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ABSTRACT: The second generation of digital video broadcasting (DVB-T2) standard utilizes 
orthogonal frequency division multiplexing (OFDM) system to reduce and to compensate the channel 
effects by utilizing its estimation. Since wireless channels are inherently sparse, it is possible to utilize 
sparse representation (SR) methods to estimate the channel. In addition to sparsity feature of the channel, 
there is usually some additional information, known as side information. The side information, in 
general application, is not used in ordinary sparse channel estimation methods. However, utilizing the 
side information may help improve the channel estimation. In this paper, we utilize side information to 
estimate sparse channel of an OFDM system. Also, for more verification of the proposed method in this 
paper, we have shown the impact of side information in the estimation procedure for an applied system 
such as DVB-T2 system. Simulation results, in this research, show that utilizing side information not 
only increases the performance of the DVB-T2 system, but also releases a portion of resources of the 
system such as estimation-pilots. It is obvious that these resources can be used for increasing data rate.
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1- Introduction
The second generation of digital video broadcasting 
(DVB-T2) [1] is the second version of digital video 
broadcasting standard which is published as EN 300 744 
standard [1]. These systems utilize orthogonal frequency 
division multiplexing (OFDM) to modulate data. The OFDM 
modulation is a special type of multi-carrier modulation 
which utilizes Fast Fourier Transform (FFT) and Inverse 
Fast Fourier Transform (IFFT) blocks to multiplex digital 
data at orthogonal sub-carriers [2, 3]. This method is used 
to overcome multipath effects of wireless channels. For 
this purpose, the receiver side should have an estimation of 
the channel to compensate channel effects [4]. Therefore, 
channel estimation is a crucial part of the OFDM modulation-
based system. Different approaches in the literature [5-9] are 
suggested to provide reliable estimation while reducing the 
computational complexity of the system.
The OFDM channel estimation approach can be categorized 
into two different classes or methods, namely Training Based 
Sequence (TBS) and Pilot Based Sequence (PBS) [2]. The 
TBS method utilizes an OFDM symbol to estimate the 
channel for a block of OFDM symbols. On the other hand, the 
PBS method, as indicated in figure (1), is commonly used for 
estimating the channel for each OFDM symbol by employing 
some pilots known as estimation pilots [2, 10]. This method 
prepares an OFDM symbol by appending estimation pilots 
to data samples. A stream of OFDM symbols is passed 
through an IFFT block. Then, for compensating inter symbol 
interference (ISI), a copy of a part of the OFDM symbol 
known as cyclic prefix (CP), is appended to each symbol 
and prepares OFDM symbol to transmit. These symbols are 
transmitted consecutively through a wireless channel [2]. 

At the receiver side, the appended guard-band is removed 
and the rest of the symbol is forwarded to the FFT block. 
The receiver estimates the channel by utilizing samples of 
the channel frequency response which are obtained from 
the estimation pilots [2]. Note that the received samples are 
always contaminated by noise. In order to combat the effect 
of noise, some estimation methods try to utilize the time 
and frequency coherence of the channel which is optimally 
obtained by applying two dimensional filters [11]. For 
example, the authors in [12] proposed applying two one-
dimensional filters to extract time and frequency coherence 
instead of a two-dimensional filter.
 In [4, 12], Singular Value Decomposition (SVD) method is 
used to extract time and frequency coherence. In [13], authors 
utilized Wiener filtering to reduce computational complexity; 
however, this method provided a fixed filter and did not follow 
channel variations. In order to tackle this problem, adaptive 
Wiener filtering was utilized in [14] at the expense of more 
complexity. The authors of [15, 16] utilize least mean square 
(LMS) algorithm [17] as an adaptive estimation method to 
reduce the estimation error.
Taps of a wireless channel are related to scatter objects. 
Because these objects are sparsely located, wireless channels 
are inherently sparse [18]. This feature provides an opportunity 
to utilize Sparse Representation (SR) [17] to estimate the 
channel. This approach eventually needs to find the sparse 
answer of an underdetermined system of linear equations. For 
this propose, many algorithms have already been proposed. 
For example, Basis Pursuit (BP) [19], Matching Pursuit [20], 
Orthogonal Matching Pursuit (OMP) [21], and smoothed L0, 
SL0 [22] are used to find the sparse answer.
The above mentioned methods consider the sparsity of 
the channel as the only metric and define the cost function 
based on it [23]. These mentioned methods do not utilize Corresponding author, E-mail: s_ghazi2002@yahoo.com
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other information sources to define the cost function [17, 
23]. However, in many channel estimation problems, there 
is additional information, such as previous samples of the 
channel, which helps provide more precise estimation of the 
channel. In this paper, we try to utilize sparse representation 
(SR) to estimate the channel of DVB-T2 system and employ 
side information to improve the channel estimation. To 
this aim, some parameters are introduced to convey side 
information into OFDM sparse channel estimation problem. 
In this research, we describe the procedure of appending these 
parameters to OFDM sparse channel estimation process, and 
also we explain the impacts of them on the OFDM sparse 
channel estimation.
The rest of this paper is organized as follows. Section 2 
presents a brief review of the required subjects, sparse and 
weighted sparse representation and their contribution in 
OFDM sparse channel estimation. Section 3 is devoted 
to introduce parameters which are used to convey side 
information to OFDM channel estimation problem and their 
effects on providing an estimation of the channel. Section 4 is 
devoted to the application of the weighted sparse representation 
to OFDM channel estimation problem in order to utilize side 
information in order to find the sparse answer. The simulation 
results are presented and explained at Section 5.

2- Sparse Representation for OFDM Channel Estimation 
Consider a system of M linear equations and N unknowns,

(1), , ,M N M NR R R ×∈ ∈ ∈y = Ax y x A
where A and y are known parameters, x is an unknown 
parameter and M < N. In atomic decomposition [25] viewpoint, 
y is a signal to be decomposed as a linear combination of 
the columns of A. In this viewpoint, A is called dictionary 
matrix and its columns are called atoms of dictionary, as y 
is linear combination of dictionary columns. In the case of 
underdetermined system, the system of linear equation (1) 
has generally infinite solutions. To find a specific answer, 
regularization method is used. The regularization method 
considers some features for the desired answer and defines 
a cost function based on these features. The answer which 
minimizes cost function is selected as the desired answer. 
Premising sparsity, the best available cost function is a zero-
norm function (p-norm is defined as ||x||p

p = ∑i|xi|
p [23]).

(2)0ˆ arg min{|| || . }sb=x x y = Ax
This problem is known as P0 – problem and it is generally NP-

hard to solve [23]. To find the answer of (2), many algorithms 
have already been proposed [23]. These algorithms are 
generally categorized as two groups. In the first group, 
since y is a combination of columns of A, some algorithms 
are looking for combination of those columns of dictionary 
matrix A which are more similar to the observation vector 
y. Meanwhile, there are some other algorithms replacing 
zero-norm function by a smoother and differentiable function 
such as l1-minimization [23] which is widely used to find the 
answer. Also, authors in [22] proposed an algorithm which 
approximated the zero-norm function by the continuous one, 
and they utilized continuous methods such as steepest descent 
to minimize it. 
These methods treat all atoms uniformly. However, in some 
applications there is prior information that increases the cost 
of some-atoms to exclude them from decomposition. In other 
words, this information declares that some atoms are more 
probable to be selected. To utilize this information, the cost 
function, CF(.), is modified such that information is conveyed 
to the estimation procedure. In this regards, the cost function 
should regularize the problem in such a way that the answer 
not only satisfies the sparsity condition, but also covers those 
constraints which are the results of side information. 

(3)arg min{ ( ) . }CF sb=x x y = Ax

Figure (1) represents the required processes of preparing an 
OFDM symbols. To prepare an OFDM symbol, information 
bits are mapped into Ktot digital symbols, named as data-
pilots, and passed through serial to parallel (S/P) block. The 
number of L estimation pilots, which L < Ktot, are appended 
to these symbols for estimating the channel. The position 
set p, which is the position set of the estimation-pilots, is 
known at transmitter and receiver sides. After performing 
some other processes such as cyclic prefix (CP) insertion, 
parallel to serial (P/S) and digital to analog conversion 
(DAC), the OFDM symbol is transmitted through a wireless 
channel. At the receiver side, by ignoring the effects of inter-
symbol interference (ISI) and inter-carrier interference (ICI), 
estimation-pilots are extracted and noisy observation of the 
frequency response of the channel, f

ph , is calculated as 
follows,

(4)
pf f

p p p
pilotX

= = +
r

h h z

where rp is a received signal at estimation-pilot positions p, 
Xpilot is the transmitted power of estimation-pilot, hf

p contains 

Fig. 1 OFDM System Model
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samples of frequency response of the channel, and zp is the 
channel noise at related positions. To present the mathematical 
relation between f

ph  and h, a mask matrix, M, is defined such 
that its rows are based on the positions of estimation-pilot. 
The mask matrix, M, selects those columns of FFT matrix 
which are related to the position set, p. By considering the 
above explanation and defining matrix F as FFT matrix, the 
relation between f

ph and h is defined as follows [1],

(5),   f
p = ph Ah + z A = MF

where M is mask matrix, F is FFT matrix, and A is FFT 
sub-matrix with L rows and N columns. The unknowns 
are elements of channel impulse response (CIR) vector, h, 
and the elements of the observation vector are samples of 
channel frequency response at the pilot positions. Equation 
(5) guarantees an underdetermined system of linear equation 
between f

ph  and CIR h. 
3- Side Information Contribution in Channel Estimation
Wireless channels are mathematically modeled as finite taps 
signal, and these taps are due to scatter objects. Because these 
objects are inherently sparse, the channel impulse response 
is considered as a sparse signal [2, 3]. As environmental 
conditions vary, channel impulse response varies too. 
Modeling of this variation is accomplished by a statistical 
model and consideration of the channel impulse response as 
a random process. The relation between different samples 
of this random variable is obtained by coherence time and 
coherence bandwidth of the channel [2, 3, 11]. These two 
parameters illustrate similarities of samples of the channel 
over time and frequency, respectively. To capture similarities 
of the channel, mathematical parameters Γ, an index set, and 
δ, a neighbor region, are defined. Γ is defined as an index 
set containing indices of taps of the channel which are more 
probable to be selected as non-zero elements of the answer. 
δ is a neighbor region, indicating feasible region around 
previous taps of the channel. For example, if the previous 
sample of the channel has a non-zero taps at {15, 46, 103, 
278} and by considering δ =5, the index set Γ={10,11,…,20, 
41,…,51, 98,…,108, 273,….,283}. 
In addition to these two parameters, a diagonal cost matrix, 
C, is defined. Elements of the diagonal matrix are defined in 
correspondence with side information. In this regard, those 
elements that their indices are located in the index set, Γ, gain 
lower cost while higher cost is assigned to others.

(6)
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The neighbor region δ, which is mainly related to the 
coherence time of the channel, indicates the neighbor region of 
the subsequent channel taps. As the coherence time increases, 
the channel varies slowly over time, and it is expected that 
former samples of the channel are more similar to previous 
samples of the channel. Therefore, it is expected that the next 
channel’s taps are located closely around the current taps of 
the channel (smaller neighbor region is required), and the 
lower amount is assigned to the δ.
The cost matrix is an appended element that assigns proper 
amount of cost to each atoms. These costs should be selected 
in correspondence with the channel parameters such as 

coherence time. 
This cost selection could be handled in different formats, such 
as two level cost selection, Gaussian cost selection, step-wise 
cost selection and etc. As mentioned before, the index set Γ 
indicates those atoms that are more probable to gain non-zero 
amount. Therefore, lower cost is assigned to them. To assign 
cost to these atoms, mentioned scenarios are available. For 
example, in the case of selecting two-level cost selection, 
all members of the Γ are equally probable to gain non-zero 
amount, therefore their cost value are equal. On the other 
hand, in the case of Gaussian cost selection, as probability of 
gaining non-zero amount for those atoms which are located 
at the end of the index set are lower than those located at the 
center of this set, therefore the costs are assigned to those 
elements which are located at the end of the index set Γ, is 
assigned in Gaussian format. In this paper, we select two-
level cost selection to assign cost to atoms.
These cost levels l1 and l2 suppress those atoms which are 
less probable to be selected and intensifies those atoms which 
are more probable to be selected as non-zero elements of the 
sparse answer. The cost matrix, C, provides flexibility about 
side information condition. To explain the flexibility of the 
cost matrix, the cost level ratio l1/l2 is defined. This parameter 
also indicates the reliability of the side information. For 
example, in case of reliable side information, the amount of 
cost assigned to elements of index set Γ is reduced. This cost 
reduction is performed as the probability of locating non-zero 
elements of the answer at the out of Γ decreases. Meanwhile, 
the cost level l2 is increased to suppress selection of those 
elements that their indices are out of index set Γ. In this case, 
the cost level ratio l1/l2 is reduced to lower amount.
In contrast, in the case of non-reliable side information, 
the probability of locating non-zero elements of the sparse 
answer out of index set Γ, increases. To cover this condition, 
the amount of cost level l2 is reduced and gains amount near 
l1. This cost selection increases the probability of selection of 
those elements located at the out of index set Γ. In this case, 
the cost level ratio l1/l2 gains the amount near one.

4- Appending Side Information to an OFDM Sparse 
Channel Estimation
DVB-T2 system aligns OFDM symbols on a frame and 
transmits these frames consecutively [1]. This form of 
transmitting makes two consecutive OFDM symbols pass 
through very similar channels. Therefore, the estimated 
channel of the first symbol provides information for the 
next channel. In other word, it is expected that taps of the 
next channel are located around taps of the previous channel 
and as a result, these taps are more probable to be selected 
as non-zero elements of the answer. To mathematically 
indicate it, the cost matrix C is employed. This matrix is 
used to adjust the role of each atom based on available side 
information. In this regards, the cost of those atoms that 
are less probable to be selected is increased while the cost 
of those that are more probable to be selected is reduced. 
Therefore, estimation relation should be modified in such a 
way that this available side information also be employed at 
the minimization problem. To convey this information into 
the estimation process, the cost matrix of C is appended to the 
desired parameters. In this regard, the regularization function 
is modified to cover effects of side information as below,

(7)ˆ arg min{F  . . }s b= f
ph (Ch) h = Ah
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where F(.) is a cost function. We define h’=Ch, a weight 
matrix W=C-1 and weighted-dictionary B=AW. By these 
selections, the estimation relation becomes like the following 
form,

(8)
0

ˆ arg min{  . }sb′ ′= f
ph h h = Bh

By these selections, we could claim that side information 
affects the observation relation from f

ph =Ah, and changes 
it to f

ph =Bh’ , or side information modifies the dictionary 
matrix A and introduces weighted-dictionary, B. In this 
regard, the weight matrix, W, intensifies those columns of the 
dictionary matrix by assigning higher weight and suppresses 
others by assigning lower weight. To select the regularization 
function which has the best cover for our requirements, 
since we are looking for sparse answer, zero norm function 
is selected as a function for regularization. Therefore (12) 
changes to the following form, which we name it as weighted 
P0-problem:

(9)
0

ˆ arg min{  . }f
ph h sb h Bh′ ′= =

Similar to the ordinary sparse representation problems, 
pursuit algorithms [17] such as [19, 20] are applicable to 
find the sparse answer. However, there is a slight change in 
these algorithms which is replacing dictionary A with the 
weighted dictionary B and observing h’=Ch at the output 
of the algorithm. Besides these algorithms, authors in [24] 
suggested to use the weighted SL0 algorithm to find the 
sparse answer of the (12).
5- Simulation Results

Table 1. System Parameters

System Parameters
OFDM Symbol Duration Tu 200µ

Carrier Frequency Fc 10MHz
Symbol Modulation 16-QAM

FFT Size 2048
Maximum Number of Pilots 1700

The Number of Estimation Pilots 60
Guard band 0.25

In this section, we simulate the DVB-T2 system and 
investigate the impact of our proposed method on the 
estimated channel and performance of the system. We change 
the OFDM block of DVB-T2 system to prepare it for utilizing 
the sparse representation. Table 1 contains parameters of the 
simulated system indicated in fig.1. In this simulation, we 
have run the system a thousand times for each experiment 
and we have considered the mean of simulation results as the 
final result. In this simulation, we utilize sparse methods such 
as weighted SL0, W-SL0, and SL0 [22], as two methods of 
finding spare answer of P0 problem and weighted P0 problem, 
respectively. Besides these two methods, other methods 
such as l1-minimization [23] and LASSO [29] are used to 
find the sparse answer. We also have run the simulation for 
different signal to noise ratio (SNR) and different number 
of estimation pilots. Figures 2 and 3 illustrate the impact of 
contribution of side information on the channel estimation 
process. These figures plot Bit Error Rate (BER) of simulated 

OFDM system versus different SNR while the numbers 
of estimation-pilots are fixed. As indicated, utilizing side 
information improves the performance of the system. To 
interpret this improvement, the assigned cost matrix which 
is correlated to side information that increases the cost of 
wrong answers. As illustrated at these figures 2 and 3, at the 
low SNR, by utilizing side information and improving the 
estimation channel, the performance of system is improved. 
However, at the high SNR the improvement ratio is reduced.

Utilizing side information provides the opportunities to release 
system resources such as the number of estimation-pilots 
assigned for estimating the channel. Figures 4 and 5 present the 
BER of system versus the number of estimated-pilots. These 
figures indicate improvements in the performance of system 
while fewer resources and side information are employed. 
These figures present that weighted-sparse algorithms result 
in better performance in compare with sparse algorithms at 
the same conditions. This reduction in occupying resources 
provides an opportunity to assign them for transmitting data 
and increasing capacity of data transmission. It also indicates 
that by utilizing side information, same performance could be 
achieved while fewer resources are employed.
6- Conclusion
In this paper, we introduce an approach to improve the 
results of OFDM sparse channel estimation. In this approach, 
some information about channel condition is extracted 
by employing previous estimation and coherence time of 
the channel. This information is employed to improve the 
estimation of the channel. In this regard, we define a diagonal 
cost matrix in correspondence with this information to 

Fig. 3. Impact of channel Side Information on BER of OFDM 
system, WSL0-algorithm

Fig. 2. Impact of channel Side Information on BER of OFDM 
system, l1-minimization
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convey side information into channel estimation process and 
provided weighted-dictionary. We also show that by replacing 
weighted dictionary and modifying sparse representation, 
ordinary sparse recovery algorithms become applicable to 
find the sparse answer. Furthermore, it is shown that utilizing 
side information not only increases the performance of the 
answer, but also releases the resources of the system. 
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