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ABSTRACT 

Polyphase is a common class of pulse compression waveforms in the radar systems. Oppermann code is 
one of the used codes with polyphone pattern. After compression, this code has little tolerant against Doppler 
shift in addition to its high side lobe level. This indicates that the use of Oppermann code is an unsuitable 
scheme to radars applications. This paper shows that the use of amplitude weighting functions improves 
properties of code and makes it an appropriate technique. Noticeable reduction in sidelobe and false alarm as 
well as the increase of the target detection ability and Doppler tolerant are the signature of amplitude 
weighting functions investigated and simulated in this study. 
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1.  INTRODUCTION 

In order to increase range resolution, pulse 
compression techniques is widely used in many radar 
systems. Pulse compression is a method which combines 
the high energy of a long pulse width with the high 
resolution of a short pulse. The transmitted pulse is 
modulated by using binary phase coding, polyphase 
coding, frequency modulation, and frequency stepping in 
order to get large time-bandwidth product. 

Phase-coded pulse compression can be implemented 
by applying the digital Correlator as the matched filter. 
Output of the matched filter will be an extremely narrow 
pulse with a large peak value, thus the transmitted pulse 
is compressed in time domain [1]. Unfortunately, the 
autocorrelation function (ACF) of a real expanded 
impulse consists not only of a main peak which is used 
for target detection but also of range sidelobes which can 
cover main peaks caused by small targets [1], [2].  

Binary Phase and polyphase are two methods for of 
phase coding. In binary form, a long pulse of duration T 
is divided into N sub pulses each of width τ. The phase of 
each sub-pulse is chosen to be either 0 or π radians. 

The binary choice of 0 or π phase for each sub-pulse 
may be made at random. However, some random 
selections may be better suited than others for radar 
application. One criterion for the selection of a good 
random phase coded waveform is that its autocorrelation 

function should have equal time sidelobes. Barker codes 
have called perfect codes because the highest side lobe is 
only one code element amplitude high. However, the 
largest pulse compression ratio that can be obtained with 
barker code is only 13 [1]. 

If the phases of subpulses in phase coded pulse 
compression are other than the binary phases of 0 and π , 
then the phase codes are called polyphase codes. They 
have lower sidelobes than binary codes and are more 
Doppler tolerant if the Doppler frequencies are not too 
large. Frank proposed a polyphase code called as Frank 
code [1]. Lewis and Krestschmer have presented the 
variants of Frank code. P1 code which is derived from 
step frequency, Bolter matrix derived P2 code and linear 
frequency derived P3 and P4 codes. The significant 
advantage of P1 and P2 codes over the Frank code and 
the P4 code over P3 is that they are tolerant to receiver 
band limitations [3]. 

Oppermann Codes polyphase pulse compression 
waveform discussed by the author [4], provide a class of 
phase coded waveform that can be sampled upon 
reception and processed digitally. These codes were 
originally introduced within the context of applications 
for code-division multiple-access (CDMA) systems. 
Given the length of the code, Oppermann codes are 
defined by three parameters which then correspond to a 
distinct family of codes. For particular values of these 
parameters, the autocorrelation magnitude of Oppermann 
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codes is controlled by one parameter while a second 
parameter influences only the phase characteristics. 
Further, the autocorrelation magnitude is then the same 
for all Oppermann codes in the family. Thus, this makes 
it a candidate for the design of integrated radar and 
communication systems where more than one code is 
needed. 

The compressed pulse of the polyphase coded 
waveforms has sidelobes which decrease the pulse 
compression ratio (PCR). For PCR equal to 100, the 
sidelobe peaks range from 26 to 30dB below the main 
peak signal response, depending on the particular code 
[3]. 

There are reduction techniques developed to reduce 
the sidelobe levels. Lewis proposed sliding window two-
sample subtractor to reduce the sidelobes for the 
polyphase codes [5]. Weighting in frequency and time 
domain can generally be applied to reduce the sidelobes 
[6], [7]. This sidelobe reduction technique can be 
analysed twofold: as matched weighting (with weighting 
window at the transmitter and the receiver) and 
mismatched weighting, where amplitude weighting is 
performed only at receiver site. There is wide range of 
well-known window functions (Hanning, Hamming, and 
Nuttallwin) implemented in pulse compression technique. 

This paper indicates that Oppermann code has an 
unsuitable sidelobes level and Doppler tolerant to radars 
applications. Also, this shows that the use of amplitude 
weighting functions improves properties of code and 
makes it as an appropriate technique.  

The paper is organized as follows. Section II defines 
the measures used to facilitate a quantitative performance 
evaluation and comparison of the considered polyphase 
codes. Section III describes the class of Oppermann 
codes. On this basis, numerical results are given in 
Section IV. It also illustrates Effects of amplitude 
weighting window for Oppermann code in poly phase 
pulse compression. Finally, Section V concludes the 
paper. 

2.  PERFORMANCE MEASURES 

Let N denote the length of each polyphase code 
[ (0), (1),... , ( 1)]u u u u N= − . In the sequel, we provide the 

definitions of the measures [8], [9] used to assist with the 
performance comparisons of the examined classes of 
polyphase code. 

A.  Aperiodic Autocorrelation 
The aperiodic autocorrelation ( )C l  at discrete shift 

l between a polyphase code u  and its shifted version, is 
defined as 
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where 

(2) [ ]( )  ( )u i exp j iϕ=  

is the i th subpulse of length N  of the poly phase code 

and *u  denotes the complex conjugate of the argument 
u . Also ( )iϕ denotes i the subpulse phase of length N of 
the polyphase code.  

It is noted that the discrete shift l  in the considered 
radar scenarios is associated with the delay by which a 
transmitted pulse code signal is received, which in turn 
translates to the range of a target. 

B.  Figure of Merit  
The figure of merit (FOM) of a code u  of length 

N with aperiodic autocorrelation function ( )c l  measures 
the ratio of energy in the mainlobe to that in the sidelobes 
of the autocorrelation function. It is defined as 
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C.  Peak-to-Sidelobe Ratio  
Similarly, the peak-to-sidelobe ratio (PSLR) of a code 

of length N  with aperiodic autocorrelation function ( )c l  
measures the ratio of the inphase value (0)c  to the 

maximum sidelobe magnitude ( )c l  of the 
autocorrelation function. It is defined as 

(4) 
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3.  OPPERMANN CODES  

A family of polyphase codes that supports a wide 
range of correlation properties is proposed in [3]. The 
phase ( )k iϕ  of the i th element ( )u i  of Oppermann code 
of length N  is defined as 

(5)( ) [ )] , 1,...,m p n
k i K i i kiN i k N

N
πϕ = + + =

The parameters m, n and p in (5) take real values and 
define a family of Oppermann codes. For a fixed 
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combination of these three parameters, all the codes have 
the same autocorrelation magnitude. If p=1 this 
autocorrelation magnitude depends only on n and is given 
by [5] 

(6)n n
k

0

1( ) exp ( )
N l

i

C i
N N

jl i lπ−

=

⎧ ⎫⎡ ⎤= − +⎨ ⎬⎣ ⎦⎩ ⎭
∑  

In this case, the optimal family in terms of FOM or 
PSLR as defined in (3) and (4), respectively, can be 
found by simple search over n. In the sequel, we will 
therefore concentrate on the case of p=1. Given p=1 and 
the parameter n associated with the optimal family, the 
parameter m may be varied to produce favorable phase or 
crosscorrelation characteristics, for instance. With this 
parameter setting, the class of Oppermann codes provides 
us not only with a wide range of correlations but also 
flexibility to control the ambiguity function at scenarios 
other than those relating to the zero Doppler shift [10]. 
4.  RESULTS AND DISCUSSION 

This section aims at illustrating major performance 
characteristics of the examined class of Oppermann code 
in polyphase pulse compression codes along with the 
related benefits and drawbacks. In the first step, 
performance assessment is based on PSLR, FOM and 
mainlobe width (-3dB) that reflect code characteristics in 
the absence of Doppler shifts. In the second step, the 
behaviour in non-zero Doppler shifts is evaluated using 
the ambiguity function. 

Figure 1 shows Compressed pulse for Oppermann 
code at zero Doppler shift with length of N=100 while 
p=1, m=1 and n=2. Note that for N=100, PSLR is equal 
to 26.32 dB. This level of sidelobes is unsuitable for 
applications radar. 

It is seems that the nearby sidelobe to the mainlobe is 
more important than other sidelobes, because its increase, 
decreases the detection ability for small targets have been 
placed near a great target. The nearby sidelobe to the 
mainlobe hereinafter will be referred to as secondary 
peak for shortness. 
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Figure 1: Autocorrelation function of Oppermann code at zero 
Doppler shift with length of N=100 while p=1, m=1 and n=2.  

Peak sidelobe level can be reduced by amplitude 
weighting window. In this paper Hamming, Hanning and 
Nuttallwin window are used that are shown in Figure 2. 
Hamming window is wider than Hanning, and Hanning is 
than Nuttallwin. 

Figure 3 and Figure 4 show results of the amplitude 
weighting window on Oppermann code at zero Doppler 
shift of length N=100. The effects of amplitude 
weighting can be investigated as follows: 

A.  Peak -to-Sidelobe Level Ratio (PSLR) 
Hamming, Hanning and Nuttallwin windows increase 

PSLR from 26.32 dB to 40.08, 39.91 and 35.76 dB, 
respectively. Increasing of PLSR causes the False Alarm 
probability to decrease and the small target detection 
ability to increase. 
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Figure 2: Hamming, Hanning and Nuttallwin windows. 
Nuttallwin is narrower than Hanning and Hamming. 

 

B.  Figures of Merit (FOM) 
Hamming, Hanning and Nuttallwin windows increase 

FOM from 12 dB to 20.47, 20.98 and 21.06 dB, 
respectively. Increasing of FOM denotes increase of the 
ratio of energy in the main lobe to the whole energy of 
the sidelobes. In fact, increasing of the FOM indicates 
increase of the target detection ability. Thus the detection 
ability of Hamming, Hanning and Nuttallwin windows 
increases, respectively, in comparison with the case in 
which window weighting is not used.  

C.  Mainlobe Width (-3dB ) 
Unfortunately, amplitude weighting increase the 

mainlobe width. This increase causes the range resolution 
loss. Range resolution is an ability of the receiver to 
detect nearby targets. Hamming, Hanning and Nuttallwin 
windows increase mainlobe width from 0.075 to 0.42, 
0.51 and 0.88, respectively. That means decrease of 
resolution. Comparison of Figure 2 and Figure 4 
indicates that window and mainlobe width are related 

Secondary peaks 
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reversely. For example, Nuttallwin window is narrower 
than Hamming window, but the mainlobe of weighting 
Oppermann code with Hamming Window, in narrower 
than it with Nuttallwin window. 

PSLR, FOM, and mainlobe width of weighting 
Oppermann code with used of Hamming, Hanning and 
Nuttallwin windows are presented in Table 1. 

D.  Secondary peak 
Amplitude weighting with used of Hamming, Hanning 

and Nuttallwin windows have obvious effect on the 
secondary peak. Figure 3 is well shows that Hamming 
window decreases the secondary peak about 15dB. 
Hanning and Nuttallwin windows decrease it more than 
23dB. 
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Figure 3: Autocorrelation function of weighting Oppermann 
code with used of Hamming, Hanning and Nuttallwin windows.  
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Figure 4: Effect of amplitude weighting window on mainlobe of 
Oppermann code with used of Hamming, Hanning and 
Nuttallwin windows.  

 
 
 
 

TABLE 1 
PERFORMANCE FOR 100 ELEMENT OPPERMANN CODE 

 

Window name  PSLR 
(dB)  

FOM 
(dB) 

Mainlobe 
Width (-3dB) 

Rectangular  26.32  12  0.075 
Hamming  40.08  20.47  0.42 
Hanning  39.91  20.98  0.51 

Nuttallwin 35.76 21.06 0.88 
 

E.  Doppler properties  
Figure 5 shows the ambiguity diagram of compressed 

Oppermann code which is a function of normalized delay 
and normalized Doppler shift. τ  denotes the delay 
between the transmitted signal and the returned signal 
from a target and df  denotes the Doppler frequency 
induced by a moving target. cT  denotes the duration of a 
subpulse and N  length of code, in other words the 
period cT NT= . The ratios / Tτ and /df B  (B 
represents bandwidth) are then called normalized delay 
and normalized Doppler, respectively, which hereinafter 
will be referred to as delay and Doppler for shortness. 
Oppermann code has two smaller ridges relatively far 
from the diagonal ridge, in the corners of the second and 
fourth quadrant of the delay-Doppler plane. 
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Figure 5: Ambiguity diagram of Oppermann code with length 
of N=100 while p=1, m=1 and n=2. 

 
Effect of amplitude weighting with Hamming, 

Hanning and Nuttallwin windows functions for Doppler 
shift are investigated and presented. Use of the weighting 
window functions on Oppermann code causes many 
evolutions in the ambiguity diagram of it. Figure 6 shows 
the effects of windowing functions Hamming, Hanning 
and Nuttallwin windows on the Oppermann code. 

Figure 6.a indicates that use of the Hamming window 
causes extreme reduction of the ridge in the corner of the 
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second and fourth quadrant of the delay-Doppler plane. 
Figure 6.b and Figure 6.c represents that Hanning and 
Nuttallwin windows are more effective on the reduction 
magnitude of ridges in comparison with Hamming 
window. 

Usually the ambiguity diagram analysis is difficult, so 
it is showed in two dimensions. Autocorrelation function 
of Oppermann code with length N=100 for various 
Doppler shift is shown in the Figure 7. Increase of 
Doppler frequency makes the peak of signal to shift right 
and increases the sidelobes level. The increase of 
sidelobe level causes the false alarm probability to 
increase. It is seems that the secondary peak has more 
important than other sidelobes, because its growth with 
the increase of Doppler shift, is quicker than other 
sidelobes. Shift of peak signal creates error in calculating 
the distance. The more the peak is shifted, the more the 
error of calculated distance will be. So, Oppermann code 
has little tolerant against Doppler frequency. 
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(c) 

 
Figure 6: Ambiguity diagram of weighting oppermann code 
with a) Hamming window, b) Hanning window, c) Nuttallwin 
window. 
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Figure 7: Autocorrelation function of Oppermann code with 
length N=100 for Doppler shift=0, 0.05, 0.1. 
 

Figure 8 presents Autocorrelation diagrams for 
various Doppler shifts of weighted Oppermann code with 
Hamming, Hanning and Nuttallwin windows. 
Comparison of Figure 7 and Figure 8 shows that using 
the weighting window in the Oppermann code does not 
affect the shifted main peaks, but is effective in the 
reduction of frequency Doppler role in the growth of 
sidelobe severely, in other words, increases Oppermann 
code tolerant against Doppler frequency. This result is 
more visible in weighting with the use of the Nuttallwin 
window (Figure 8.c). 

In amplitude weighting with used of Hamming 
window for Doppler shift=0.05 and 0.1, the secondary 
peak is about -38dB and -32dB, respectively. This 
growth increases with the increase of Doppler shift. Also, 
Hanning and Nuttallwin window have a similar effect on 
the secondary peak. Note that, in weighting with 
Nuttallwin window, the secondary peak appears in 
Doppler shift=0.15. 

Figure 9 shows Oppermann code without weighting 
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and with weighting using windows Hamming, Hanning 
and Nuttallwin windows for Doppler shift=0.2. In this 
figure the inefficiency of Oppermann code without 
weighting against Doppler shift which is relatively large, 
has been displayed well. Width of mainlobe can be 
extracted from this figure. It is indicated in the Figure 3 
that regardless of Doppler shift, amplitude weighting 
increases the mainlobe width and this increase depends 
on the width of the used windows. But, Figure 9 
represents that with regard to the Doppler shift, the width 
of the mainlobe in non-weighting Oppermann code, 
increases more intensively in comparison with the 
weighting Oppermann code and even becomes more than 
it. 
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(c) 

Figure 8: Autocorrelation function of weighting Oppermann 
code with a) Hamming window, b) Hanning window, c) 

Nuttallwin window, for Doppler shift=0, 0.05, 0.1. 
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Figure 9: Autocorrelation function for Oppermann code without 
weighting and with weighting using Hamming, Hanning and 
Nuttallwin windows for Doppler shift= 0.2. 

5.  CONCLUSION  

This paper investigated the properties of Oppermann 
code and indicated that this code has a high sidelobe level 
and lack of tolerant in the Doppler shift. Also, this 
instability occurs with an increase in the sidelobe level 
and the main peaks width and the shift of the main peaks 
with an increase of frequency Doppler. However, it is 
represented in this paper that the properties of this code 
can be improved by the use of the amplitude weighting 
window as Hamming, Hanning and Nuttallwin. Applying 
these windows reduces PSLR and increases FOM of 
compressed pulse, but increases the mainlobe width in 
time domain. In other words, this function causes the 
increase of target detection ability, decrease of false 
alarm probability and some inreduction the resolution 
range. It is also indicated that using the window 
weighting technique does not influence shifting of the 
main  peak  due to the Doppler frequency, but reduces the 
role of Doppler frequency on the growth of sidelobe and 
increases the main peak width, intensively. 
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