• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Advisory Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • Export Citation Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
AUT Journal of Electrical Engineering
Articles in Press
Current Issue
Journal Archive
Volume Volume 49 (2017)
Volume Volume 48 (2016)
Volume Volume 47 (2015)
Volume Volume 46 (2014)
Volume Volume 45 (2013)
Volume Volume 44 (2012)
Volume Volume 43 (2011)
Volume Volume 42 (2010)
Issue Issue 1
Volume Volume 41 (2009)
Mehdizadehi, S., Najarianii, S., Farmanzadiii, F., Khoshgoftariv, M. (2010). Biomechanical Analysis of CNS Gray Matter in Tension and Compression. AUT Journal of Electrical Engineering, 42(1), 45-50. doi: 10.22060/eej.2010.105
Sina Mehdizadehi; Siamak Najarianii; Farhad Farmanzadiii; Mehdi Khoshgoftariv. "Biomechanical Analysis of CNS Gray Matter in Tension and Compression". AUT Journal of Electrical Engineering, 42, 1, 2010, 45-50. doi: 10.22060/eej.2010.105
Mehdizadehi, S., Najarianii, S., Farmanzadiii, F., Khoshgoftariv, M. (2010). 'Biomechanical Analysis of CNS Gray Matter in Tension and Compression', AUT Journal of Electrical Engineering, 42(1), pp. 45-50. doi: 10.22060/eej.2010.105
Mehdizadehi, S., Najarianii, S., Farmanzadiii, F., Khoshgoftariv, M. Biomechanical Analysis of CNS Gray Matter in Tension and Compression. AUT Journal of Electrical Engineering, 2010; 42(1): 45-50. doi: 10.22060/eej.2010.105

Biomechanical Analysis of CNS Gray Matter in Tension and Compression

Article 6, Volume 42, Issue 1, Winter and Spring 2010, Page 45-50  XML PDF (301 K)
Document Type: Research Article
DOI: 10.22060/eej.2010.105
Authors
Sina Mehdizadehi1; Siamak Najarianii* 2; Farhad Farmanzadiii3; Mehdi Khoshgoftariv4
1S. Mehdizadeh is with the Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran (e-mail: s.mehdizadeh@aut.ac.ir).
2Corresponding Author, S. Najarian is with the Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran (e-mail: najarian@aut.ac.ir).
3F. Farmanzad is with the Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran (e-mail: f.farmanzad@sazeh.co.ir).
4M. Khoshgoftar is with the Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran (e-mail: p.khoshgoftar.eng@gmail.com).
Abstract
The purpose of this study is to survey cross section changes of the animal brain samples during the tension and compression tests and comparison of the experimental results for three animals: bovine, sheep, and rabbit. A linear elastic theory with considering the necking in tension and barreling in compression has been considered for brain tissue. Bridgman method for tension and cross section updating method (using a picture analyzing through a computer program to trace cross section changes during the test) for compression has been applied in order to consider necking and barreling. It is shown that the effect of cross section changes of the samples during the test is not negligible. Differences in the behavior of brain tissue of bovine, sheep, and rabbit in both compression and tension are discussed. Results are in good agreement with previous works in the literature.
Keywords
Biomechanics; Brain Tissue; Mechanical Behavior; Tension; Compression
References

[1]     Farmanzad, F.; Najarian, S.; Eslami, M.; Seddighi, A.S.; “A novel model for biomechanical behavior of human brain in epidural hematoma injuries”, Bio-Med. Mater. and Eng., vol. 17 (2), p.p. 119-125, 2007.

[2]     Pott, P.P.; Scharf, H.P.; Schwarz, M.L.R.; “Today’s state of the art surgical robotics”, J. of Comput. Aid.  Surg., vol. 10 (2), p.p. 101-132, 2005.

[3]     Taylor, Z.; Miller, K.; “Reassessment of brain elasticity for analysis of biomechanics of hydrocephalus”, J. of Biomech. Eng., vol. 37, p.p. 1263-1269, 2005.

[4]     Walsh, E.K.; Schettini, A.; “Elastic behavior of brain tissue in vivo”, Am. J. Physiol., vol. 230, p.p. 1058-1062, 1976.

[5]     Ommaya, A.K.; “Mechanical properties of tissues of the nervous system”, J. of Biomech., vol. 1, p.p. 127, 1968.

[6]     Estes, M.S.; McElhaney, J.H.; “Response of brain tissue of compressive loading”, ASME Pub., 70-BHF-13, 4, 1970.

[7]     Miller, K.; “Constitutive modeling of brain tissue: Experiment and theory”, J. of Biomech., vol. 30, p.p. 1115-1121, 1997.

[8]     Miller, K.; Chinzei, K.; “Mechanical properties of brain tissue in tension”, J. of Biomech., vol 35, p.p. 483-490, 2002.

[9]     Bilston, L.E.; Liu, Z.; Phan-Thien, N.; “Large strain behavior of brain tissue in shear: Some experimental data and differential constitutive model”, Biorheolog, vol. 38, p.p. 335-345, 2001.

[10]  Brands, D.W.A.; Bovendeerd, P.H.M.; Peters, G.W.M.; Wismans, J.S.H.M.; “The large shear strain dynamic behavior of in-vitro porcine brain tissue and the silicone gel model material”, Proc. of the 44th Stapp Car Crash Conf., 2000-01-SC17, p.p. 249-260, 2000.

[11]  Donnely, B.R.; Medige, J.; “Shear properties of human brain tissue”, J. of Biomech. Engin., vol. 119, p.p. 423-432, 1997.

[12]  Prange, M.T.; Margulies, S.S.; “Regional, directional, and age-dependent properties of the brain undergoing large deformation”, J. of Biomech. Eng., vol. 124, p.p. 244-252, 2002.

[13]  Miller, K.; “Constitutive model of brain tissue suitable for finite element analysis of surgical procedures”, J. of Biomech., vol. 32, p.p. 531-537, 1999.

[14]  Franceschini, G.; Bigoni, D.; Regitni, P.; Holzapfel, G.A.; “Brain tissue deforms similarly to filled elastomers and follows consolidation theory”, J. of the Mech. and Physics of Solids, vol. 54: p.p. 2592–2620, 2006.

[15]  Hashemi, J.; Bennettv, R.; “Materials Characterization: Tensile Test”, Mater. and Mech. Laborat., ME 3328, 2003.

[16]  Ling, Y.; “Uniaxial True Stress-Strain after Necking”, AMP J. of Technolog., vol. 5,1996.

[17]  Velardi, F.; Fraternali, F.; Angelillo, M.; “Anisotropic constitutive equations and experimental tensile behavior of brain tissue”, Biomech. Model Mechanbiol., vol. 5, p.p. 53–61, 2006.

[18]  Mendis, K.K.; Stalnaker, R.L.; Advani, S.H.; “A constitutive relationship for large deformation finite element modelling of brain tissue”, J. of Biomech. Eng., vol. 117, p.p. 279–285, 1995.

[19]  Khoshgoftar, M.; Najarian, S.; Farmanzad, F.; “A Biomechanical Composite Model to Determine Effective Elastic Moduli of the CNS Gray Matter”, Am. J. of Appl. Sci., vol. 4, p.p. 918-924, 2007.

[20]  Miller, K.; Chinzei, K.; Orssengo, G.; Bednarz, P.; “Mechanical properties of brain tissue in vivo: experiment and computer simulation”, J. of Biomech., vol. 33, p.p. 1369-1376, 2000.

Statistics
Article View: 1,287
PDF Download: 836
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Amirkabir International Journal of Electrical and Electronics Engineering is licensed under a
"Creative Commons Attribution 4.0 International (CC-BY 4.0)"

Amirkabir University of Technology (Tehran Polytechnic)

Journal Management System. Designed by sinaweb.