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ABSTRACT 

This paper presents H∞ control problem for input-delayed systems. A neutral system approach is considered to 
the design of PD controller for input delay systems in presence of uncertain time-invariant delay. Using this 
approach, the resulting closed-loop system turns into a specific time-delay system of neutral type. The 
significant specification of this neutral system is that its delayed coefficient terms depend on the controller 
parameters. This condition provides challenging issues in theoretical research and provides new horizons in 
applications. In the present paper, new delay-dependent sufficient condition is derived for the existence of 
H∞ controller in terms of matrix inequalities. The resulting H∞ controller stabilizes the closed-loop neutral 
system and assures that the H∞ performance norm to be less than a prescribed level. An application example 
is presented to illustrate the effectiveness of the proposed method. 

KEYWORDS 

H∞ Control, Neutral Systems, Uncertain Time-Invariant Delay, PD Control, Linear Matrix Inequality 
 

1.  INTRODUCTION 
Time-delays appear in many systems and processes, 

such as chemical and thermal processes  [1], population 
dynamic model  [2], rolling mill  [3] and systems with long 
transmission line  [4]. In many systems, time-delay is a 
source of instability. Hence, rich attention has been paid 
to the control design of time-delay systems of retarded or 
neutral type. Robust H∞ state feedback control of 
uncertain neutral system has been considered in  [5], and 
an optimization problem has been formulated with linear 
matrix inequality constraints to obtain an H∞ state 
feedback controller. Observer-based H∞ state feedback 
control for a class of uncertain neutral systems is another 
topic which has been considered in  [6]. H∞ output 
feedback control of neutral systems has also been the 
centre of attention in some literature such as  [7] and  [8]. 
In the time-varying delay case, Suplin et al., proposed 
delay-dependent sufficient conditions for H∞ control of a 
neutral system in presence of time-varying state delay 
 [9]. Recently, the stability problem of a class of linear 
switched systems with time-varying input delay is also 
addressed  [10]. Furthermore, Liu et al.  [11] presented 
some necessary and sufficient stability conditions for 
continuous-time positive systems with time-varying 
delay. A review on these results shows that few papers 
have focused on the special neutral time-delayed systems 
where the delayed coefficient terms depend on the 

control parameters. Recently this class of time-delay 
systems of neutral type was investigated using a 
proportional-derivative state feedback H∞ controller  [12]. 

On the other hand, it can be seen that applying a PD or 
PID controller to a linear system with input delay leads to 
a time-delay system of retarded or neutral type. Up to the 
present, many papers have considered the design of PID 
family controllers. Recently, new results on the synthesis 
of PID controllers for first-order plants with time delay 
are given  [13], while Xu, et al. extended this idea for 
arbitrary order plants with time-delay  [14]. Wang used a 
graphical approach to find the stabilizing region of PID 
controllers for high-order all pole plants with time-delay 
 [15]. Furthermore, Hohenbichler  [16] studied a method to 
compute the set of stabilizing PID controller parameters 
for arbitrary linear input-delay systems which leads to a 
closed-loop system of retarded or neutral type. Moreover, 
many results have been appeared in the literature using 
PID family controllers in particular applications [17-19]. 
In addition to the above methods, Smith predictor 
structure is used for the design of PI/PID controller for 
time-delay systems which is the most popular controller 
in industrial processes. A predictive PI (PIP) controller 
with the same structure as smith predictor is presented by 
Häggland  [19] which is suitable for processes with long 
dead-time. In order to improve the robustness of this 
controller, Normey-Rico et al.  [20] proposed a modified 
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Smith predictor using an additional filter to the structure 
of the PIP controller (FPIP). Recently, Normey-Rico et 
al.  [22] proposed a unified approach for designing dead-
time compensators on the base of FPIP. 

Although some of the aforementioned works improve 
the robustness of the closed-loop system, they cannot 
guarantee the stability of the closed-loop system in 
presence of unknown delays, which may occur inevitably 
in many applications. Moreover, as we mentioned earlier, 
applying a PD or PID controller to a linear system with 
input delay generally leads to a time-delay system of 
neutral type. To this aim in the present work, using a 
neutral system approach design of a PD controller with 
uncertain input delay is focused to achieve a prescribed 
level of H∞ performance. 

This paper is organized as follows. Problem 
formulation is introduced in Section 2, and in Section 3, 
the proposed PD controller with H∞ performance is 
designed for the time-varying delay case. This is 
accomplished in terms of some matrix inequalities for the 
closed-loop time-delay system of neutral type. An 
illustrative example is provided in section 4 to show the 
effectiveness of the proposed method in a case study 
compared to conventional methods. 

2.  PROBLEM FORMULATION  
In this paper, we consider the following time-delay 

system with input delay: line, as follows: 

(1) 
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

z z

p y

x t Ax t Bu t Ew t
z t C x t D w t
y t C x t

τ= + − +
= +
=

 

where x is the state, w∈ℜp is the disturbance input of 
system that belongs to Sobolev space 
W1,2(0,∞,ℜp)∩L2(0,∞,ℜp), τ is the constant time-delay of 
the system and is assumed to satisfy 0 τ τ< ≤ , u∈ℜm 
denotes the system input and z∈ℜq is the controlled 
system output. The matrices A∈ℜn×n, B∈ℜn×l, F∈ℜn×p, 
Cz∈ℜq×n, Cy∈ℜr×n, Dz∈ℜq×p are assumed to be known. 
Furthermore, it is assumed that all the state variables are 
measured. Considering the PD law (2) as 

(2) ( ) p du t K y K y= +  

the state space equations of the closed-loop system is 
given by 

(3) 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

p y d y

z z

x t Ax t BK C x t BK C x t Ew t
z t C x t D w t

τ τ= + − + − +
= +

 
Therefore, the resulting closed-loop system (3) is a time-
delay system of neutral type which both coefficients of 

( )x t τ− and ( )x t τ− depending on the controller 
parameters. Here, we state two well known lemmas 
which will be used further in the main result of the paper. 

Lemma 1  [24]: Assume a(.)∈ℜna, b(.)∈ℜnb and 

N∈ℜna×nb are defined on the interval Ω, then for any 
matrices X∈ℜna×nb, Y∈ℜna×nb and Z∈ℜna×nb, the following 
holds: 

(4) 
( ) ( )

( )
( )

( )
( )

2

,

T

T

T T

a Nb d

a aX Y N
d

b bY N Z

α α α

α α
α

α α

Ω

Ω

−

⎡ ⎤ ⎡ ⎤⎡ ⎤−⎢ ⎥ ⎢ ⎥⎢ ⎥≤ ⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦

∫

∫
 

where 

(5) 0T

X Y
Y Z
⎡ ⎤
⎢ ⎥ >⎢ ⎥⎣ ⎦

 

Remark 1: The above inequality can be extended to 
the similar inequalities with multiple integrals. 

Lemma 2  [25]: Consider the neutral system (3) and 
assume d(t)=[ ( )Tw t  ( )Tw t ]T. If ║Tzd║∞<γ, then the 
inequality ║Tzw║∞<γ  is satisfied. 
3.  H∞ CONTROL DESIGN 

In many developed theories, conventional PD 
controller has been used for obtaining stability as well as 
performance objectives of the closed-loop system. On the 
other hand, H∞ control is an effective method which 
guarantees asymptotic stability as well as performance 
objectives. This is why H∞ control for time-delay systems 
has been among the most challenging topics in recent 
years. All the aforementioned facts motivate us to 
elaborate on the following Theorem as the main result of 
this paper. 

Theorem 1: Given scalar 0τ > , the closed-loop 
system (3) is asymptotically stable and ║Tzw║∞<γ for any 
constant time-delay τ satisfying 0 τ τ< ≤ , if there exist 
scalars α1∈ℜ, α2<0, positive definite symmetric matrices 
L, P, T, Z1, Z2, R1, R2 ∈ℜn×n, matrices M1, M2 ∈ℜn×n, Kp, 
Kd ∈ℜl×n satisfying matrix inequalities (6) ~ (9). 
Moreover, H∞ PD control law is given by u=Kpy+Kd y . 

(7) 1 1

1 1

0
M I

I Z
α

α
⎡ ⎤
⎢ ⎥ >⎢ ⎥⎣ ⎦

 

(8) 2 2

2 2

2
0

2
M I

I Z
τα

τα
⎡ ⎤

>⎢ ⎥
⎣ ⎦

 

(9) 2 2

2 2

2
0

2
M I

I Z
τα

τα
⎡ ⎤

>⎢ ⎥
⎣ ⎦

 

in which, 

 

( ) ( )

( )

1 1 1 2 2

2 1 2

3 2

4 5 4

2 2

, /

T

p y

d y

T
p y d y

LA AL L M M L T
BK C I I

BK C I

BK C ABK C

α τ α τ
α α

τα

τ τ

Ω = + + + + + − +

Ω = − −

Ω = −

Ω = + Ω = Ω

 

Proof: In this case a Lyapunov-Krasovskii functional 
candidate for the system (3) has the form  [25] 

1 2 3 4V V V V V= + + +  
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( ) ( )
( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )

1 2 3

1 2 4 5

2

2 2

2 2

1
1

1
1

0 0

* 0 0 0 0 0

* * 0 0 0 0

* * * 0 0 0 0 0

* * * * 0

* * * * * 1 0 0 0
* * * * * * 0 0 0 0
* * * * * * * 0 0 0
*

T TT T T
z

T T T T

p y p y p y p y

T T

d y d y

T T
d y d y

T TT T T
z

T T

LF LA LA L AA L AA LC

Q BK C BK C ABK C ABK C

R P BK C BK C

R BK C BK C

m I F F AF AF D

m I F F
Z

R

τ τ

τ τ

τα τ

τ

γ τ τ

γ τ
τ −

−

Ω Ω Ω

−

− − Ω Ω

−

−

− −
−

−
1

2
1

2

0

* * * * * * * 0 0
* * * * * * * * * 0
* * * * * * * * * *

Z
R

I

τ −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ <
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (6) 

where 

(10) ( ) ( )1
TV x t Px t=  

 

(11) ( ) ( )
0

2 1

t T

t
V x Z x d d

τ β
α α α β

− +
= ∫ ∫  

 

(12) 
( ) ( )

( ) ( )

3

1

t T

t
t T

t

V x Qx d

x R x d

τ

τ

α α α

α α α

−

−

=

+

∫

∫
 

 

(13) 
( ) ( )

( ) ( ) ( )

01
4

1/ 2

t T

t

t T

t

V x Z x d d d

x R x d

β

τ τ η

τ

τ α α α η β

α α α

−

− − +

−

′=

′+

∫ ∫ ∫

∫
 

where P=PT>0, Q=QT>0, R1=R1
T>0, R′=R′T>0, Z1=Z1

T>0 
and Z′=Z′T>0. Differentiating V1 with respect to t gives us 

 

( ) ( )
( ) ( ) ( )

( ) ( )

1 2

2 {

}

T

T
p y

d y

V x t Px t

x t P Ax t BK C x t

BK C x t Ew t

τ

τ

=

= + −

+ − +

 

It is possible to write 

(14) ( ) ( ) ( )
t

t
x t x t x d

τ
τ α α

−
− = −∫  

Let us introduce the following relation for the delayed 
derivative of the state: 

(15) 

( )

( ) ( ) ( )
01 t

t

x t

x t x t x d d
β

τ τ

τ

τ τ α α β
+

−

− −

−

⎡ ⎤
= − − −⎢ ⎥

⎢ ⎥⎣ ⎦∫ ∫
 

Therefore, 
( )

( )

( )

1
1

1

2 ( )

2

2

T
p y d y

T
d y

tT
p y t

V x P A BK C BK C x t

x PBK C x t

x PBK C x d
τ

τ

τ τ

α α

−

−

−

= + +

− −

− ∫

 

 
( )

( ) ( )

012

2

tT
d y t

T

x PBK C x d d

x t PFw t

β

τ τ
τ α α β

+
−

− −
−

+

∫ ∫  

Applying Lemma 1 and Remark 1, the following upper 
bound for 1V  is obtained: 

( ) ( )
( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

1

1
1 1 1

1

1

{ / 2 }T T T T

T
p y

TT
p y

T
d y

TT
d y

V

x A P PA X X Y Y Y Y x

x t PBK C Y x t

x t PBK C Y x t

x t PBK C Y x t

x t PBK C Y x t

τ τ

τ

τ

τ

τ

−

≤

′ ′ ′+ + + + + + +

+ − −

+ − −

′+ − −

′+ − −

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

01
1

2T T T T

t tT T

t t

x t Y x t x t Y x t x t PFw t

x Z x d d x Z x d
β

τ τ τ

τ τ τ τ

τ α α α β α α α

− −

+
−

− − −

′ ′− − − − +

′+ +∫ ∫ ∫

 

(16) 
where 

(17) 1 1

1 1

0T

X Y
Y Z
⎡ ⎤
⎢ ⎥ >⎢ ⎥
⎣ ⎦

 

and, 

(18) 0T

X Y
Y Z

′ ′⎡ ⎤
>⎢ ⎥′ ′⎣ ⎦

 

Also, the time derivative of V4 can be represented as 
follows: 

(19) 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

01
4

/ 2 1/ 2

1/ 2

t T

t
T T

T

V x Z x d d

x t Z x t x t R x t

x t R x t

β

τ τ
τ α α α β

τ

τ τ

+
−

− −
′=−

′ ′+ +

′− − −

∫ ∫
 

  It can be shown that the time derivative of V2 and V3 are 

(20) ( )( ) ( ) ( ) ( )2 1 1

tT T

t
V x t Z x t x Z x d

τ
τ α α α

−
= −∫  
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(21) 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3

1 1

T T

T T

V x t Qx t x t Qx t

x t R x t x t R x t

τ τ

τ τ

= − − −

+ − − −
 

Therefore, we have 

(22) ( )
4

1
i

i

V t V
=

=∑  

Now consider (16), (19) ~ (22) and define 1
2Y Yτ − ′ = . 

By the assumption of 0TY Y′ ′= < and then adding and 
subtracting the terms ( )( ) ( )2

Tx t Y x tτ and 

( )( ) ( )2
T Tx t Y x tτ τ τ− −  in (22), an upper bound for V  is 

obtained as 
( ) ( )( )

( )( ) ( )

( ) ( )

( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )( )

1 1 1 2

1

2

2

2

{ 1 / 2 2 }

2

2

2

/ 2

1 / 2

1 / 2

T T T

T
p y

T
d y

TT T

T T

T T

T

T

p y d y

V t x A P PA X X Y Y Y x

x t PBK C Y x t

x t PBK C x t

x t x t Y x t x t

x t PFw t x t Y x t

x t Y x t x t Z x t

x t R x t

x t R x t

Ax BK C x t BK C x t Fw t

τ

τ

τ

τ τ τ

τ

τ τ

τ τ

τ τ

′≤ + + + + + +

+ − −

+ −

+ + − − + −

+ − −

′− − +

′+

′− − −

+ + − + − +

( ) ( ) ( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

1

1 1

1 2

2

.

2 .

T

p y d y

T T

T T

T
p y d y

T

TT

Z Ax BK C x t BK C x t Fw t

x t Qx t x t Qx t

x t R x t x t R x t

Ax t BK C x t BK C x t Fw t

R Fw t x t Y x t

x t t Y x t

τ τ τ

τ τ

τ τ

τ τ

τ

τ τ τ

+ − + − +

+ − − −

+ − − −

+ + − + − +

+

+ − −

 (23) 
Assume zero initial condition, i.e. φ(t)=0, ∀t∈[-τ,0] we 

have V(q(t))|t=0=0. For a prescribed 0>γ , consider the 
following performance index: 

(24) ( ) ( )2

0

T T
zdJ w z z d d dγ τ

∞
= −∫  

where ( )
( )
( )

,
w t

d t
w t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Therefore, the performance index (24) can be rewritten as 

 ( ) ( )2 2

0

T T T
zdJ w z z w w w w dγ γ τ

∞
= − −∫  

Since V(t)|t=0=0 and V(t)|t→∞≥0, we obtain 

 

( ) ( )( )
( ) ( )

( )( )

2 2

0

0

2 2

0

T T T
zd

t t

T T T

J w z z w w w w V t d

V t V t

z z w w w w V t d

γ γ τ

γ γ τ

∞

= →∞

∞

= − − +

+ −

≤ − − +

∫

∫
 

 Hence, the following inequality is obtained: 

( ) {
( ) ( )}

0

22 2 2

2

1

T T T T T T
zd z z z

T T

J w x C Cx x C D w w D D w

m w w m w w V t dγ γ τ

∞
≤ + +

− − − +

∫  

(25) 
Considering (23) and 0 τ τ< ≤ a new upper bound for 
(25) is obtained as 

( )( ) ( ) ( )( ) ( ){ }2 20

zd

TT T T

J

x t Y x t x t Y x t dζ ζ τ τ τ τ τΠ
∞

≤

+ + − −∫
                                                                                      (26) 
with defined  

( ) ( ) ( ) ( ) ( ) ( )x t x t x t x t w t w tζ τ τ τ⎡ ⎤= − − −⎣ ⎦   

and ijΠ Σ⎡ ⎤= ⎢ ⎥⎣ ⎦  where T
ij ijΣ Σ=  and i,j= 1,2,…6.  

in which, 
( ) ( )

( )

11 1 1 1 2

1 2

12 1 2 1 2

13 2 1 2

14 2

15 1 2

16 2

22

/ 2 2T T

T T T
z z

T T T
p y p y p y

T T T
d y d y p y d y

T T
d y

T T T T
z z

T T

p

A P PA Y Y X X Y

A A A A AA Q C C

PBK C Y Y A BK C A A ABK C

PBK C Y A BK C A A BK C ABK C

A A BK C

PF A F A A AF C D

A A F

Q BK C

τ τ

τ

Σ

ϒ ϒ

Σ ϒ ϒ

Σ ϒ ϒ

Σ ϒ

Σ ϒ ϒ

Σ ϒ

Σ

′= + + + + + + −

+ + + +

= − − + +

= − + + +

=

= + + +

=

=− +( ) ( )
( ) ( ) ( )
( )
( ) ( )
( )

( )
( ) ( )
( )

1 2

23 1 2

24 2

25 1 2

26 2

33 1 2 1

2

34 2

T T
y p y p y p y

T T T
p y d y p y p y d y

T T
p y d y

T T
p y p y

T
p y

T
d y d y

T
p y d y p y d y

T
p y d y d y

BK C ABK C ABK C

BK C BK C BK C A BK C ABK C

BK C A BK C

BK C F ABK C AF

ABK C F

R Y BK C BK C

BK C ABK C BK C ABK C

BK C ABK C BK C

τ

ϒ ϒ

Σ ϒ ϒ

Σ ϒ

Σ ϒ ϒ

Σ ϒ

Σ ϒ

ϒ

Σ ϒ

+

= + +

=

= +

=

=− − +

+ + +

= +

( ) ( )
( )

( )

35 1 2

36 2

44 2/ 2

T T
d y d y p y

T
p y d y

T
d y d y

BK C F ABK C BK C AF

BK C ABK C F

R BK C BK C

Σ ϒ ϒ

Σ ϒ

Σ ϒ

= + +

= +

′=− +

 

( ) ( )

( )

45 2 46 2

2 2
55 1 2

2 2
56 2 66 2 1

T T

d y d y

T T T T
z z

T T T

BK C AF BK C F

F F F A AF D D m I

F A F F F m I

γ

γ

Σ ϒ Σ ϒ

Σ ϒ ϒ

Σ ϒ Σ ϒ

= =

= + + −

= = − −

 

where 1 1 1R Zϒ τ= +  and ( )2 / 2 / 2R Zϒ τ′ ′= + . 

Consider the constraint 2 2 0TY Y= < , if 0Tζ ζΠ < , then 
the negative semi definiteness of Jzd  in (26) is guaranteed 
for any constant time-delay τ satisfying 0 τ τ< ≤ . 

Hence, by assuming w∈W1,2(0,∞,ℜp)∩L2(0,∞,ℜp) and 
Π<0 then implies that Jzd<0 and therefore ||Tzd||∞<γ . By 
Lemma 2, the inequality ||Tzd||∞<γ guarantees ||Tzw||∞<γ    
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( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

1 1 2 2

1 2

2

1
1

1
1

1
2

1
2

0

* 0 0

* * 0

* * * 0 0

* * * * 0 0 0
* * * * * 0 0
* * * * * * 0
* * * * * * *

T TT T
p y d y

T T T T
p y p y p y p y

T T T T
d y d y p y d y p y d y

T T
d y d y

BK C I I BK C I LA LA L AA L AA

Q BK C BK C ABK C ABK C

R P BK C BK C BK C ABK C BK C ABK C

R BK C BK C

Z
R

Z
R

α α τα τ τ

τ τ

τα τ τ

τ

τ

τ

−

−

−

−

⎡Ω − − −
⎢

−

− − + +

−

−
−

−
−⎣

0

⎤
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

<⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎦

 (32) 

 
to be satisfied. Use Schur complement, one may show 
that condition Π<0 is equivalent to the following matrix 
inequality: 

(27) 
11 12

12 22
0T

Ξ Ξ⎡ ⎤
<⎢ ⎥Ξ Ξ⎢ ⎥⎣ ⎦

 

with LMI (17) and 

(28) 2

2

0
X Y
Y Z

τ
τ

⎡ ⎤′
⎢ ⎥ >⎢ ⎥′⎣ ⎦

 

where  

( )
[ ]

11

1 2 3

1 2

2 2

2 2

12 1 1 1 1 2 2 3

0 0
* 0 0 0 0
* * 0 0 0
* * * / 2 0 0
* * * * 0

* * * * * 1

/ 2 / 2

PF
Q

R Y
R

m I

m I

Z R Z R

τ

γ

γ

τ τ

Ξ =

Ω Ω Ω⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −
⎢ ⎥′−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥− −⎣ ⎦

′ ′Ξ = ∆ ∆ ∆ ∆ ∆

 

where  

 

( )( )
( )

[ ]

1 1 1 1

2

2 1 2

3 2

4

1

2 4

3

1 / 2

2

0 0

0 0 0 0

T T

p y

d y

p y d y

T
p y d y

T
p y d y

T
z z

A P PA Y Y X X

Y Q
PBK C Y Y

PBK C Y

BK C ABK C

A BK C BK C F

A A ABK C BK C AF F

C D

τ

τ

τ

′Ω = + + + + +

+ − +

Ω = − −

Ω = −

Ω = +

⎡ ⎤∆ = ⎣ ⎦

⎡ ⎤∆ = Ω⎣ ⎦

∆ =

 

and 

 ( )22 1 1 / 2 / 2diag Z R Z R Iτ τ ′ ′Ξ = − − − − −  

Furthermore, we may define Y1=α1P, Y2=α2P, L=P-1 with 
arbitrary scalar values α1 and α2<0. Denote 

1 1 1
1 1, ,P Z R− − − as L, F1, and H1 respectively, by performing 

a congruence transformation to (27) by diag 
( )1 1

1 1, , , , , , , , 2 , 2 ,diag L I I I I I F H Z R I− −′ ′  together with 
introducing the change of variables M1=LX1L, M2=L(X′/2)L, 
R2=R′/2, Z2=Z′/2, the matrix inequality (6) is derived. 
Similarly, Pre and post multiplying the LMI (17) by diag 

( L , I ), the LMI (7) is provided. Moreover, by 
performing a congruence transformation to (18) by diag 
( L , I), we can obtain 

 2

2

0
LX L I

I Z
τα

τα

⎡ ⎤′
⎢ ⎥ >⎢ ⎥′⎣ ⎦

 

Using Schur complement, we have 

 ( )( ) ( )1
2 2 0LX L I Z Iτα τα

−′ ′− >  

Substitute ( )2 / 2M L X L′=  and 2Z2=Z′, the following 
matrix inequality is derived. 

(29) ( )( ) ( )1
2 2 2 22 2 0M I Z Iτα τα−− >  

On the other hand we have 

(30) 
( )( ) ( )

( )( ) ( )

1
2 2 2 2

1
2 2 2 2

2 2

2 2

T

T

M I Z I

M I Z I

τα τα

τα τα

−

−

−

≥ −
 

Therefore, satisfying the following inequality guarantees 
the inequality (29) to be satisfied. 

(31) ( )( ) ( )1
2 2 2 22 2 0TM I Z Iτα τα−− >  

Applying Schur complement, the matrix inequality (8) is 
obtained. To guarantee asymptotic stability of the 
difference operator 

 ( ) ( ) ( )t d yx x t BK C x t τ= − −D  

it suffices to guarantee ( ) 1d yBK Cσ <  or (BKdCy)T(BKdCy)< 
I. Using Schur complement and performing a congruence 
transformation by diag (L, I ), the matrix inequality (9) is 
provided. This completes the proof. ■  

Remark 2: It should be noted that the resulting matrix 
inequality (6) is not an LMI condition due to the terms 
LQL, 1

iZ −  and 1
iR− . A good remedy to deal with this 

problem is to apply iterative method presented by Moon 
et al.  [24]. Exploiting this method enables us to replace 
the existing nonconvex optimization problem with a 
nonlinear minimization problem with LMI conditions. 
This iteration algorithm works efficiently for many 
examples. Moreover, it helps us to find an initial guess in 
the feasibility region and improve the solution iteratively 
by applying BMI conditions obtained during the proof of 
Theorem 1. 

Remark 3: Theorem 1 can be further modified to cope 



Amirkabir / Electrical & Electronics Engineering / Vol . 42 / No.1 / Spring 2010   
 
62 

with stabilization problem, leading to the following 
corollary. 

Corollary 1: For given scalar 0τ > , the closed-loop 
system (3) is asymptotically stable for any constant time-
delay τ satisfying 0 τ τ< ≤ , if there exist scalars α1∈ℜ, 
α2<0, positive definite symmetric matrices L, P, T, Z1, Z2, 
R1, R2 ∈ℜn×n, matrices M1, M2 ∈ℜn×n, Kp, Kd ∈ℜl×n 
satisfying matrix inequalities (32) ~ (35). Moreover, H∞ 
PD control law is given by u=Kpy+Kd y . 

(33) 1 1

1 1

0
M I

I Z
α

α
⎡ ⎤
⎢ ⎥ >⎢ ⎥⎣ ⎦

 

(34) 2 2

2 2

2
0

2
M I

I Z
τα

τα
⎡ ⎤

>⎢ ⎥
⎣ ⎦

 

and, 

(35) ( ) 0
T

d y

d y

I BK C

BK C I

⎡ ⎤
⎢ ⎥ >⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 

in which, 

 ( ) ( )1 1 1 2 22 2TLA AL L M M L Tα τ α τΩ = + + + + + − +

 
4.  CASE STUDY: CONCENTRATION IN AN UNSTABLE 
REACTOR 

In this example we consider a chemical reactor with 
unstable dynamical behaviour. For control purposes, C(t), 
the output concentration, is the output variable and Ci(t), 
the input concentration, is the manipulated variable. 
Furthermore, the concentration transducer needs a dead 
time of 20 seconds to give the output variable. The 
linearized transfer function from Ci(t) to C(t) at the 
operating point is obtained as follows  [22]: 

 ( )
203.433

103.1 1

seP s
s

−

=
−

 

with an unstable pole at s=1/103.1. Normey-Rico et.al 
 [22] presented a PI controller in smith predictor (SP) 
structure to stabilize the above system as  

 ( )1
13.29 1

43.87
C s

s
⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

. Two additional filters F(s) and Fr(s) are proposed in SP 
to improve the set-point response and the predictive 
properties.  

To evaluate the method presented in this paper, we 
consider a cascade controller as shown in figure 1. 
Applying our method proposed in Theorem 1 and 
considering remark 2, the PD controller in the inner loop 
is designed to stabilize the process. For tracking purposes 
a PI controller is applied using Fertik method  [23]. 

Let us consider 20τ =  and apply Theorem 1 to find 
an H∞ PD controller for the above system. By solving the 
matrix inequalities (6) ~ (9), the deigned PD controller 

for the inner loop is obtained as  

 ( ) ( )2 0.707 1 .1425C s s= +  

For a set point tracking problem we apply Fertik method 
and design a PI controller for the outer loop as 

 ( )3
10.647 1

51.2
C s

s
⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

We also use an additional filter to improve the set point 
response of the closed-loop system as 

 ( ) 1
30 1

F s
s

=
+  

To see the closed-loop response of our proposed 
structure and the one presented in  [22], we consider 

20τ = , a set point change to 5 mol/l at t =50s and a flow 
step disturbance is introduced at t=700 s. Simulation 
results are shown in figure 2. As it is shown in Figure 2, 
despite the results reported in  [22], the closed-loop 
system shows an unstable behaviour in a large simulation 
time applying controller C1(s) whereas our designed 
controller provides stable response with good disturbance 
rejection in presence of time-delay. In order to evaluate 
the robustness of the closed-loop system with respect to 
time-delay variations or dead-time estimation error, 
consider the closed-loop system for the ±25% time-delay 
variation, that is τ =25s and τ =15s. Figures 3 & 4 show 
the simulation results of the closed-loop for time-delay 
variations. As it is shown in figures 3-4, our designed 
controller provides stable and well-damped response 
even in presence of considerable variations in time-delay. 
Moreover, it is observed in the simulations that the 
closed-loop system with controller C2(s) remains in the 
stable region for a maximum delay of τmax =29.6 s. 

 

 

 

 
 
Figure 1.  Cascade Control Structure 
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Figure 2: Step response of the plant output with τ =20 s. 
Proposed controller (solid) and Normey et al. ’s controller 
(dashed) 
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Figure 3. Step response of the plant output with τ =25 s. 
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Figure 4. Step response of the plant output with τ =15 s. 

 

5.  CONCLUSIONS 

H∞ control of a time-delay system with input delay for 
uncertain time-delay is elaborated in this paper. The 
resulting closed-loop system with the PD control law is a 
particular system of neutral type. In this system, the 
coefficients of delayed terms depend on the control law 
parameters. The Lyapunov theory is used to derive a set 
of delay-dependent sufficient conditions in presence of 
uncertain time-delay. A sufficient condition is derived for 
the existence of an H∞ PD controller for the closed loop 
system in terms of matrix inequalities. Moreover, a 
practical example is presented in this paper to illustrate 
the effectiveness of our method. Simulations show good 
disturbance rejection as well as robustness in presence of 
time-delay variations. 
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