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ABSTRACT: The use of efficient signal processing tools (SPTs) to extract proper indices 
for the fault detection in induction motors (IMs) is the essential part of any fault recognition 
procedure. The 2nd part of this two-part paper is, in turn, divided into two parts. Part two 
covers the signal processing techniques which can be applied to non-stationary conditions. 
In this paper, all utilized SPTs for non-stationary conditions have been employed in details 
for fault detection in IMs. Then, their competency and their drawbacks to extract indices 
in the transient state modes are investigated from different aspects. The considerable 
experimental results are given to certify the present discussion. Different kinds of faults 
including eccentricity, broken bar, and bearing faults as major internal faults in IMs are 
investigated. 
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1- Introduction
Recently different signal processing tools have been 
employed for a fault diagnosis of induction motors (IMs). 
Fourier transform is a powerful and efficient tool for detection 
of the most faults in IMs under stationary conditions. In 
order to have a good frequency spectrum and avoid spectral 
leakage phenomenon, Fourier transform needs the signals to 
be captured for a time longer than 10s. However, this can 
increase the risk of confrontation with external disturbances 
in some applications. These disturbances can distort 
frequency spectrum [1]. Moreover,  in some applications 
there is not enough stationary condition at the operating 
times; therefore, Fourier transform is not applicable to them 
[2]. In order to solve this problem, Fourier transform has been 
extended for transient cases by considering a sliding window 
in which signal can be assumed to be stationary and Fourier 
transform can be applied on it. However, windowing requires 
a compromise between the time and frequency resolution. In 
fact, the length of the window is a parameter that should be 
chosen according to the required time or frequency resolution 
and the both are not achievable at the same time. Therefore, 
its resolution is limited. 
In the present paper,  contrary to the part I, other signal 
processing techniques, which are capable of handling non-
stationary conditions, are studied. Different internal faults of 
IMs are considered as a case study for these tools.

2- Wavelet Transform
The wavelet transform is a method that converts the time 
domain signal to a series of wavelet coefficients in a time-
scale domain. Mother wavelets are small waves with 

oscillating property and concentrated energy in a short 
interval of time which are used for implementation of this 
transform [3], [4]. In other words, Fourier analysis of a signal 
is expressed as the sum of several sinusoidal functions, but 
in the wavelet transform a signal is expressed as the sum of 
several functions that these  functions are the displaced and 
scaled version of the main function [5]. Therefore, unlike 
STFT, the wavelet transform is a multi-resolution transform 
due to the capability to stretch or squeeze the main function. 
Wavelet transform is able to show some characteristics of 
the signal that cannot be shown by other transforms because 
they eliminate these characteristics during the transform. 
These include high slopes of the function, turning points of 
the function, non-continuity of high-order derivatives of the 
function, the sharp point of a maximum of the function and 
its self-similarity [3].
Considering the above-mentioned points, wavelet transform 
gives a detailed and fully localized view of the function. 
Due to the inverse relationship between scale and frequency, 
tracking frequency harmonics in time-scale plane is more 
difficult. Therefore, it is more desirous to introduce wavelet 
transforms as a function of time and frequency [6]. Having 
frequency components caused by the internal fault of the 
motor (which are not known as a priori), this transform can 
concentrate on particular regions and this can enhance the 
precision, while Fourier series provides a general view over a 
period of the signal [7]. 
Classical wavelet transform can be categorized as continuous 
wavelet transform (CWT), discrete wavelet transform 
(DWT) and wavelet packet transform (WPT). Recently the 
second generation of wavelet transform (SGWT) has been  
considered as an alternative implementation of the classical 
DWT.
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In [13], PSD values details signal in any level of the 
transform is fault diagnosis criterion. Fig. 2 shows the pattern 
of the current signal wavelet transform of healthy and rotor 
broken bars motor. In [14], the reason for the application of 
DWT in the papers has been noted. There is not a suitable 
physical description for the results, complicated trend and 
algorithm of other wavelet methods and ambiguous results. 
A dimensionless parameter for the fault diagnosis has been 
introduced in [15]. In [14], a fault has been diagnosed using 
the envelope of the starting current signal, and a procedure has 
been introduced to  extract the envelope signal considering the 
impact of the broken bars on the settling time and amplitude 
of the envelope of the starting current. 
 Fig. 3 shows the transient wave and its components. If 
the current signal is transferred to the synchronous frame, 
unbalanced flux density influences d and q components, but 
the load fluctuations only affect q component [16]. Fault 
diagnosis from the effective value of the signal over the low 
frequency is possible and the increase of broken bars reduces 
the effective value of the signal [17]. The starting time of a 
machine as an important factor in fault diagnosis with the 
help of FFT and wavelet methods has been given in [18]. 
To solve this problem, the starting time must be longer, or 
the voltage must be reduced. Also, determination of wavelet 

main function is important in fault diagnosis.
Harmonics due to torque ripples and unbalanced voltage 
generate harmonics which are similar to that of the broken 
bar and this reduces the accuracy of the fault diagnosis 
process. However, this can be solved by the application 
of DWT transform [18]. In [19], a fundamental harmonic 
deletion algorithm and application of DWT are suggested for 
fault diagnosis.  This method does not depend on the load. 
However, some figures in [19] do not support this claim. 
Fig. 4 indicates that this method depends on the load. A new 

2- 1- Rotor Bars and End Ring Breakage
Axial air ducts in large induction machines are widely 
used for cooling purposes. However, these air ducts cause 
asymmetry in rotor flux patterns. In some cases, these 
asymmetries produce frequency components that overlap 
with rotor fault components in classical Machine current 
signature analysis (MCSA) which reduce the reliability of 
these methods. Under high slip operations, penetrated flux 
into rotor is limited; therefore, by investigating  the startup 
currents, the influence of air ducts can be eliminated. These 
cases are studied in [8]. Various wavelet transforms have 
been ever used for fault diagnosis. Most of these methods are 
based on the sidebands harmonics of the frequency spectrum 
of the current signal. Broken rotor bars cause air gap flux 
density and current harmonics and this will change the 
wavelet spectrum of the mentioned signals. In [9], following 
wavelet transform on the transient current signal, energy of 
a bandwidth is used to diagnose the fault in which the load 
impact is also taken into account. Since DWT has a better 
clarity over the low frequencies, the use of the current spatial 
vector which is in harmony  with lower frequencies will yield 
more precise results [10], [11]. To delete the fundamental 
harmonic for FFT, slip approximation is required in low load,  
and the method introduced in [9] obviates this requirement. 
Orthogonal wavelet in addition to  its filtering structure 
provides useful data.  In [12], a method based on CWT has been 
used to diagnose the fault in different drives. Fig. 1 shows a 
3D CWT modulus for healthy and broken bar fault. However, 
there is no physical interpretation of the fault diagnosis using 
the figures. 

(a)

(b)
Fig.1. 3D CWT module, (a) healthy, (b) broken bar fault motor [12].

Fig. 2. Pattern of current signal wavelet transform, (a) healthy, 
(b) rotor broken bar motor [13].

Fig. 3. A transient wave and its components [14]
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of the fault and decision making. In classification stage, a 
good discrimination of the data for each class is one of the 
advantages of the method that leads to reliable decisions.
A new method for fault diagnosis of induction motor broken 
bars has been presented in [6]. In this method, a set of mother 
wavelets, called frequency B-spline, are used for tracking 
related fault harmonics in t-f plane of the startup currents. 
The advantage of using these mother wavelets compared 
to other mother wavelets such as Gabor wavelets is its 
superiority of filtering fundamental components which mask 
fault harmonics.

In [27], transient analysis of startup currents is extended to 
different startup methods, including line start and soft-start. 
During startup, the time-frequency evolution of LSH due to 
broken bars leads to Λ -shaped patterns in the DWT signals 

signal, say Zs(t), can be defined that has the phase angle and 
amplitude identical with the initial signal conditions [20]. In 
addition to DWT and CWT, there is another wavelet called 
Wavelet Packet Decomposition (WPD), which yields more 
precise results but it is time-consuming [21]–[23]. Sidebands 
move to higher-order nodes WPD transform due to the load 
fluctuations [21]. Note that in this transform a proper node 
for the fault diagnosis is used. For high loads, the low-order 
nodes and for the low loads high-order nodes are investigated 
[21]. 
The impact of load fluctuations on wavelet coefficients of the 
stator current spectrum of a motor under the broken bars fault 
has been studied in [14], [16], [19]. Table 1 summarizes the 
variations of D4 coefficient and values of a function  defined 
in the reference. As can be seen, a higher load decreases 
the mean value of the stator current signal, and this largely 
increases the criterion function and helps with fault diagnosis 
[16].

Fig. 5 indicates the time variations of D4 coefficient at three 
different loads [16]. Load increment causes larger variations 
of D4 coefficient waveform that increases the coefficient 
of 3rd column of the table by increasing the load. In [24], 
[25], the impact of the drive in the broken bar diagnosis 
using wavelet transform has been proposed. Although fault 
diagnosis procedure and load impact have been considered 
in the above-mentioned reference, the location of the broken 
bars has not been taken into account.
In [26], an intelligent fault detection scheme based on analysis 
of startup currents is proposed. First, startup current is 
analysed by the Meyer mother wavelet and broken bar related 
fault components is isolated by its approximation signal. 
Then, some preprocessing measures (symbolic analysis) are 
being taken to extract required features for classification 

Fig. 4. Wavelet decomposition levels d9 of a damaged machine 
loaded 30% to 100% [19].

a

b

c
Fig. 5. Time variations of D4 coefficient of wavelet transform 

of the motor current signal under broken bar fault: a. no-load, 
b.33% rated load and c. 66% rated load [16].

Table. 1. Variations of D4 coefficient of wavelet transform of 
current signal of the motor under broken bar fault vs. load [16]

% of rated 
load

Mean 
Current

(A)

Mean 
distortion 

in D4 Index2

0 9.54 0.0923 0.97%
33 8.92 0.3220 3.61%
66 8.81 0.4044 4.59%
100 8.74 0.5469 6.25%
133 8.57 0.5674 6.62%
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which can be used for the fault diagnosis.
One of the major issues with  regard to transient methods 
is the quantification of the time-frequency plane. In these 
methods, it is more complicated to specify a threshold for 
fault decision. This issue is addressed in [28] using fractional 
Fourier transform (FrFT) which is a generalization for the 
FT. DWT is used as a preprocessing tool for the extraction 
of LSHs from startup transient currents, then FrFT is applied 
on them and characteristic chirp components of the LSH in a 
faulty motor is detected. The slope of the resulting frequency-
slip curve is used as a fault index and similar to the traditional 
method, this index can be easily calculated.

2- 2-  Eccentricity Fault
For eccentricity fault diagnosis, FT-based methods are 
exploited. The reason is that monitoring low and high 
frequency harmonics is necessary for fault detection. In this 
case, wavelet application is time-consuming and complicated; 
however, in [29] the wavelet analysis on current spatial vector 
has been used for eccentricity fault diagnosis. Fig. 6 shows 
oscillogram spectrum of the stator current in a healthy motor 
and a motor with the broken bar and under eccentricity fault. 
DWT is applied upon transient currents of machines in 
[30] for fault detection of mixed eccentricity. Then, some 
quantification parameters based on the energy of the wavelet 
signal are  used in order to quantify fault severity. 

2- 3- Bearing Fault
In [31]–[33], different kinds of wavelet transforms are used 
for bearing fault detection in induction motors. The bearing 
fault for PWM-driven motor has been studied in [34]. The 
wavelet in addition to intelligent methods has been used 
for fault diagnosis [35]. In [36], fault detection by WP in 
a motor with adjustable speed drive (ASD) drive has been 
proposed. Deletion of fundamental signal, diagnosed by FFT 
filter, causes an error. Bearing fault decreases the effective 
value of some nodes obtained by WP transform and this 
index is used for fault diagnosis. However, the choice of 
these nodes is itself a deterministic problem. Fig. 7 shows 
the coefficients variations of one of WP nodes due to the 
fault [36]. Comparison of WP coefficients values with base 
values can be used for fault diagnosis [37]. In this paper, 
deletion of power system harmonics is investigated but it is 
not shown how they are identified. In addition, the impact of 
load variations has been mentioned in conclusion but it is not 
investigated in the paper. 
The following results have been obtained by application of 
wavelet transform in fault diagnosis: 
There is still the problem of low loads and deletion algorithms 
for fundamental harmonic. Also, in this transform, the choice 
of a suitable main wavelet function plays a major role in the 
accuracy of the method. This method requires an individual 
software set for calculations. Wavelet-based methods may be 
suitable for laboratory and a single machine but in industries, 
analysis of the results is difficult and time-consuming.

3- Hilbert Processor
Hilbert transform (HT) is an efficient demodulation method 
for extraction of desired harmonic information and estimation 
of instantaneous frequency from the signal. The real part of 
analytic signals is the original signals and the imaginary part is 
the HT of the original signal. This transform shifts frequency 
components by 90°without affecting their amplitude. This 
can be seen in relationship between Fourier transform of 
signal ( )x t  and its Hilbert transform ( )x̂ t  :

(1)
                                                                                         

where sgn denotes the sign function and j is the solution of 
the equation 2 1a = − .  It means that negative frequencies  

( ){ } ( ) ( ){ }ˆ F x t jsgn f F x t= −

Fig. 7. Variation of coefficients of one WP node (node 31) due to 
inner race defect [36].

(a)

(b)
Fig. 6. Oscillogram spectrum of stator current: (a) healthy 

motor (b) motor with broken bars and 10% eccentricity [29].



J. Faiz et al., AUT J. Elec. Eng., 50(1)(2018)3-12, DOI: 10.22060/eej.2017.13220.5143

7

are shifted by 2π+ and positive frequencies are shifted by
2π− . By using HT, it is possible to form an analytic signal 

which is a complex-valued function. Analytic representation 
of the signal is a generalized form of the phasor concept 
that can be used for separation of the amplitude modulation 
and phase modulation effects [38]while the latter is based 
on torque perturbation. This paper is focused on the airgap 
variation model. The ball bearing fault is modeled by contact 
mechanics. External vibrations often occur in many industrial 
applications where externally induced vibrations of suitable 
amplitude cause cyclic radial loading on the machine shaft. 
The model is validated by experiments, owing to a dedicated 
test setup, where an external vibration source (shaker. HT is 
applicable only to mono-components signals; sinusoids and 
chirp like signals are in this class. In time-frequency plane, 
a mono-component signal is characterized by a single ridge. 
However, in real applications, signals are not so and even in 
some cases, they are non-linear or non-stationary. Therefore, it 
is necessary to decompose these signals to their initial mono-
component signals before applying HT. This can be done 
by two common methods, namely, filtering and empirical 
mode decomposition (EMD) algorithm. The filtering is not 
adaptive; therefore, prior information of the fault frequency 
components is required. However, due to adaptivity of the 
EMD, frequency basis is defined as a-posteriori. EMD 
decompose a signal into its intrinsic modes of oscillation 
by a sifting process by which each mode is represented 
by an intrinsic mode function (IMF). IMFs are not simple 
harmonic components, but they can have variable amplitude 
and frequency. Application of EMD has one more advantage 
in applying to physical signals; unlike other decomposition 
methods, it can reveal the true physical meaning of the 
phenomenon in its IMFs. For instance, motor operating points 
in an induction motor, including inverter-fed and line-start 
modes can be distinguished by using appropriate IMFs [39].
As mentioned before, HT cannot be applied to non-stationary 
signals. Therefore, Hilbert-Huang transform (HHT) is 
introduced to address these challenges by applying HT on 
IMFs provided by EMD. In contrast to other mentioned 
transforms, non-linear signals can be also analyzed by HHT. 
The cost of using HHT as an adaptive approach is that there 
is no firm theoretical foundation for it and it is entirely 
empirical.

3- 1- Rotor Broken Bars and Short-circuit Rings
No-load and light load cases in rotor broken bars and end-
rings have been considered in [40]. In this case there is no 
harmonic arising from the load, but harmonics are very close 
to the fundamental frequency. Here, a Hilbert vector is defined 
for signal and using this vector instead of the proposed signal 
has the following advantages, 

1. the requirement of phase current,
2. generation of harmonic components due to fault 

and deletion of non-applicable harmonics,
3. elimination of frequency scattering, and
4. absence of fundamental frequency that allows 

to use a linear scale on the vertical axes instead 
of logarithm scale that clarifies the graphs.

No need to sample with twice of Nyquist frequency; 
considering the proposed low frequencies, the sampling 
speed is reduced up to one-tenth of the normal case values, 
and this is useful in practice. In [41], a fault diagnosis method 
based on fundamental harmonic deletion and determination 
of Hilbert Modulus has been introduced. Fig. 8 shows Hilbert 

modulus for a healthy motor and a motor with broken bars. 
By increasing the fault severity, this modulus becomes larger 
due to the harmonics. In the following part, a dimensionless 
numerical criterion with a low dependency on the load is 
introduced.
A comparison study on the application of DWT and HHT 
for fault detection of the broken bar under non-stationary 
conditions is done in [42]. Previous works show satisfactory 
results for DWT and these results can be a good criterion for 
evaluation of HHT performance.  According to this study, 
patterns obtained by HHT are not as clear as DWT but it shows 
a higher resolution. In addition, a boundary effect which 
provokes oscillation at the beginning of signals and distorts 
fault patterns exists in both transforms. Also, selection of the 
most suitable number of IMFs for detection of the sideband 
is not known as a priori. However, HHT avoids dyadic 
frequency decomposition of DWT due to its operation based 
on the instantaneous frequency and allows a more accurate 
study of high-frequency components. Furthermore,  IMFs 
can represent the theoretical waveform of LSH in a more 
accurate way. Post-processing operations on HHT output for 
quantification of the fault severity are more convenient using 
image recognition techniques. 
In [43], broken bars are diagnosed by applying HT on steady-
state current for extraction of the envelope of the signal. 
In order to avoid probable distortions, a Tukey window is 
pre-multiplied by the extracted envelope. Multi-resolution 
analysis of this envelope shows better results in comparison 
with direct analysis of the stator current. 
A new method based on EMD analysis of the current for fault 
detection of the broken rotor bar under different conditions, 
including line-start, inverter-fed, various load torque and 
speed, and different fault location has been proposed in [39]. 
For this purpose, IMF3 in inverter-fed mode and IMF2 for 
line-start mode are selected as proper IMFs for the fault 
diagnosis. It is shown that contrary to previous works, in 
no/light loads, the fundamental component does not have a 
masking effect on fault components. Furthermore, analytical 
studies are carried out in order to investigate the effect of the 
speed variations in inverter-fed mode.

3- 2- Eccentricity Fault 
HT-based methods are new methods. A few papers use such 
methods and they have been used for eccentricity fault 
processor. In [40], [44], HT has been used to diagnose the 
fault. Mixed eccentricity are diagnosed by applying HHT on 
start-up current in [45]. Fair discrimination with respect to 
other faults can be deduced from the obtained results.

4- Spectral estimation techniques
The main goal of spectrum estimation is determination of 
the power spectral density (PSD) from a sequence of time 
samples of the signal. Non-parametric and parametric 

Fig. 8. Hilbert modulus: (a) healthy motor, (b) motor with two 
broken bars [41].
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approaches are two main categories for spectral estimation. 
Approaches that do not  need any specific parametric model 
for PSD estimation are called non-parametric. They use 
estimated autocorrelation sequences of the signal. On the 
other hand, parametric methods are modeling the signal by a 
small number of parameters. Then, the estimated PSD of the 
signal will be expressed in terms of the model parameters. 
Spectral estimation methods offer a higher frequency 
resolution in their PSD than FFT-based methods (avoiding 
spectral leakage) and are more robust with  regard to the noise 
which is a great advantage in dealing with early-stage faults 
[46]. Yule-Walker and Burg among parametric methods and 
multiple signal classification (MUSIC) and estimation of the 
signal parameters (ESPRIT) among nonparametric methods 
are the most used approaches for the fault detection of the 
IMs.
After computation of autocorrelation matrix of the signal, 
MUSIC converts the problem to a generalized eigen-
value problem by using signal and noise subspace. One of 
the challenges in application of the MUSIC for spectral 
estimation is that there are  some noise related peaks (called 
spurious peaks) which make it difficult to distinguish 
them from true signal peaks. In addition, MUSIC offers 

a good frequency resolution in exchange for a very high 
computational burden and the obtained PSD is not identical 
to the real PSD; therefore, its PSD called pseudo PSD and the 
real amplitude should be estimated. ESPRIT also solves the 
generalized eigen-value problem in a more computationally 
efficient way than MUSIC. This is due to direct estimation of 
the harmonic components whereas MUSIC requires a peak 
detection process. On the whole, the both methods impose 
a very high computational burden. In order to address this 
issue, a zoom version of these algorithms is  also proposed by 
focusing on specific frequency regions [46]. In addition to a 
shorter computation time, needing less memory storage and 
more accuracy on those regions are other benefits of using 
zoom version of the algorithms. ESPRIT can achieve a high-
frequency resolution even with a short-time measurement 
data [47].

4- 1- Rotor Bars and Ring Short-circuit
Combination of FFT and MUSIC methods and a method 
of fundamental harmonic deletion have been used for fault 
diagnosis in [48] because lonely application of MUSIC leads 
to an error. This method provides clearer results compared to 
FFT method. In Fig. 9, the results of the two methods have 
been compared. In [49], the frequency spectrum of output 
voltage after disconnecting the input supply obtained by FFT 
and MUSIC methods has been compared. It has been shown 
that a series of particular harmonics in the frequency spectrum 
is excited due to broken bars and these are shown. Reliability 
and low impact of noise are the advantages of this method 
compared with FFT method [49]. MUSIC-based methods 
similar to HT are the new methods which have precise results 
and its computation is quicker than the Wavelet method’s. 
However, it needs improved algorithms for the deletion of 
the fundamental harmonic which complicates these methods. 
Since these methods are new, many fault diagnosis indexes 
have not been modeled by these methods yet. 
A comparative study of the ZMUSIC and ZFFT based on 
sensitivity and computation time for the fault diagnosis of the 
broken rotor bar can be found in [50]. ZMUSIC needs less 
memory and smaller acquisition time, but more computation 
time. In [51],
MUSIC is used for the detection of multiple combined faults 
in induction machines, including broken rotor bar, bearing 
outer race damage and unbalanced pulley.
In combined occurrence of the faults, vibration is used as 
a supplementary signal for diagnosis, especially when the 
unbalanced pulley makes it difficult to detect a bearing 
defect. Band-pass filters are used to extract frequency bands 
related to each fault.
In order to apply MUSIC to induced voltages of the stator 
during switch-off, a windowed version of the MUSIC, called 
short-time MUSIC (STMUSIC) has been proposed in [52] 
to deal with this non-stationary signal. It will give frequency 
components in a time-frequency pseudo-representation. 
In [53], a non-parametric autoregressive(AR)-based spectral 
estimation method is proposed for detection of the broken 
rotor bar faults. It is shown that application of the Yule AR 
method on captured currents cannot reveal fault-related 
sidebands. However, elimination of the main line frequency 
by a second order digital notch filter allows identification 
of the characteristic sidebands. The main advantage of this 
method is that extracted features will not be affected by low 

Fig. 9.  Comparison of FFT and Music-based methods for a 
motor with 1 broken bar: (a). FFT, (b). Music [48].
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sampling rates, unlike traditional methods.
A three-level fault detection scheme for the broken rotor bar 
has been proposed in [46]. In the first level, Zoom ESPRIT 
is used for the accurate estimation of the fault components 
in a specific bandwidth. Then, by using least square (LS) 
estimator, the amplitude of the fault components is derived. 
Finally, an optimization is done on the fault threshold in order 
to minimize false alarms.
In [47], ESPRIT is used for rotor broken bar fault detection. 
Initial results show that ESPRIT can identify frequency 
components with a high-frequency resolution, even for 
the short signals. However, it will face  difficulties in 
determination of the amplitude and initial phase of the 
components. It is proposed to use a simulated annealing 
algorithm for an accurate calculation of these amplitudes 
and phases. Capability of estimating fault components with a 
short-length signal makes it suitable for the fault detection of 
the broken bar in induction motors operating with small slip 
and fluctuation load. 

5- Quadratic time-frequency distributions
Quadratic (or bilinear) time-frequency distribution is a 
nonlinear SPT for tracking frequency components of a non-
stationary signal in the time-frequency plane. Wigner-Ville 
distribution (WVD) was introduced as the oldest member of 
these distributions which is generalized by distributions in 
Cohen’s class. Contrary to linear methods, which decomposes 
the desired signal into its initial components, in these 
methods, the energy of a signal will be distributed on time-
frequency plane by using appropriate distributions. Unlike 
STFT, WVD does not  use any window function and due to 
its bilinear nature, tracking several components will end up 
with creation of undesirable interferences, called cross-term, 
which Besmirch time-frequency distribution. In fact, time-
frequency distribution consists of distribution formed by 
every component (auto-term) and its interaction with other 
components (cross-term). Although cross-terms contributes 
to  total distribution, it causes repetition in information and 
leads to a vague distribution. Therefore, in order to suppress 
these cross-terms, other members of the Cohen’s class use a 
kernel function in exchange for a lower resolution. In fact, 
Cohen’s class can be defined as a smoothed version of WVD. 
Choi-Williams, Zhao-Atlas-Marks, Born-Jordan are the other 
most applicable members of the Cohen’s class which are 
defined based on their kernel and should be chosen according 
to the application. Backing to WVD, its other extensions 
such as pseudo-Wigner-Ville distribution (PWVD) and 
smoothed pseudo-Wigner-Ville distribution (SPWVD) are 
also introduced to tackle the previous problem [54]. The 
computational cost of these transforms is another issue in 
using these methods for different applications.

5- 1- Eccentricity
Fault diagnosis of the eccentricity under the presence of load 
torque oscillations is a difficult task due to their identical 
harmonic components and investigation of the lower fault-
related components is not conclusive. Therefore, in [55], it 
is proposed to monitor higher-order components in transient 
startup currents as a supplementary for discrimination of 
these two phenomena. However, in order to monitor this 
component, it is necessary to use a high resolution time-
frequency technique. Thus, in this method, WVD is preferred 

to the other members of the Cohen’s class. Filtering and HT 
is proposed as a pretreatment process in order to minimize 
the cross-terms effect. Results show the superiority of this 
method in comparison with DWT when tracking higher-order 
harmonics. 

6- Conclusions
Different methods and processors used for diagnosis of three 
internal faults of IMs were briefly investigated. To this end, 
four types of processors and their advantages and drawbacks 
were studied. It is clear that a single method and a common 
processor cannot be specified for all faults. Fourier processor 
as a most applied one for different faults has weak and strong 
points. Its most important weakness is in the processing of 
transient signals. To overcome this problem, an application 
of wavelet processor was suggested which provides more 
detailed view time and frequency view of the signal. 
Following wavelet pocket the simultaneous high precision of 
time and frequency is commonly used. These processors often 
are used for the broken bars fault but there are no appropriate 
studies on the number of broken bars and their location. Other 
drawbacks of this method includes time consuming and has a 
technique complexity. In recent years, Hilbert-based methods 
with high-frequency precision methods such as MUSIC have 
been proposed. Quadrature distributions provide a good t-f 
resolution, but they impose a high computational burden. 
The common point that must be taken into account in an 
appropriate fault diagnosis method in industry beside on-line 
case is that the method must be quick and at the same time 
must have  a good accuracy.
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