, unsupervised machine learning 
technique is used to obtain HVAC consumption as a function 
of thermostat setting, indoor and outdoor temperature. 
A schematic of the proposed neural network structure 
is depicted in Fig. 2. For the training process, one-week 
thermostat setting, indoor and outdoor temperature data is 
given as the input to this neural network while the target data 
is one-week HVAC consumption. An iterative algorithm is 
implemented here which updates the weights (wi) and biases 
of the neural network in each iteration to find the ideal weights 

 

Fig. 1. Proposed HEMS structure 

  

Fig. 1. Proposed HEMS structure
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and biases that can be used to model the target as a function of 
the input parameters. In order to simplify the HVAC model, 
Leaky Rectified Linear Unit (Leaky ReLU), shown by f(x) in 
Fig. 2, is used as the activation function. In the third stage, 
optimization is performed by HEMS to minimize energy cost 
and user dissatisfaction and as a result of this optimization 
process, the best next-day DR program for user is obtained 
which includes best thermostat setting for HVAC systems and 
start time of shiftable loads. 

3. PROBLEM FORMULATION
The formulation regarding the optimization process of the 

HEMS is presented in the following subsections.

3-1- Objective function
As mentioned before, the objective of the HEMS in this 

study is to minimize the energy bill and dissatisfaction of 
the electricity user. Therefore, the objective function of this 
optimization problem is formulated as Eq. (1). The energy 
cost which is presented by Grid

tC  is simply calculated by 
multiplying per kWh electricity price ( e

tπ ) in the bought 
power from the grid ( buy

tP ) as in Eq. (2). As can be seen 
from Eq. (3), user dissatisfaction cost, which is represented by 

DR
tC , consists of two terms that are dissatisfaction caused by 

shifting of loads and dissatisfaction caused by DR of HVAC 
loads.

 Grid DR
t t

t

OF min C C= +∑   (1)
 

Grid e buy
t t tC Pπ=   (2)

 
shiftDR hvac

t ,h t ,h t ,hC d d= +   (3)

3-2- User dissatisfaction
In order to model the dissatisfaction caused to users by 

shifting of shiftable loads, Eq. (4) is used. Parameter shα  
shows the dissatisfaction cost per kWh of shifted loads. Also, 

stt  and , st

shift
t tP  show the desired start time and shifted power of 

shiftable loads, respectively. Dissatisfaction cost of the HVAC 

loads is calculated by Eq. (5) where hvacβ  shows the overall 
desired comfort level of the user, Fhvac

tP  shows the forecasted 
power consumption of HVAC loads and hvac

tP  stands for the 
power consumption of these loads. Moreover, tλ  represents 
the hourly desired comfort level for the HVAC system and 
ranges between 0 to 1. Both models have been adopted from 
[25] and linearized using a piecewise linear function similar 
to [26].

 
,

shift

st

st

sh shift
t st t t

t

d t t Pα= −∑
 

 (4)

 
( [1 ( ) ])t
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hvac hvac Fhvac e t
t t t Fhvac

t

Pd P
P

λβ π= −   (5)

Two linear functions are used to linearize Eq. (5). For 
this purpose, Eq. (6) to Eq. (14) are introduced to the model. 
In Eq. (6), 1

tγ  and 2
tγ  are the equivalent slopes of the linear 

functions while 1
tψ  and  are the equivalent y-intercepts 

of these functions. These parameters are calculated by Eq. 
(7) to Eq. (10). hvac

tP is divided into two intervals which are 
denoted by 1hvac

tP  and hvac
tP  for the first and second intervals, 

respectively. The binary variables 1int
tI  and 1int

tI  show the 
existence of HVAC operation point in the first or second 
interval, respectively.
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1 1 2 2
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As it was mentioned earlier, hvac
tP  is divided into two 

intervals therefore, Eq. (11) is introduced to model this 
relationship. Each of the Eq. (12) and Eq. (13) specify the 
upper and lower limit of these intervals. Also, Eq. (14) is 
introduced to prevent simultaneous operation of the HVAC 
in both intervals. 

 
1 2hvac hvac hvac

t t tP P P= +   (11)

 int1
10

2

Fhvac
hvac t t

t
I PP≤ ≤   (12)

 int 2
2 int 2

2

Fhvac
hvac Fhvact t

t t t
I P P I P≤ ≤   (13)

 
int1 int 20 1t tI I≤ + ≤  (14)

3-3- Energy balance constraint
The energy balance constraint, which is modeled by Eq. 

(15), states that the electricity power imported from the main 
grid should be equal to the power consumption of the loads 
inside the house. In this equation, fixed

tP  and Tsh
tP  show 

the total fixed and shiftable loads power consumption at 
each hour, respectively. Total used power of shiftable loads at 
each hour is calculated by Eq. (16). The binary variable , st

sh
t tI  

shows whether a load has been shifted to or from the time t 
and parameter shiftable

tP  is the power consumption of shiftable 
loads at each hour before performing DR.

 
buy fixed hvac Tsh

t t t tP P P P+= +   (15)

 
,, stst

st

Tsh shiftable shift sh
t t t tt t

t

P P P I= −∑   (16)

3-4- Neural network weights
As it was mentioned in the previous section, a two-layer 

neural network structure is used to obtain the model of HVAC 
energy consumption as a function of thermostat setting, 
indoor and outdoor temperature. For this purpose, an iterative 
algorithm named back-propagation is used to update weights 
of this neural network in each iteration until the ideal weights 
for modeling with minimal error are found. The weights of this 
neural network are updated using Eq. (17) to Eq. (21). In Eq. 
(17), out

iH  shows the data values present in the hidden layer of 
the neural network in iteration i. These values are calculated 
by multiplying the weights of input-to-hidden-layer ( inp hid

iw −

) in the inputs and giving the result to the activation function. 
In Eq. (18), out

iH∆  is calculated for updating the weights and 
1lr shows the learning rate of the neural network. The error 

is simply calculated by subtracting the predicted output from 
the original one. Finally, the hidden-to-output-layer weights 

( hid out
iw − ) are updated by Eq. (19). In a similar way, Eq. (20) 

and Eq. (21) are used to update the input-to-hidden-layer 
weights where 2lr  shows the learning rate of this layer. The 
stop criteria used for this iterative algorithm is mean absolute 
percentage error (MAPE) which needs to be minimal. For the 
normalization of the input and output data min-max method 
is used.

 
out inp hid
i iH Re LU( Input w )−= ×   (17)
 

1out out
i iH lr error H∆ = × ×   (18)

 
1

hid out hid out out
i i iw w H− −
+ = − ∆   (19)
 

2input hid out
i iH lr error w Input−∆ = × × ×   (20)

 
1

inp hid inp hid input
i i iw w H− −
+ = − ∆   (21)

4.SIMULATION RESULTS AND DISCUSSION
The proposed formulation for the HEMS is applied to 

a smart home located in the Austin, Texas area. The data 
of the house is derived from Pecan Street Inc. [27]. Due to 
lack of HVAC thermostat setting data, it was set qual to next 
hour indoor temperature similar to [24]. The used neural 
network structure consists of one hidden layer with 25 
neurons. The forecasted electricity price data is shown in Fig. 
3 and the parameter values are given in Table 1. To show the 
effectiveness of the current HEMS system in reducing energy 
cost and usage two scenarios are defined as below: 

- Scenario 1: Smart home with a HEMS
- Scenario 2: Smart home without a HEMS
The power consumption of the HVAC system is depicted 

in Fig. 4. It is evident from this Figure that the general trend of 
HVAC consumption is maintained and the proposed HEMS 
structure has successfully decreased the power consumption 
of HVAC systems without causing discomfort to users. For 
the hours that have a higher hourly desired comfort level, 
HVAC consumption with HEMS is equal to the consumption 
without HEMS.

Shiftable load values are illustrated in Fig. 5. Due to higher 
electricity price in 14th and 16th hour, most of the shiftable 
loads in this period are shifted to low price times like 10th and 
12th hour. Since user dissatisfaction is also considered in this 
study, shiftable loads are not differed to the lowest price hours 
like the 3rd hour. 

Total consumed power from the main grid is depicted in 
Fig. 6. As can be seen, the consumption pattern is changed as 
a result of both reduction and shifting of power consumption. 
Also, a reasonable tradeoff between reduction in consumption 
and user satisfaction is obtained.

Total cost and consumption reduction by using the 
current HEMS structure is given in Table 2. The current 
HEMS structure is able to save 22.3% and 33.3% in energy 
cost and consumption, respectively. Moreover, the user’s 
desired comfort level is maintained and this structure has the 
flexibility to adapt to different user behaviors and comfort 
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Fig. 3. Forecasted hourly electricity price 
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Fig. 3. Forecasted hourly electricity price

Table 1. Parameter values 

sh hvac 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23 24

 

  

Table 1. Parameter values

 

Fig. 4. Hourly HVAC energy cosumption in two scenarios 
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Fig. 4. Hourly HVAC energy cosumption in two scenarios

levels or change in user behavior over time.
In order to demonstrate the advantages of the proposed 

method compared to other methods, three more case studies 
were studied. The first case has no DR program for HVAC 
devices. In the second case, no hourly and overall comfort 

level is considered for HVAC consumers and therefore, the 
dissatisfaction caused to the consumers due to DR of HVACs 
is modeled as a linear function only. In the third case, only an 
upper and lower level for thermostat setting is considered to 
model user comfort similar to [24]. In general, the proposed 
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three case studies can be summarized as follows:
- Case 1: No DR program for HVACs
- Case 2: No hourly and overall comfort level for consumers 

and a linear dissatisfaction function for consumers
- Case 3: Only thermostat setting limit for HAVCs to 

model user comfort
The consumed HVAC power in the aforementioned three 

case studies is depicted in Fig. 7. As it can be seen, in case 2 and 
case 3, HVAC consumption is decreased too much due to not 
modeling user dissatisfaction properly. Moreover, the user’s 
consumption pattern and habits are totally neglected when 

user comfort model is not comprehensive. Therefore, both of 
these models are incomplete and unrealistic in practice and 
cannot be implemented in real cases.

To support the effectiveness of the method proposed in 
this study, it was tested on three additional smart homes. The 
results of HVAC consumption are shown in Fig. 8. It can be 
seen from this Figure that for all of these three houses, HVAC 
consumption power is decreased while the user behavior and 
consumption pattern is maintained. The results of consumed 
HVAC power and energy cost with and without HEMS are 
given in Table 3. The first house, which has an overall comfort 

 

Fig. 5. Hourly shiftable load values in two scenarios 
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Fig. 5. Hourly shiftable load values in two scenarios

 

Fig. 6. Total power bought from the grid at each hour in two scenarios 
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Fig. 6. Total power bought from the grid at each hour in two scenarios

Table 2. Energy cost and consumption in two scenarios 

 

  

Table 2. Energy cost and consumption in two scenarios
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Fig. 7. Hourly HVAC energy cosumption in three case studies 
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Fig. 7. Hourly HVAC energy cosumption in three case studies

 

Fig. 8. Hourly HVAC energy cosumption for three houses in two scenarios 
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Table 3. Energy cost and consumption for three houses in two scenarios 

 

Table 3. Energy cost and consumption for three houses in two scenarios
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level of 2, has maximum energy savings with 35.23% reduction 
in HAVC consumption and 29.44% decrease in energy costs. 

5. CONCLUSION
In this paper, a HEMS structure for appliance scheduling 

of smart homes based on user behavior was designed. 
Machine learning tools were used to learn user’s behavior 
regarding HVAC systems. Moreover, a shifting based DR 
was also proposed for the house. The designed structure was 
applied to a real case smart home located in Austin, Texas. 
Simulation results demonstrated that the current structure 
could successfully decrease energy cost and consumption by 
22.3% and 33.3%, respectively without causing dissatisfaction 
to the user. Moreover, the current structure has the flexibility 
to adapt to various user behaviors and comfort levels. To 
confirm the effectiveness of this method, it was tested on three 
additional houses as well and the results showed an acceptable 
trend.
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